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Abstract. This paper proposes a pedestrian detection and re-identification
(re-id) integrated net (I-Net) in an end-to-end learning framework. The
I-Net is used in real-world video surveillance scenarios, where the target
person needs to be searched in the whole scene videos, and the anno-
tations of pedestrian bounding boxes are unavailable. Comparing to the
successful OIM method [31] for joint detection and re-id, we have three
distinct contributions. First, we implement a Siamese architecture in-
stead of one stream for an end-to-end training strategy. Second, a novel
on-line pairing loss (OLP) with a feature dictionary restricts the positive
pairs. Third, hard example priority softmax loss (HEP) with little com-
putation cast is proposed to deal with the online hard example mining.
We show our results on CUHK-SYSU and PRW datasets. Our method
narrows the gap between detection and re-identification, and achieves a
superior performance.

Keywords: Person Search · Deep Learning.

1 Introduction

Real-world video surveillance tasks such as criminals search [29], multi-camera
tracking [26] need to search the target person from different scenes. In other
words, the algorithms for real-world person search tasks are asked to find the tar-
get person from a whole image. Therefore, this problem is generally issued by two
separate steps: person detection from single image and person re-identification
(re-id). These two problems are challenging due to the influences of poses, view-
points, lighting, occlusion, resolution, background etc. Therefore, they have been
paid too much attention in recent research [3], [2], [27], [21].

Although numerous endeavor on person detection and re-identification has
been made, most of them handle these two problems independently. The tra-
ditional methods divide the person search task into two sub-problems. First, a
detector is implemented to predict the bounding boxes of the persons from the
images. Second, the detected persons are cropped based on the bounding boxes
for the further re-identification task. Actually, most advanced re-identification
method are modeled on the manually cropped pedestrian images [3], [15], [14],
and the manually cropped pedestrian samples are much better than the spe-
cially trained detector because of inevitable false detection. Additionally, person
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(a) Traditional method

(b) Our method

Fig. 1. Comparison of the traditional method and our method. In the Figure 1.a,
Traditional method need detect all persons in the picture and cropped them for the
further re-id model. Our new method(I-Net) in Figure 1.b can find the target person
from a whole image directly.

search task should be a joint work of detection and re-id, which requires the
close cooperation of both two parts. Therefore, in this paper, we propose a new
model to jointly train these two parts in a unified deep framework end-to-end,
which aims to search the target person from whole image scene.

Specifically, to reduce the gap between traditional algorithms and practi-
cal applications, we propose an Integrated Net (I-Net) to simultaneously learn
the detector and re-identifier by an end-to-end manner. Figure. 1 shows the
difference between traditional scheme and the proposed I-Net in application s-
cenario. Different from the traditional re-id method, which got a separated two
steps(detection and re-identification) for the person search task, our I-Net can
predict the location (bounding box) of the target person from a whole image. The
joint learning of the detector and re-identifier in I-Net for person search brings
lots of benefits: On one hand, the co-learning of the detector and re-identifier
helps the re-id part to handle the misalignments of bounding boxes and the false
positives provided by the detector, such that the re-id part can be more robust
than independent training. On the other hand, the detection and re-id reuse the
same features which can accelerate the search speed.

Triplet loss [24] is a loss function for the verification problems, it’s widely used
for the re-id tasks [6], [19], [7]. Triplet loss sometimes encounters the stagnate
problem during the training phase because the condition of the loss function can
be easily satisfied. Further, in order to remit the stagnate problem and achieve
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the purpose of co-learning of person detection and re-id, an on-line pairing loss
(OLP loss) and a hard example priority softmax loss (HEP loss) are proposed
in I-Net. By storing the features of different persons in a dynamic dictionary,
a positive pair and lots of negative pairs can be captured for every iterations.
Such that, the positive pairs is restricted by more negative pairs than the Triplet
loss [24], which is helpful to remit the stagnate problem. HEP Loss is an auxiliary
loss based on softmax, which considers the hard example priority strategy. This
loss function drops some easily distinguished samples to reduces computation
cast and achieves a better results than traditional softmax. Besides, comparing
to the OIM loss [31] which generates positive and negative pairs with out of date
features, our model based on the Siamese architecture generates real-time posi-
tive pairs during the training phase. We achieved an advanced performance on
the person search task with our special designed loss function for joint training.
The contribution and novelty of this paper are summarized in three folds:

– We propose a Siamese structure based Integrated Net (I-Net) for an end-
to-end learning strategy. Based on the special net structure, our I-Net can
generate a better real-time positive pairs than OIM [31], which leads to a
better performance.

– On-line pairing (OLP) loss with an online feature dictionary is proposed to
strictly restrict the positive pair. Since that, it’s more helpful to remit the
stagnate problem in the training phase.

– A hard example priority strategy is implemented in Hard example priority
(HEP) loss which focus on the online hard example mining. Benefit from the
results of OLP, we achieve a better performance than traditional softmax
but with less computation cast.

2 Related Work

In recent years, lots of researches on person detection and re-identification were
conducted independently. In this section, we will introduce some closely related
works for a better presentation of our paper.

Person re-identification. Most re-id work focus on two aspects: feature
representation [1], [38], [5] and similarity metric [17], [23], [16]. All of these
methods achieved great success in the past few years, Chen et al. [5], jointly
optimized the two tasks simultaneously for re-id, Cheng et al. [6] presented a
novel multi-channel parts-based model with triplet loss. Additionally, in order
to remit the influence of stagnate problem of triplet loss, Chen et al. [4] enlarged
the three-steam network to quadruplet network such that one more negative
pair can be obtained to strength the condition. For our special designed OLP
loss function, we generate amounts of negative samples to remit the stagnate
problem during the training phase and a better results for the person search
task is achieved.

Pedestrian detection. Traditional pedestrian detection methods are based
on hand-crafted features and Adaboost classifiers, such as ACF [8], LDCF [20],
Checkerboards [34] and Integral Channels Features (ICF) [9]. These methods
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dominated the detection field for years due to their effectiveness. Recently, con-
volutional neural network (CNN) based deep learning methods have achieved
significant progress in pedestrian detection. Tian et al. [28] jointly optimized
the pedestrian detection with semantic tasks, including pedestrian attributes
and scene attributes. Song et al. [27] combined multiple deep networks with one
fully-connected layer to improve the detection accuracy. In [33], CNN features
extracted by RPN [22] are fed into the random forest for pedestrian detection. In
our work, we implemented our detection module based on the Faster-RCNN [22],
which is used to generate proposals for our further re-identification part.

End-to-end person search. Recently, some works were proposed to ad-
dress the person search task. ID-discriminative Embedding (IDE) and Confi-
dence Weighted Similarity (CWS) were proposed by Zheng et al. [37]. While
NPSM [18] based on LSTM was used to reduce the region containing the tar-
get automatically. Xiao et al. [31] jointly trained both two tasks with OIM loss,
which updated features of a labeled identity every hundreds of iterations. As a
result, the out-of-date features stored by OIM can’t properly compute the loss
function. Benefiting from the Siamese structure, our I-Net can generate a real-
time positive pairs during the training phase and lead to a better performance.

3 The Proposed I-Net

We propose a new I-Net framework that jointly handles the pedestrian detection
and person re-id into an end-to-end Siamese network. The architecture is shown
in Figure. 2. Given a pair of images with the persons with same identity, two
pedestrian proposal networks (PPN) with shared parameters are learnt to predict
the proposals of pedestrians from the two images. The feature maps pooled by
region of interest (ROI) pooling layer are then fed into the fully-connected (fc)
layers to extract 256-D L2-normalized features for the re-id task. After that,
these features are stored in an on-line dynamic feature dictionary, in order to
generate one positive pair and lots of negative pairs for OLP loss and HEP loss.

3.1 Deep Model Structure

The basic model of I-Net is the VGG16 architecture [25]. which has 5 stacks
of convolutional part, including 2, 2, 3, 3, 3 convolutional layers for each stack.
4 max-pooling layer are followed on the first 4 stacks. On the top of conv5 3
layer, we generate feature maps with 512 channels which are used to predict
pedestrian proposals. A 512 × 3 × 3 convolutional layer is first added to get the
features for pedestrian proposals. Similar to faster RCNN [22], we then associate
9 anchors at each feature map, and a softmax classifier (cls.) is used to predict
whether the anchor is a pedestrian or not. A SmoothL1Loss (reg.) is used for
bounding box regression. Finally, 128 proposals for each image after the non-
maximum suppression (NMS) are obtained. In fact, the two branches of the PPN
are shared same parameters during the training phase.
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Fig. 2. The net structure of our I-Net. A pair of images including the person with same
identity are fed into the two PPNs of the I-Net respectively. Two PPNs shared same
parameters generate proposals for pedestrians. These proposals are then fed into the
further fc layers to get the corresponding features. The input features and the feature
dictionary are then used to form positive and negative pairs, which participate the
computation of OLP loss and HEP loss for joint training.

A ROI pooling layer [11] is integrated into I-Net to pool the generated pro-
posals from both two PPNs. The pooled features from both two branches are
then fed into the two fc layers of 4096 neurons. In order to remove the false pos-
itives of proposals, a two class softmax layer (person vs. non-person) is trained
to classify them. Then a 256-D L2-normalized features generated by an extra fc
layer which are then fed into the OLP loss and HEP loss for guiding the whole
training phase. With the SoomthL1loss which is used to correct the bounding
boxes of proposals, the proposed I-Net can be jointly trained for simultaneous
person detection and re-identification in an end-to-end architecture. The whole
network structure is shown in the fig.2

3.2 On-line Pairing Loss (OLP)

128 proposals per image are learned by PPNs are then fed into the re-identification
part. For person re-id, the proposal features can be divided into 3 types, including
background (B), persons with identity information (p-w-id) and persons without
identity information (p-w/o-id). The division depends on the IOU between the
proposals and the ground truth. As shown in Figure. 3, the B, p-w-id and p-w/o-
id are represented by red, green, and yellow bounding box, respectively. In the
OLP loss, an on-line feature dictionary is designed where the features of p-w-id,
p-w/o-id, and a part of B are stored with corresponding labels. Note that, the
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Fig. 3. The procedure of OLP. The features of proposals including B (red), p-w-id
(green), and p-w/o-id (yellow and labeled as -1) are extracted. These features are stored
into the feature dictionary. OLP loss uses the features extracted by I-Net to compose
positive pairs(collected with green line) while the features in the feature dictionary is
used to construct negative pairs(collected with gray lines).

number of the stored features depends on the number of proposals per PPN.
Specifically, we use 40 times number of proposals per PPN in our experiment.
Notably, once the number of features in the dictionary reaches the maximum
number, the out-of-date feature will be replaced.

In order to minimize the discrepancy of the features from the same id,
while maximizing the discrepancy of different, we use the person proposals from
the two stream of I-Net and the stored feature dictionary to establish positive
and negative pairs. Suppose that the proposal group for loss computation is
(p1,p2,n1,n2...,nk), where (p1,p2) stands for proposals from the same identi-
ty person generated by I-Net in forward propagation and (n1,n2...,nk) are the
features stored in the dictionary. For each proposal group, we tend to formulate
two symmetrical subgroups by taking p1 and p2 as anchor, alternatively. For ex-
ample, when p1 is regarded as anchor, the (p1,p2) is the positive pair. (p1,n1),
(p1,n2), ... , (p1,nk) are negative pairs. Alternatively, when p2 is regarded as
anchor, (p2,p1) is the positive pair. (p2,n1), (p2,n2), ... , (p2,nk) are negative
pairs. Considering the large amount of negative samples, the OLP loss is estab-
lished based on softmax function. Suppose we get m subgroups in one iteration,
and xi

A, xi
p, (xi

n1
,xi

n2
...,xi

nk
) stand for the anchor, positive and negative features

of ith subgroup, respectively. The OLP loss function is represented as follows.
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where the function d(·) stands for the cosine distance of two features. Because
these features are L2-normalized, the cosine distance can be directly computed
by the inner product. In gradient computation, we only calculate the deviation
from the anchor feature.
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Then, the deviation of the OLP loss function with respect to xi
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qi =
ed(x

i
A,xi

p)

ed(x
i
A,xi

p) +
∑k

j=1 e
d(xi

A,xi
nj

)
(3)

q̂il =
ed(x

i
A,xi

nl
)

ed(x
i
A,xi

p) +
∑k

j=1 e
d(xi

A,xi
nj

)
, l = 1, ..., k (4)

Following the standard BP optimization in CNN, stochastic gradient descent
(SGD) is adopted in the training phase of I-Net.

From the OLP loss (1), we can see that a large number of negative features
can be processed at one time by utilizing the cosine distance guided softmax
function. In terms of the softmax character, the cosine distance between anchor
and positive samples tends to be maximized which improves the performance.

3.3 Hard Example Priority Softmax loss (HEP)

The OLP loss function aims to restrict the cosine distance of positive pairs
to be larger than negative pairs. However, the identity information is not fully
exploited. Therefore, we propose a HEP softmax loss function for person identity
classification. Different from the traditional softmax loss, we propose a hard
example priority strategy, which focuses on the classes of hard negative pairs.

Suppose that there are C identities in the dataset. The HEP loss function
aims to classify all proposals (except p-w/o-id) into C + 1 classes (C classes
plus B). In order to calculate the HEP loss, we annotate the proposals based on
IOU between the proposal and the ground truth. To this end, when the cosine
distances among the positive pair and negative pairs are computed by the OLP
loss as described in Section 3.2, we can find out the top 20 maximum distances
of the negative pairs, and record their corresponding labels as priority classes.
In order to keep the fixed total number of the priority classes, we also randomly
choose an uncertain number of classes from the remaining classes, such that
totally M(M << C + 1) classes are selected to compute the final loss. Finally,
the HEP softmax loss function is represented as:

LHEP = − 1

n

n∑
i=1

M∑
j=1

1(label = j)log
ex

i
j∑M

k=1 e
xi
k

(5)

where xi
j stands for the i-th proposal’s score from the classifier and j stands

for the j-th class. Suppose that L stands for the pool of priority classes. The
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Fig. 4. The protocol for choosing the priority class for the HEP loss function, First,
the labels of PPN generated proposals during the forward propagation were selected
as priority class. Second, labels of negative samples from negative pairs which got the
largest consine distances were selected. At last, same random classes were chosen to
make sure the total number of priority class fixed.

protocol for choosing the M classes with hard example priority strategy is sum-
marized as below, which can be recognized in Fig. 4.

1. The label indexes of generated proposals from the input image pair in the
forward propagation are first stored in the priority classes pool L to ensure
the ground truth class.

2. For each subgroup (described in Section.3.1), the label indexes of negative
samples from the top 20 negative pairs with the maximum distances are
stored in the priority classes pool L. This step makes sure the hard classes
are priority considered.

3. If the size of pool L is still smaller than M (a preset value), then we randomly
generate the classes indexes without repetition and store them in the chosen
priority pool L.

This strategy ensures that the classes of hard samples are priority selected.
That is, if a person with identity is hard to distinguish from others, then the
proposals of the corresponding identity must participate the HEP softmax loss
computation in Eq.(5). Additionally, the loss function has little computation
cast because the cosine distances are pre-computed by OLP.

4 Experiments

To evaluate the effectiveness of our approach, we conduct a number of experi-
ments on the CUHK-SYSU dataset [30] and PRW dataset [37]. We first compare
our results to state-of-the-art methods on both two datasets in section 4.2 and
section 4.3. Then the discussion of our model is presented in section 4.3.
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4.1 Experimental Setup

Implementation Details. Our I-Net is implemented on Caffe [13] and py-
faster-rcnn [22] platform. VGG16 [25] is the basic network of I-Net and the
trained model in [30] was used for network initialization. The first two stacks
of convolutional layers are frozen while training our net. The two streams of
the I-Net shared the same parameters for both initialization and training. The
pedestrian proposal network (PPN) at each branch generates 128 proposals.
We randomly choose 5 background proposals per image to store in the feature
dictionary. In I-Net, all loss functions are imposed the same loss weight. The
learning rate is initialized to 0.001, and drops to 0.0001 in 50k iterations. Totally,
60k iterations are set to insure convergence.

CUHK-SYSU Dataset. The CUHK-SYSU dataset [30] is a large person
search dataset containing 18184 images from the hand-held cameras and movie
snapshots, which has a large variations in viewpoint, lighting, resolution, etc.
It annotated 8432 different persons and 96143 bounding boxes. Each labeled
person has at least two images from different viewpoints. The dataset provided
11206 images with 5532 identities as the training set, and 6978 images with 2900
identities for test. Our experiments follow the protocols provided by the dataset.

PRW Dataset. The PRW dataset [37] is extracted from 10-hour video cap-
tured by 6 cameras, which 5 are 1080× 1920 HD and 1 is 576× 720 SD. Totally
11816 frames are manually annotated, which contains 43110 pedestrian bound-
ing boxes, among which 34304 pedestrians are annotated with 932 IDs. The
PRW dataset provides 5134 frames with 482 labeled identities as training set
while 6112 frames with 450 labeled identities are used as testing set. The PRW
dataset ask the model to search the target person from the whole testing set,
which is challenging.

4.2 Experiments on CUHK-SYSU

In this section, we perform several experiments on the CUHK-SYSU datasets
to investigate the effectiveness of our I-Net. For baseline comparisons, we selec-
t three pedestrian detection methods and five person re-id approaches, which
then results in 15 baselines. The three detection methods, CCF [32], Faster-
RCNN [22] with resnet50 [12] and ACF [8], are used for detecting pedestrians.
Besides, we also use the detection ground truth of the test set as the perfect
detector. For the re-identification problem, we evaluate several famous re-id fea-
ture representation methods including DenseSIFT-ColorHist (DSIFT) [35], Bag
of Words (BoW) [36], Local Maximal Occurrence (LOMO) [17] and ID-Net(The
re-identification part of OIM [31]) to extract features for re-identification, while
Euclidean, Cosine similarity, KISSME [23], and XQDA [17] are used as met-
ric method for them. We combine these detection methods and re-identification
methods as the examples of traditional person search model.

Further, we implement the OIM loss model [31], the End-to-End model (ini-
tialized model) [30] and NPSM [18] as the competitor, which addressed the
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Table 1. Comparisons between our framework and other methods on CUHK-SYSU

Detector Re-id Method mAP(%) Top-1(%)

ACF

DSIFT [35]+Euclidean 21.7 25.9
DISFT [35]+KISSME [23] 32.3 38.1
BOW [36]+KISSME [23] 42.4 48.4
LOMO [17]+XQDA [17] 55.5 63.1
IDNet [31] 56.5 63.0

CCF

DSIFT [35]+Euclidean 11.3 11.7
DISFT [35]+KISSME [23] 13.4 13.9
BOW [36]+KISSME [23] 26.9 29.3
LOMO [17]+XQDA [17] 41.2 46.4
IDNet [31] 50.9 57.1

CNN

DSIFT [35]+Euclidean 34.5 39.4
DISFT [35]+KISSME [23] 47.8 53.6
BOW [36]+KISSME [23] 56.9 62.3
LOMO [17]+XQDA [17] 68.9 74.1
IDNet [31] 68.6 74.8

GT

DSIFT [35]+Euclidean 41.1 45.9
DISFT [35]+KISSME [23] 56.2 61.9
BOW [36]+KISSME [23] 62.5 67.2
LOMO [17]+XQDA [17] 72.4 76.7
IDNet [31] 73.1 78.3

End-to-End(Initialized model) [30] 55.7 62.7
OIM [31] 75.5 78.7

NPSM [18] 77.9 81.2
I-Net(ours) 79.5 81.5

same person search problem. All our experiments are following the protocol of
the CUHK-SYSU dataset, and we test the models on the gallery size of 100.

In experiment, the top-1 accuracy and the mAP (mean average precision)
are used for evaluating the person re-identification performance. Specifically,
the re-identification results are shown in Table 1, from which we can see that
the proposed I-Net achieves a top-1 accuracy of 81.5% and mAP of 79.5%, which
beats all compared methods. From Table 1, we can observe that the state-of-the-
art end-to-end person search methods(OIM, NPSM, I-Net) always outperform
the traditional person search methods(detection+person re-id). It is noteworthy
that even the perfect detector(ground truth) with re-id methods had a inferior
results compared to the end-to-end method, which demonstrates that it is impor-
tant and necessary to integrate detection and re-id together for joint modeling.
Benefited from siamese architecture, our model generated a real-time positive
and negative pairs which leads to 4% higher in mAP than our baseline OIM.
Additionally, our method also outperforms NPSM by 1.6% in mAP with lower
computation cast.
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4.3 Experiments on PRW dataset

Table 2. Results of PRW datasets

Methods mAP(%) Top-1(%)

DPM [10]+BOW [36] 9.7 31.1
DPM [10]+IDEdet [37] 18.8 45.9
DPM-Alex+LOMO+XQDA [17] 13.0 34.1
DPM-Alex+IDEdet [37] 20.3 47.4
DPM-Alex+IDEdet + CWS [37] 20.5 48.3

ACF [8]+LOMO+XQDA [17] 10.5 30.9
ACF [8]+IDEdet [37] 17.5 43.8
ACF-Alex+LOMO+XQDA [17] 10.3 30.6
ACF-Alex+IDEdet [37] 17.5 43.6
ACF-Alex+IDEdet + CWS [37] 17.8 45.2

LDCF [20]+BOW [36] 9.1 29.8
LDCF [20]+LOMO+XQDA [17] 11.0 31.1
LDCF [20]+IDEdet [37] 18.3 44.6
LDCF [20]+IDEdet + CWS [37] 18.3 45.5

OIM(baseline) [31] 23.0 46.7

I-Net(ours) 25.6 48.7

We also conduct some experiments on PRW [37] dataset by using I-Net,
OIM (baseline) [31] and some state-of-the-art detection and re-id methods. For
the detection, the DPM [10], ACF [8] and their related RCNN methods and
LDCF [20] are implemented, and the LOMO [17]+XQDA [17], bag of words
vector [36], IDEdet, CWS [37] are used for re-identification. At last, we get 14
kinds of methods by combining these detector and re-identification methods.
For the RCNN, AlexNet is implemented as the base network according to [37].
On the other hand, OIM was also implemented on the dataset as an end-to-end
person search method. The results are shown in Table 2, from which we can see
that our method achieves the best results. It’s noteworthy that our method also
outperforms OIM by 2.6% in mAP and 2.0% in top-1.

4.4 Model Discussion

In this section, we discuss the effectiveness of Joint Loss and the influence of
feature dictionary size. All results in this section are tested on CUHK-SYSU
dataset.

Analysis of Joint Loss. Our HEP loss can be recognized as a variation of
softmax which treats the task as a classification problem. While the traditional
softmax loss function have to compute all classes of the dataset every iteration,
our HEP loss function gets the priority classes based on the cosine distances of
negative pairs. This strategy makes our loss function achieves better performance
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and reduces the computation cast. Otherwise, as an auxiliary loss function of
OLP, it can promote the effectiveness of the OLP loss function. In order to
take an insight of the joint training between OLP loss, softmax and HEP loss,
three different cases: OLP only, OLP with softmax loss, and OLP with HEP are
discussed, respectively.The OIM which is our baseline is also shown.

Table 3. Comparisons among different loss types.

Loss Type mAP(%) Top-1(%)

OLP only 73.6 76.2

OIM 75.5 78.7

OLP with softmax 78.7 80.9

OLP with HEP 79.5 81.5

The results with four types of loss functions are shown in Table 3. We can
see that a single OLP loss without joint training achieves a inferior result. By
adding the softmax loss in our framework for the joint training, both of the mAP
and top-1 exceed the OIM loss function by 3.2% and 2.5%, respectively. Such
that, the effectiveness of joint loss is demonstrated. Further, the joint training of
OLP and HEP outperforms the traditional softmax by 0.8% in mAP and 0.6%
in top-1, which shows that the drop of some easily distinguished samples helped
the model improve its effectiveness and reduce the computation cast.

Table 4. Influence of the number of features stored in OLP.

Number of Features

mAP(%) 20× 128 40× 128 80× 128

OLP only 73.2 74.3 72.9

OLP+HEP 78.4 79.5 79.1

Top-1(%) 20× 128 40× 128 80× 128

OLP only 76.0 77.5 75.6

OLP+HEP 80.7 81.5 81.1

Influence of Stored Features. The number of features from the proposals
stored in the dictionary is a major parameter which influences our model. This
parameter is set as 40 times number of proposals generated by each PPN. Such
that 40× 128 = 5120 features will be stored. To explore the influence of the fea-
ture dictionary, OLP only and the joint training of OLP and HEP with different
number of stored features have been tested. The results are shown in Table 4.

The experiments show that 40 times proposal number achieves the best re-
sult. Both 20 times and 80 times the proposal number get a inferior results. This
kind of phenomenon may expose the two problems mentioned before. A large
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Fig. 5. Experiment results. figure(a) is the trend of mAP and top-1, which was changed
during the training phase. figure(b) is the mAP from different gallery size.

feature dictionary size may make the stored feature stored out of date, which
may influence the quality of negative pairs. On the contrary, a small feature dic-
tionary size means a smaller number of negative pairs, which can’t fully restrict
the positive pair, such that the training phase may stagnated.

Accuracy during the training phase Our I-Net is training for 60k itera-
tions. The variation trend of during the training phase is shown in Figure. 5(a),
which shows that both mAP and top-1 index are increasing during the whole
training phase. Both mAP and top-1 are increasing sharply during the training
phase, and the learning rate is changed at 50k iterations. The model is conver-
gence for 60k iterations.

Gallery Size. Person search problem should be more challenging when the
gallery size is growing up. Therefore, we evaluate our method on different gallery
size from 50 to 6978 (full set) on the CUHK-SYSU. All test images are covered
even in a small gallery size according to the dataset testing protocol. The result
is shown in Figure.5(b). As the gallery size increased, the model suffer a sig-
nificantly descend in both mAP and top-1. It’s noteworthy that our I-Net still
beats the OIM methods on all gallery sizes. More hard samples are chosen as
distracter while the gallery size extends, which increases the the difficulty to find
the target person. The person search task based on the large gallery size is a
challenging task, which may be our future mission.

Visualization of person search results. The Fig. 6 presents some person
search results of our I-Net on the CUHK-SYSU dataset. Rows 1, 2 are successful
matched samples which find the target person from other images, and row 3 gets
a false alarm because of the similar clothes. The row 4 is a failure case, which
may caused by the dusky light condition of the query person.
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Fig. 6. Visualization of some person search results on the CUHK-SYSU dataset. Every
row of the figure is a result of a query. The cyan bounding boxes from the pictures of
first column are target persons. The last three columns are matched samples. The red
bounding boxes are false alarms, and green bounding boxes are successful matches.

5 Conclusions

In this paper, we introduce a novel end-to-end learning framework for large-scale
person search. By jointly modeling pedestrian detection and re-identification, an
integrated convolutional neural network (I-Net) is proposed. Specifically, a novel
on-line pairing loss (OLP) and hard example priority based softmax (HEP) are
proposed for supervising the joint training. For OLP loss, we propose to design
a feature dictionary which is used to store a large amounts of features, such that
more negative pairs can be obtained to improve the training effect. Besides that,
we propose a hard example priority strategy based HEP loss, which has improved
the effectiveness as well as the efficiency. By testing the I-Net on the CUHK-
SYSU [30] and PRW [37] dataset, the effectiveness of our I-Net is validated.
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