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a b s t r a c t

Representation learning models, such as the sparse representation and low-rank representation,
have shown pleasing efficacy in exploring the intrinsic data structures for pattern recognition tasks.
However, conventional methods ignore the local geometric and similarity information among samples,
and the performance is restricted. To address this issue, this paper proposes a novel Data Induced
Masking Representation (DIMR) learning model by imposing explicit regularization and low-rank
constraint. Specifically, DIMR is formulated for shrinking the representations of inter-class and non-
neighbor samples. An extra representation regularization term is deployed with a data induced mask
matrix, which can incorporate label and locality priors to guide the learning of affinity representation
matrix. The affinity graph derived from DIMR is with low-rank, locality preservation (sparsity)
and label guiding, such that it can better characterize the adjacent relationship between samples.
Extensive experiments on benchmark face datasets demonstrate the superiority of DIMR for both
semi-supervised classification and semi-supervised subspace learning tasks.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of social network, such as Face-
book, Instagram and Pinterest, large-scale image data is pro-
duced. How to organize and retrieve information from these
image data attracts a great deal of attention from researchers
in the field of computer vision, e.g., image classification and
image understanding. Human face is probably the most popular
image with rich pattern information, and therefore provides a
good test bed for image modeling and analysis. In practice, one
often needs to reveal the underlying data structures for many
computer vision, pattern analysis and image processing appli-
cations [1]. Affinity graph is usually constructed based on the
similarities between pairs of data points, and has been widely
applied in data clustering, subspace learning and semi-supervised
learning problems [2–6]. The basic idea of these methods is to
learn an affinity graph to characterize the adjacent relationship
between data points. Samples are the nodes of the graph, and
the edges among these nodes that measure the similarity with
respect to the sample pairs are generally defined as affinity.
However, constructing a good affinity graph to accurately capture
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the underlying structure of the observed data is still a challenging
problem [7].

Traditional methods, such as k-nearest neighbors and local
linear reconstruction-based graph [8,9], mainly rely on pair-wise
Euclidean distances in graphs construction. Therefore, they are
sensitive to the choice of the neighborhood size that is used to
compute the local information at each data point [3]. As suggested
by Cheng et al. an informative graph should have three char-
acteristics: discrimination, sparsity and adaptive neighbors [1].
Sparse graph derived from sparse representation (SR) has the
advantages of robustness to noise, data-adaptive neighbors and
sparsity [1,3,10,11], and therefore achieves a great success. How-
ever, there still some problems emerge. Firstly, traditional SR
is unsupervised and has shown to have the problem of ran-
domness [12–14]. That is, SR tends to randomly select a single
representative sample from the high-correlation samples. Mean-
while, SR might select quite different samples to favor sparsity.
Yu et al. [15] empirically observed that sparse results tend to be
local, i.e., the non-zero coefficients are often assigned to sam-
ples nearby the represented data. Simultaneously, they further
theoretically pointed out that under certain assumption, locality
is more essential than sparsity, as locality must lead to spar-
sity but the reverse is not necessarily true. Therefore, a good
graph should reveal the local neighborhood relationship of data
points and preserve the intrinsic geometric structure of the man-
ifolds [16]. Secondly, sparse graph can only reveal local geometry
relationship and cannot characterize the global structure of data.
Low rankness, as a global regularization, has been introduced
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Fig. 1. An illustration for Data Induced Masking Representation (DIMR) learning. 1⃝ a mask matrix is firstly induced from the given dataset. The element w.r.t.
the ith row and the jth column in the mask matrix codes the local geometric and similarity relationship of the ith and the jth sample in given dataset. 2⃝ with
the guidance of mask matrix, DIMR model is then optimized to learn data-adaptive representation with local geometric structure and similarity information well
preserved.

for visual analysis. Low-rank representation (LRR) is one of the
representative methods for affinity graph construction [17–19].
To preserve the locality and similarity information in LRR learn-
ing, Yin et al. [20] developed a Laplacian regularized low-rank
representation with a Laplacian regularization term. A locality-
preserving low-rank representation (L2R2) is presented in [16],
which constrains its linear representation to be nonzero only in
a local neighborhood and simultaneously preserves the intrinsic
geometric structure of the manifolds. Low-rank and sparse con-
straints have also been combined to reveal the local and global
structures of data points [2].

In pattern analysis and signal processing community, semi-
supervised learning has been attracting considerable attention
over the past decades, because supervised learning needs to
afford the expensive data labeling cost [21–23]. Recently, graph-
based learning methods have been widely used to develop effi-
cient algorithms for semi-supervised learning (SSL) tasks. Gen-
erally, most of these graph-based SSL algorithms adopt the so-
called cluster assumption, i.e., neighbor points in the same low-
dimensional smooth structure (e.g., cluster, subspace, or man-
ifold) are likely to share the same label [2]. To facilitate the
assumption, many methods approximate the underlying man-
ifolds by constructing an undirected graph from the observed
data points. In graph-based SSL methods, labeled and unlabeled
samples are the nodes of a graph. The label information of the
labeled samples can be propagated to the unlabeled ones over the
graph through a regularized function on the graph [21,24]. Con-
sequently, constructing a suitable graph that can well capture the
intrinsic data structure is the key for graph-based SSL methods.
However, the above-mentioned graph learning methods ignore
precious label information in graph learning. Intuitively, it is ben-
eficial to consider such information in the graph learning stage.
Hence, Zhuang et al. proposed to construct a low-rank graph
with label information considered [25], where the representation
coefficients of samples from different classes are constrained to
be zero. Although samples from different classes should have
low similarity, the representation coefficients are not necessarily
zeros.

Representation learning models have been proved to be ef-
ficient in revealing the complex intrinsic structures of a given
dataset for pattern analysis. Parsimony of representation is an

important criterion in representation learning. Sparse represen-
tation reveals the one-dimensional sparseness of data, while low-
rank representation embodies the two-dimensional sparseness of
data. Both of them have shown pleasing efficacy in exploring the
low-dimensional structure of high-dimensional data. However,
these methods cannot well enable the utilization of priors such
as local and label information. Thus, the key problem for repre-
sentation learning is to discover the low-dimensional structure
of the observed data with prior information well preserved. We
argue that for representation-based graph construction method,
each sample should be represented mainly by its intra-class and
neighbor samples. That is, the representation coefficients from
its intra-class and neighbor samples should be larger than that
of inter-class samples and non-neighbors. In view of this, we
propose a novel Data Induced Masking Representation (DIMR)
learning model by imposing an explicit regularization to address
the above issue. In DIMR, a representation regularization term is
deployed with a data induced mask matrix, which can incorporate
label and locality information to guide the learning of affinity
representation matrix. The implementation of DIMR is to enable
the compactness of representation coefficients of the intra-class
and neighbor samples, but shrink the representation coefficients
of the inter-class and non-neighbor samples. DIMR inherits the
merits of representation learning-based and traditional Euclidean
distance-based graph construction models. Different from exist-
ing models, our model can learn informative and discriminant
affinity representation matrix by simultaneously incorporating
label and locality priors together with the low-rank constraint. As
a by-product, the obtained affinity representation matrix tends to
be sparse with the guidance of locality information. Fig. 1 shows
an illustration for the proposed DIMR model. As described above,
the graph derived from DIMR model have three main character-
istics: low-rank, locality preservation (sparsity) and label guiding.
In addition, the obtained representation matrix tends to be block-
diagonal by taken into account the priors of both label and locality
information. For clarity, we have highlighted the novelty and
contribution of this paper as follows:

(1) We propose a novel Data Induced Masking Representation
(DIMR) learning model by imposing explicit regularization
with a data induced mask matrix for affinity representation
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matrix learning. To the best of our knowledge, this is the
first report on representational learning via data induced
mask. DIMR can be easily extended for supervised or un-
supervised learning tasks by incorporating different priori
information induced mask matrix.

(2) An effective optimization strategy based on the alternating
direction method of multipliers (ADMM) is devised to opti-
mize the DIMR model, and the convergence property of the
optimization algorithm is validated from both theoretical
and experimental perspectives.

(3) The affinity graph derived from DIMR is imposed to be
low-rank, locality preservation (sparsity) and label guiding,
which can better characterize the adjacent relationship
between samples. Experimental results show that the pro-
posed DIMR model can achieve promising performance for
both semi-supervised classification and semi-supervised
subspace learning tasks on benchmark face datasets.

2. Related works

2.1. Affinity graph learning

Given observed dataset X = [x1, x2, . . . xl, xl+1 . . . xN ] ∈ Rd×N ,
where xi|li=1 and xj|Nj=l+1 are labeled and unlabeled data points,
respectively. Dataset X can be represented by a weighted undi-
rected graph G = (V, E) associated with a weight matrix W ={
wij

}
. V = {vi}

N
i is the vertex set. Each data point corresponds to

a vertex of the graph, and E =
{
eij

}
is the edge set. Each edge eij

connects nodes vi and vj with weight wij. The problem of graph
construction is to determine the graph weight matrix W. Classic
graph learning methods, e.g. k-nearest-neighbor method or ϵ-ball
based method, rely on pair-wise Euclidean distances, which needs
manually set global parameter to determine the neighborhoods
for each data point, and hence fail to generate datum-adaptive
neighborhood [8,9]. Besides, Euclidean distances capture the local
structures of data, and are sensitive to noise and errors [1]. As
indicated by Cheng et al. sparse graph derived from sparse repre-
sentation have the following three properties: robustness to data
noise, sparsity and datum-adaptive neighborhood [1]. The neigh-
borhood samples of a datum and the corresponding connecting
edge weight are simultaneously obtained by solving an l1-norm
optimization problem, where each datum is represented as the
linear combination of the remaining samples and noise term [10].
Sparse graph can only reveal the local structure of data and
lacks a global structure constraint [3]. LRR adopts low rankness
as the global constraint to discover the global structure of data
[17–19]. Low-rank and sparse representation have been com-
bined to simultaneously capture the global and local structures in
data [2]. Locality information has also been considered for affinity
graph learning [16].

2.2. Semi-supervised classification and subspace learning

For a dataset X ∈ Rd×N , its label matrix is denoted as
Y = [Yl Yu] ∈ RN×C . Yl ∈ Rl×C and Yu ∈ R(N−l)×C are
denoted as the label matrix for labeled and unlabeled data points
respectively. Intuitively, similar data points in the same low-
dimensional smooth structure (e.g. cluster assumption and man-
ifold assumption) should have similar label. With this principle,
GFHF (Gaussian field and harmonic function) [21] and LGC (local
and global consistency) [24] have been proposed, which can learn
a continuous classification function F = [Fl Fu] ∈ RN×C from label
matrix Yl ∈ Rl×C and well-constructed graph G = (V, E) with

both label fitness and manifold smoothness. GFHF and LGC are
formulated as the following models (1) and (2), respectively.

min
F∈RN×C

1
2

N∑
i,j=1

Fi: − Fj:
2
2wij + λ∞

l∑
i=1

∥Fi: − Yi:∥
2
2 (1)

min
F∈RN×C

1
2

N∑
i,j=1

 Fi:
√
Dii

−
Fj:√
Djj


2

2

wij + λ

l∑
i=1

∥Fi: − Yi:∥
2
2 (2)

where λ balances the label fitness and manifold smoothness, and
λ∞ means an extreme large penalty on

∑l
i=1 ∥Fi: − Yi:∥

2
2 for label

fitness on labeled data. Fi: and Yi: are the ith row of label matrix
F and classification matrix Y for datum xi, respectively. The above
models can be further written as

min
F∈RN×C

tr
(
FTLF

)
+ tr (F − Y)T U∞ (F − Y) (3)

min
F∈RN×C

tr
(
FTL̃F

)
+ tr (F − Y)T Uλ (F − Y) (4)

where L̃ and L are normalized Laplacian matrix and Laplacian
matrix of the weight matrix W, respectively. Uλ is a diagonal
matrix with the m elements as λ w.r.t. the labeled samples and
with the rest N−l diagonal elements as 0 w.r.t. unlabeled samples,
respectively. U∞ is also a diagonal matrix with the m elements
as λ∞ w.r.t. labeled samples and with the rest N − l diagonal
elements as 0 w.r.t. unlabeled samples, respectively.

Another extensively studied topic in SSL is semi-supervised
subspace learning, e.g., Semi-supervised Discriminant Analysis
(SDA) [26], in which the labeled data points were used to maxi-
mize the separability between different classes and the unlabeled
data points were used to estimate the intrinsic geometric struc-
ture of the data. The performance of SDA heavily depends on the
affinity graph [26].

3. Data induced masking representation learning model

3.1. Model formulation

Let X = [x1, x2 . . . xN ] ∈ Rd×N be a collection of N data
points with dimension d. The representation coefficient matrix
Z = [z1, z2 . . . zN ] ∈ RN×N of dataset X over a dictionary A ∈

Rd×N is as follows:

X = AZ (5)

where each zi is the representation coefficient of xi. Although
the above problem can be solved as a least square optimization
problem with accurate reconstruction, the approach ignores all
structural information and trivial solutions are easily generated.
Therefore, effective constraint on the coefficient matrix Z for
revealing the intrinsic structure of data is expected. We pursue
that when small neighborhoods of data are used in reconstructing
each sample, only the most relevant data points are selected
for each reconstruction. As a result, the data lying in a unique
subspace tends to use the same group of data for reconstruction.
Specifically, we address this problem by revealing the underlying
structure of data and impose the lowest rank criteria. That is, we
seek a low-rank representation matrix Z by solving the following
problem.

min
Z

∥Z∥∗ s.t. X = AZ (6)

As a popular heuristic to replace the rank function. ∥·∥∗ is the
nuclear norm of a matrix, which can be computed as the sum
of the singular values of the matrix. Given dataset matrix X, we
may use the dataset themselves as the dictionary, i.e., A can be
simply chosen as X itself. In real applications, the data are often
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Fig. 2. An illustration for the inducing of mask matrix M. (a) is the given dataset composing of labeled and unlabeled data. (b) is the data induced mask matrix M
according to the local and category relations between data points in (a). The ones in M mean that the associated samples are neighbors or have the same label.
(c) is the desired affinity representation matrix. Note that the upper-left of (b) and (c) should have an approximate block-diagonal structure, which means larger
intra-class similarity weights.

noisy and even grossly corrupted. Therefore, we use a sparse term
to compensate the noise such that the negative effect can be
reduced to some extent.

min
Z,E

∥Z∥∗ + λ ∥E∥1 s.t. X = XZ + E (7)

Since each data point is represented by other samples, a col-
umn zi of Z can naturally characterize the contribution of other
samples in reconstructing xi, and zij measures the similarity be-
tween xi and xj. Among the solution of (7), some prior such as
label or locality information is desired to be incorporated to guide
the learning of Z. As a result, we further impose regularization
on Z to harness such prior information, which is formulated as
follows:

min
Z,E

∥Z∥∗ + λ ∥E∥1 + ψ (Z) s.t. X = XZ + E (8)

The regularization ψ (Z) is expected to preserve the local
geometric and similarity information of data points. Inspired by
recent advances in representation learning models, in this paper,
a regularization term is deployed through a data induced mask
matrix, which can flexibly incorporate different kinds of prior
information of data to guide the learning of affinity representa-
tion matrix. For semi-supervised learning, it is desired that if two
samples are close in the intrinsic geometry of the data distribu-
tion or have the same label, they should have a large similarity
coefficient. To this end, we propose to simultaneously introduce
label and locality information together with low-rank constraint
for affinity representation matrix learning. The representation
coefficients on inter-class samples and non-neighbors are opti-
mized to be small but are not necessarily be zeros. Formally, the
proposed Data Induced Masking Representation (DIMR) learning
model is formulated as

min
Z,E

∥Z∥∗ + λ ∥E∥1 +
α

2
∥Z − Z ⊙ M∥

2
F s.t. X = XZ + E (9)

where M ∈ RN×N is a data induced mask matrix with prior
information of dataset X ∈ Rd×N incorporated. ⊙ is a Hadamard
product operator of matrices. In DIMR, the mask matrix M should
enable the utilization of label and locality prior efficiently. Mask
matrix M is induced from dataset X ∈ Rd×N as follows. For
labeled data, if l (xi) = l

(
xj

)
, i.e., xi and xj have the same label,

Mij = 1, Mji = 1, otherwise Mij = 0, Mij = 0. For unlabeled data,
the value of Mij is set as follows

Mij
(
Mji

)
=

{
1, if xi ∈ Nk

(
xj

)
and xj ∈ Nk (xi)

0, otherwise
(10)

where Nk
(
xj

)
denotes the set of k nearest neighbors of xj. With

the above definition of M, the term Z − Z ⊙ M can extract

the representation coefficients on inter-class and non-neighbor
samples. By optimizing ∥Z − Z ⊙ M∥

2
F to be small, each labeled

datum is promoted to be represented by its intra-class and nearby
samples, and each unlabeled datum is encouraged to be rep-
resented by its neighbors. That is, the intra-class and neighbor
data are encouraged to have large connecting weights. In this
way, local geometric and similar information among data can be
preserved in the obtained representation matrix Z. An illustration
for inducing the mask matrix M is shown in Fig. 2. Generally, the
proposed model in Eq. (9) inherits the merits of Euclidean dis-
tance and representation-based graph leaning methods. The data
neighbors and corresponding affinities are adaptively determined
with pair-wise Euclidean distances and label prior considered.

3.2. Optimization for DIMR model

To optimize the proposed DIMR model (9), we first make an
equivalent transformation by introducing one auxiliary variable
to make the problem separable, and problem (9) can be rewritten
as

min
Z,E,J

∥J∥∗ + λ ∥E∥1 +
α

2
∥Z − Z ⊙ M∥

2
F (11)

s.t. X = XZ + E, Z = J
Then, we can get the following objective function of the prob-

lem using the inexact Augmented Lagrangian Multiplier (ALM)
method [27] as follows.

L (Z, E, J,Y1,Y2) = ∥J∥∗ + λ ∥E∥1 +
α

2
∥Z − Z ⊙ M∥

2
F

+ ⟨Y1,X − XZ − E⟩

+ ⟨Y2, Z − J⟩ +
µ

2

(
∥X − XZ − E∥

2
F + ∥Z − J∥2

F

)
(12)

where Y1, Y2 are the Lagrangian multipliers, and µ > 0 is
a penalty parameter. The augmented Lagrangian is minimized
along one coordinate direction at each iteration, i.e. minimiz-
ing the loss with respect to one variable with the other vari-
ables fixed. Specifically, we introduce the detailed optimization
procedures in the (k + 1)th iteration as follows.

Updating Z: Fix other variables and update Z by solving the
following problem

L (Z) =
α

2
∥Z − Z ⊙ M∥

2
F + ⟨Y1,X − XZ − E⟩ + ⟨Y2, Z − J⟩

+
µk

2

(
∥X − XZ − E∥

2
F + ∥Z − J∥2

F

)
(13)
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∂L (Z)
∂Z

= α (Z − Z ⊙ M)− XTY1 + Y2

+ µk (
XT (XZ + E − X)+ Z − J

)
(14)

The closed-form solution can be obtained as follows by setting
∂L(Z)
∂Z = 0.

Zk+1
=

((
α/µk

+ 1
)
I + XTX

)−1 (
XT (X − E)+ J

+
(
α

(
Zk

⊙ M
)
+ XTY 1 − Y 2

)
/µk) (15)

Updating E: Fix other variables and update E by solving the
following problem

Ek+1
= λ ∥E∥1 +

⟨
YT
1,X − XZk+1

− E
⟩
+
µk

2

X − XZk+1
− E

2
F

=
λ

µk
∥E∥1 +

1
2

E −
(
X − XZk+1

+ YT
1/µ

k)2
F

= S λ

µk

[
X − XZk+1

+ YT
1/µ

k] (16)

Updating J: Fix other variables and update E by solving the
following problem

Jk+1
= argmin

J
∥J∥∗ + ⟨Y2, Z − J⟩ +

µk

2
∥Z − J∥2

F

= argmin
J

∥J∥∗ +
µk

2

J − (
Z + YT

2/µ
k)2

F = US1/µk [Σ]VT

(17)

where
(
U,Σ,VT

)
= SVD

(
Z + YT

2/µ
k
)

and Sε [·] is the soft-
thresholding (shrinkage) operator [27] defined as follows:

Sε [x] =

⎧⎨⎩
x − ε, if x > ε

x + ε, if x < −ε

0, otherwise
(18)

Then, the multipliers and penalty parameter can be adjusted
as follows:⎧⎨⎩Yk+1

1 = Yk
1 + µk

(
X − XZk+1

− Ek+1
)

Yk+1
2 = Yk

2 + µk
(
Zk+1

− Jk+1
)

µk+1
= min

(
ρµk, µmax

) (19)

Generally, the optimization process is outlined in Algorithm 1.

By solving the proposed DIMR model, the optimal represen-
tation matrix Z∗ can be achieved. Then, we would construct an
undirected graph G = (V, E). The weight matrix and vertex set
are denoted as W =

{
wij

}
and V = {vi}

N
i=1, respectively. Each

Fig. 3. Performance evaluation (%) of DIMR versus parameters α and λ on
different datasets. (a) ORL database; (b) GT database; (c) Yale database.

vertex vi corresponds to one sample, and each edge in edge set
E =

{
eij

}
connects vertex vi and vj with a weight wij. With the

obtained representation matrix, zij
(
zji

)
can naturally measure the

similarity between xi
(
xj

)
and xj (xi). The graph weight matrix W

is defined as

W =

(
Z∗

+
(
Z∗

)T)
/2 (20)
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Fig. 4. (a) The average representation coefficient value of DIMR; (b) The semi-
supervised classification accuracy of DIMR and LRR graphs corresponding to the
different settings of parameter α in (a).

The method for constructing DIMR graph is summarized in
Algorithm 2. Once the graph weight matrix is obtained, one can
apply it for semi-supervised classification and semi-supervised
discriminative subspace learning.

3.3. Complexity and convergence analysis

The major computational burden of Algorithm 1 lies in updat-
ing Z and J as they involve computation of matrix inverse and
singular value. In Eq. (15), the matrix inversion operated for N×N
matrix costs O

(
N3

)
. In Eq. (17), SVD operated for matrix of N×N

costs O
(
N3

)
. The main computational complexity of Algorithm 1

is O
(
τ

(
N3

+ N2d
))
, where τ is the iteration number.

To solve the proposed DIMR model (9), an ADMM based itera-
tive updating algorithm is developed. We will give the theoretical
convergence of Algorithm 1. Classical ADMM aims to solve the

following type of optimization problem,

min
z∈Rn,g∈Rm

f (z)+ h (g) s.t. Rz + Tg = u (21)

where R ∈ Rp×n, T ∈ Rp×m, u ∈ Rp, f and h are convex functions.
ADMM can be extended to solve matrix optimization problem as

min
Z∈Rn×N ,G∈Rm×N

f (Z)+ h (G) s.t. RZ + TG = U (22)

where U ∈ Rp×N , and the augmented Lagrange multiplier func-
tion is

Lµ (Z,G, C) = f (Z)+ h (G)+
µ

2
∥RZ + TG − U∥

2
F

+ ⟨C,RZ + TG − U⟩ (23)

where C ∈ Rp×N is Lagrange multiplier and µ > 0 is the penalty
parameter. Optimization problem (11) is a special case of (22) by

setting R =

(
−IN
X

)
, T =

[
IN

ID

]
, G =

(
J
E

)
,U =

(
0
X

)
. IN

is an identity matrix with size of N . The constraint condition of
DIMR can be formulated as the form of RZ + TG = U. Then, the
two primal variables in Eq. (23) can be solved alternatively and
iteratively as follows:

Zk+1
= argmin

Z∈Rn×N
Lµ

(
Z,Gk, Ck) (24)

Gk+1
= argmin

G∈Rm×N
Lµ

(
Zk+1,G, Ck) (25)

Ck+1
= Ck

+ µ
(
RZk+1

+ TGk+1
− U

)
(26)

Particularly, the optimization of Z in (24) is equivalent to opti-
mize Z in Algorithm 1. Besides, the optimizations of E and J are
independent with each other. Hence the optimizations of E and
J can be accumulated in G using (25). In this way, solving DIMR
model is an instance of classical ADMM problem. Algorithm 1 is
equivalent to a two-block ADMM, and the global convergence is
theoretically guaranteed [28–30].

4. Experimental evaluations

4.1. Parameters sensitivity and convergence analysis

There are two parameters α and λ in the objective function of
the proposed DIMR model. This section will study the parameter
sensitivity to the learnt graph for semi-supervised classification
tasks. The semi-supervised classification accuracy under different
parameter combinations with GFHF framework on three datasets
is reported. α and λ are tuned in set {0.001,0.01,0.1,1,10,50,100,
500,1000,2000}. Three face datasets include Yale [31], ORL [32],
and Georgia Tech (GT) [33] are employed in the experiments.
From the experimental results in Fig. 3, where #Tr denotes the
number of labeled samples per class selected for each dataset. We
can see that the proposed model can achieve stable and promising
performance under a large range of parameter settings. In detail,
when α is very big (>500) and λ is small (<0.1), DIMR tends to
achieve worse performance. Stable and encouraging performance
can be achieved when α and λ are set with appropriate values,
i.e., 500 > α > 0.01, 100 > λ > 50. Thus, the parameter
sets are suggested to get intra- and inter-class, neighbor and
non-neighbor balanced low-rank representation.

Besides, the key idea of DIMR model is that each datum should
be represented mainly by its intra-class and neighbor samples,
so the representation coefficients among intra-class and neighbor
samples should be large. On the contrary, the coefficients for
inter-class and non-neighbors should be small. To verify this
viewpoint, the mean values of representation coefficients for
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Fig. 5. The obtained DIMR graphs under different settings of α are visualized in (a), (b), and (c). LRR graph is shown in (d). In comparison with LRR graph, the
developed DIMR graph becomes sparser with the enlargement of α, and can preserve the label and locality information.

intra-class and neighbor samples and the mean values of rep-
resentation coefficients for inter-class and non-neighbor samples
under different settings of parameter α are shown in Fig. 4(a). The
classification accuracy w.r.t. the parameter is reported in Fig. 4(b).
In addition, the obtained DIMR graphs are visualized in Fig. 5.
From the results, one can observe that a larger regularization
parameter α will result in the enhancement of the representation
among intra-class and neighbor samples, and the representa-
tion among inter-class and non-neighbor samples shrink at the
same time. Benefiting from the enhancement of representation
among intra-class and neighbor samples, DIMR tends to achieve
better semi-supervised classification performance than classic

LRR. Figs. 4 and 5 show the reasonability and validity of the
representation regularization introduced in DIMR.

We have developed an ADMM based optimization Algorithm 1
to solve the DIMR model. The convergence property of Algorithm
1 on three datasets is presented in Fig. 6, where #Tr denotes the
number of labeled training samples per class selected for each
dataset. Similar to [34], the relative error (i.e., ∥X − XZ − E∥F
/∥X∥F ) is employed to show the convergence. We can see that the
relative error generally decreases with the increasing number of
iterations, which shows the convergence property of Algorithm 1
from the experimental perspective.
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Fig. 6. Convergence curves of the Algorithm 1 on different databases. (a) ORL
database; (b) GT database; (c) Yale database.

4.2. Experiment on semi-supervised classification scenario

This section will conduct more experiments to verify the per-
formance of the proposed method together with GFHF framework
for semi-supervised classification. Three datasets, i.e. ORL [32],
Yale [32], and Georgia Tech (GT) [33] are employed. The descrip-
tion and some sample images of the datasets are shown in Table 1
and Fig. 7.

The ORL face database consists of 400 face images from 40
individuals with 10 images per person. The images were taken
at different time, with lighting variation, facial expressions and
facial details against a dark homogeneous background. In the

Fig. 7. Sample images used in our experiments. (a) ORL dataset; (b) Yale dataset;
(c) GT dataset; (d) Extended Yale B dataset; (e) CMU PIE dataset.

Table 1
Description of the datasets used in the experiments.
Dataset # Samples # Dimension # Classes

ORL [32] 400 1024 40
Yale [32] 165 1024 15
GT [33] 750 1024 50
Extended Yale B [31] 2414 1024 38
CMU PIE [35] 1680 1024 68

experiments, each image in ORL database is manually cropped
and resized to 32 × 32. A random subset with n (= 3, 4, 5, 6)
images of each individual is selected for training and the rest
for testing. For each n, we run the algorithm 10 times and the
recognition rates as well as the standard deviations are reported
in Table 2.

The Yale face database contains 165 gray scale images of
15 individuals, and each individual has 11 images. The images
demonstrate variations in lighting condition and facial expres-
sion. In our experiments, each image in Yale database was man-
ually cropped and resized to 32 × 32. A random subset with n
(= 3, 4, 5, 6) images per individual is selected as labeled training
data and the rest for testing. For each given n, we perform 10
times to randomly choose the training set and report the average
recognition rates as well as the standard deviation in Table 2.

The GT face database contains 750 gray scale images of 50 in-
dividuals, and each individual has 15 images. The images demon-
strate variations in pose, expression, illumination, and scale. In
our experiments, a random subset with n (= 5, 8, 11) images per
individual is selected as labeled training data and the rest is used
for testing. For each given n, we perform 10 times to randomly
choose the training set and report the average recognition rates
as well as the standard deviation in Table 2.

Several state-of-the-art graph construction methods includ-
ing KNN, LLE [8], SPG [36], SSC [3], LRR [17], NNLRS [2], and
NSLLRR [20] are exploited for comparison. The number of neigh-
bors in KNN, LLE, and the proposed DIMR is set as 5 and the
Euclidean distance is adopted as the similarity measure. All the
experimental results are reported in Table 2. From the results,
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Fig. 8. Visualization of the first five basis vectors calculated by DIMR graph and SDA [26] on Extended Yale B database (a) and CMU PIE database (b).

Table 2
Experimental result on different databases using different methods.
Dataset n Comparing methods Ours

KNN LLE [8] SPG [36] SSC [3] LRR [17] NNLRS [2] NSLLRR [20] DIMR

ORL

3 78.54 ± 2.02 83.75 ± 2.39 77.93 ± 2.73 81.11 ± 2.39 83.68 ± 2.65 67.43 ± 2.70 76.93 ± 3.11 87.64 ± 2.06
4 79.88 ± 2.14 85.54 ± 2.99 81.17 ± 3.23 87.17 ± 3.19 85.63 ± 2.92 69.83 ± 2.74 80.00 ± 3.12 90.67 ± 3.32
5 83.60 ± 2.07 89.30 ± 1.60 84.95 ± 2.30 92.35 ± 1.75 89.45 ± 2.35 71.50 ± 2.48 83.25 ± 1.64 94.35 ± 1.20
6 83.56 ± 3.51 89.75 ± 3.06 79.63 ± 2.92 94.19 ± 1.93 90.88 ± 2.74 69.81 ± 4.90 83.88 ± 2.65 95.44 ± 1.64

YALE

3 49.83 ± 2.77 50.67 ± 2.91 53.25 ± 3.25 52.83 ± 2.19 58.67 ± 4.38 58.17 ± 4.25 57.58 ± 3.00 64.00 ± 3.21
4 56.29 ± 2.96 58.29 ± 2.94 62.86 ± 5.33 57.71 ± 4.90 63.81 ± 4.16 58.10 ± 3.51 61.71 ± 4.23 70.19 ± 4.58
5 57.78 ± 3.19 62.22 ± 5.37 67.00 ± 3.48 63.33 ± 4.54 68.44 ± 3.15 59.11 ± 3.81 65.33 ± 2.61 75.44 ± 2.74
6 56.40 ± 3.56 61.60 ± 5.96 68.13 ± 6.42 67.73 ± 5.96 69.60 ± 6.31 59.73 ± 4.78 67.60 ± 5.22 78.40 ± 5.21

GT
5 63.68 ± 1.83 68.60 ± 1.73 58.38 ± 1.97 57.88 ± 1.51 54.70 ± 2.75 55.20 ± 2.52 57.74 ± 1.75 67.88 ± 1.30
8 67.23 ± 1.90 74.34 ± 1.77 65.91 ± 2.81 70.57 ± 1.92 65.40 ± 1.76 63.29 ± 1.85 64.86 ± 1.69 75.91 ± 1.29

11 70.55 ± 2.42 78.30 ± 3.22 70.90 ± 3.89 76.70 ± 3.23 68.90 ± 2.40 64.45 ± 2.57 67.45 ± 3.24 81.25 ± 3.08

we can observe that the proposed DIMR can achieve better per-
formance by comparing with several state-of-the-arts. Compara-
tively speaking, the neighbors of samples in KNN graph cannot
be adaptively determined but need manual setting, and also
the structure of obtained graph is sensitive to noise. LLE tries
to minimize the linear reconstruction error for graph construc-
tion. However, the minimization of linear reconstruction error in
LLE is only processed within the sample neighbors defined by
the k nearest neighbors. Thus, the structure of graph adjacency
has been determined and LLE only generates the corresponding
graph weights. In this way, the graph deduced by LLE is not
optimal. SPG is formulated as a sparse coding problem with the
non-negative constraint to adaptively determine the connecting
neighbors and corresponding weights. SSC utilizes sparse con-
straint to construct the sparse graph, which can reveal the local
geometry structure of data. However, Both SPG and SSC find
the sparsest representation of each sample individually, which
lacks of global constraints on their solutions. Therefore, these
methods may be ineffective in capturing the global structures
of data, which may reduce the performance when the data are
grossly corrupted. LRR graph is constructed based on sample
reconstruction principle, and adaptively determine the connect-
ing relationship and weights between samples. Compared to the
sparse graph, LRR often results in a dense graph, which is unde-
sirable for graph-based SSL. NNLRS and NSLLRR only use the label
information of the observed samples in the label propagation
stage, while ignoring such valuable information during the graph
learning, such that the adjacent relationship between samples
cannot be well revealed. As mentioned above, the proposed semi-
supervised classification methods can not only utilize the label
information in label propagation stage, but also incorporate lo-
cality and label information in graph learning stage. With the

low-rank constraint and explicit regularization for the affinity
representation matrix, the obtained graph has the traits of low-
rank, locality preservation (sparsity), and label guiding, which
make the graph more discriminative and informative for semi-
supervised classification task. As a result, the proposed method
can alleviate the problems of the compared methods, and achieve
higher classification accuracy.

To show the effectiveness of the proposed method, we per-
form statistical significance test to verify whether the improve-
ment of DIMR over other methods is significant. More specifically,
the popular t-test [37,38] was performed in a pair-wise manner
on the null hypothesis that the improvement of DIMR over some
competing method is insignificant. Two variables H and p are
computed using t-test on the results from each pair of methods,
where p denotes the probability of observing the given results.
H = 1 denotes that the null hypothesis is rejected, and H = 0
denotes that the null hypothesis cannot be rejected, under some
significance level α (α = 5% or 1%). The test results are shown in
Table 3, from which we can observe that H = 1 is achieved for
all cases. The statistical significance of the proposed DIMR over
other methods is clearly validated.

4.3. Experiments on semi-supervised subspace learning scenario

To evaluate the effectiveness of the proposed method on semi-
supervised subspace learning task, we combine semi-supervised
discriminant analysis (SDA) [36] with different graphs to compute
the embedding. The compared methods include KNN, LLE [8],
SSC [3], LRR [17], and NSLLRR [20]. The Extended Yale B [31]
and CMU PIE [35] databases are adopted in the experiments. To
make fair comparison, for all the evaluated algorithms we first
apply PCA for data preprocessing by retaining 99% energy. The
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Fig. 9. Recognition rate versus dimension on the Extended Yale B database with 20 training samples of each individual. (a) 8 labeled training samples per person;
(b) 10 labeled training samples per person; (c) 12 labeled training samples per person.

Table 3
Statistical hypothesis test by using t-test method of seven pairs of methods on semi-supervised classification task.
Pairs ⟨KNN, Ours⟩ ⟨LLE, Ours⟩ ⟨SPG, Ours⟩ ⟨SSC, Ours⟩ ⟨LRR, Ours⟩ ⟨NNLRS, Ours⟩ ⟨NSLLRR, Ours⟩

p 6.9 × 10−6 1.9 × 10−3 2.1 × 10−8 1.9 × 10−4 1.9 × 10−5 1.9 × 10−6 3.9 × 10−9

H(α = 0.01) 1 1 1 1 1 1 1
H(α = 0.05) 1 1 1 1 1 1 1

Nearest Neighbor (NN) classifier is employed in the projected
feature space for all the methods.

The Extended Yale B database consists of 2414 frontal face im-
ages of 38 individuals. Each individual contains about 64 images,
taken under various laboratory-controlled lighting conditions. In
the experiment, 20 samples per person are randomly selected
as the training data, and the remaining are used for testing. For
training samples, a random set of n = 8, 10, 12 of each individual
are labeled and the rest are unlabeled. For each experimental
setting, we run the algorithm code 10 times and report the recog-
nition rates as well as the standard deviations with the increasing
feature dimensionality. The CMU PIE dataset contains over 40,000
face images of 68 individuals. Images of each individual were
acquired across 13 different poses under 43 different illumination
conditions and 4 different expressions. Here we use a near frontal
pose subset, namely C07, for experiments, which contains 1629
images of 68 individuals. Each individual has about 24 images.
In the experiment, 10 samples of each individual are randomly
selected as the training data, and the remaining are used for
testing. For training samples, a random set of n = 4, 5, 6 sam-
ples per person are labeled and the rest are unlabeled. For each
experimental setting, we also run the codes 10 times and report
the average recognition rates as well as the standard deviations

with the increasing feature dimensionality. The first five basis
vectors calculated by DIMR graph and SDA on the two databases
are visualized in Fig. 8. Besides, Figs. 9 and 10 plot the curves of
average recognition accuracy versus the dimension on Extended
Yale B and CMU PIE databases, respectively. Moreover, the details
of experimental results, namely the maximum recognition rates
and the standard deviations with different dimensionality based
on different algorithms are summarized in Table 4. Benefiting
from the discrimination of DIMR graph, SDA can achieve su-
perior performance in comparison with related methods. The
experiment shows the advantages of DIMR for semi-supervised
subspace learning problem.

Similarly, we perform t-test [37,38] to show whether the
improvement of DIMR over some competing method X is in-
significant in a pairwise manner. The test results are shown in
Table 5, from which one can see that the proposed DIMR method
statistically outperforms other methods at the significance level
α = 5%. The proposed DIMR also statistically outperforms others
at the significance level α = 1%, except that the DIMR is not
statistically significant over SSC graph.
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Fig. 10. Recognition rate versus dimension on the CMU PIE database with 10 training samples of each individual. (a) 4 labeled training samples per person; (b) 5
labeled training samples per person; (c) 6 labeled training samples per person.

Table 4
Recognition rates (%) and the corresponding standard deviations and dimensions (in parenthesis) on Extended Yale B and CMU PIE databases.
Dataset n Compared methods Ours

KNN graph LLE graph SSC graph LRR graph NSLLRR graph DIMR graph

Extended Yale B
8 74.43 ± 1.44(38) 80.82 ± 1.86(38) 81.41 ± 1.45(38) 79.76 ± 2.04(44) 79.47 ± 1.55(38) 81.91 ± 1.62(38)

10 81.04 ± 1.98(38) 85.42 ± 1.54(42) 85.75 ± 1.66(38) 84.66 ± 1.71(38) 84.67 ± 1.56(40) 86.45 ± 1.71(42)
12 84.32 ± 1.28(38) 88.13 ± 1.11(38) 87.86 ± 0.95(38) 87.18 ± 1.24(56) 87.22 ± 1.12(66) 88.80 ± 1.11(50)

CMU PIE
4 82.74 ± 2.04(70) 87.27 ± 1.32(66) 87.73 ± 1.13(66) 86.17 ± 0.80(68) 86.15 ± 0.69(76) 87.69 ± 1.36(74)
5 87.71 ± 1.61(68) 90.95 ± 0.94(78) 91.02 ± 0.81(90) 89.80 ± 1.04(102) 90.02 ± 1.11(68) 91.41 ± 1.05(76)
6 90.34 ± 1.29(78) 92.41 ± 1.01(76) 92.52 ± 0.99(84) 91.68 ± 1.37(74) 91.88 ± 1.37(94) 92.92 ± 0.93(70)

Table 5
Statistical hypothesis test by using t-test method of five pairs of methods on semi-supervised subspace learning task.
Pairs ⟨KNN graph, Ours⟩ ⟨LLE graph, Ours⟩ ⟨SSC graph, Ours⟩ ⟨LRR graph, Ours⟩ ⟨NSLLRR graph, Ours⟩

p 9.0 × 10−4 2.2 × 10−3 1.6 × 10−2 4.1 × 10−5 3.7 × 10−4

H(α = 0.01) 1 1 0 1 1
H(α = 0.05) 1 1 1 1 1

5. Conclusions and further study

This paper presents a novel Data Induced Masking
Representation (DIMR) learning model by explicitly regulating
the affinity representation matrix with a data induced mask
matrix. By coding both label and locality priors in the mask
matrix, DIMR is formulated as an optimization problem of shrink-
ing the representations between inter-class and non-neighbor
samples with low-rank constraint. The obtained representation
matrix is informative and discriminative, and shown to be low-
rank and sparse with both label and local information preserved.
The affinity graph derived from DIMR inherits the merits of
Euclidean distance-based and representation-based graph leaning

models. The proposed DIMR model is applied for semi-supervised
classification and semi-supervised subspace learning tasks on
benchmark face datasets, and the experimental results verify
its effectiveness over many others. Future work will explore
the application of the proposed model in a broader range of
problems, such as supervised and unsupervised learning. Learning
with hypergraph and deep representation will also be further
investigated.
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