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ABSTRACT
Kinship verification in the wild is an interesting and challeng-
ing problem. The goal of kinship verification is to determine
whether a pair of faces are blood relatives or not. Most
previous methods for kinship verification can be divided as
hand-crafted features based shallow learning methods and
convolutional neural network (CNN) based deep learning
methods. Nevertheless, these methods are still posed with
the challenging task of recognizing kinship cues from facial
images. Part of the reason for this may be that, the family in-
formation and the distribution difference of pairwise kin-face
data based kinship verification issue are rarely considered.
Inspired by maximum mean discrepancy (MMD) and gener-
ative adversarial net (GAN), family ID based Adversarial
contrastive residual Network (AdvNet) is proposed for large-
scale (1 Million) kinship recognition in this paper. The MMD
based adversarial loss (AL), pairwise contrastive loss (CL)
and family ID based softmax loss (SL) are jointly formulated
in the proposed AdvNet for kin-relation enhancement and
discovery. Further, the deep nets ensemble is used for deep
kin-feature augmentation. Finally, Euclidean distance met-
ric is used for kinship recognition. Extensive experiments
on the 1st Large-Scale Kinship Recognition Data Challenge
(Families in the wild) show the effectiveness of our proposed
AdvNet and ensemble based feature augmentation.
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Figure 1: Some positive (with kinship relation) and
negative pairs (no kinship relation) from 7 relation-
ship types of FIW: Father-Daughter (F-D), Father-
Son (F-S), Mother-Daughter (M-D), Mother-Son
(M-S), Sister-Brother (SIBS), Brother-Brother (B-
B), Sister-Sister (S-S). The odd rows are positive
pairs and the even rows are negative pairs.

1 INTRODUCTION
The purpose of kinship verification is to recognize whether two
persons are from the same family or not [2, 12]. Human face is
a intuitive kin similarity measure, because the appearance of
different member from the same family show more similar vi-
sual perception than others. Therefore, kinship verification in
unconstrained conditions by modeling facial images has been
paid more attention in recent years, and encouraging progress
has been made on four typical parent-child relations. In this
paper, we are facing with a new challenge which includes 7
kin-relations on a large-scale (1 million) kin-faces. Specifical-
ly, 4 parent-child relations including Father-Daughter (F-D),
Father-Son (F-S), Mother-Daughter (M-D), and Mother-Son
(M-S), and 3 sibling relations including Sister-Brother (SIBS),
Brother-Brother (B-B), and Sister-Sister (S-S) are explored.
Figure 1 shows the pairwise kin-face examples for each kin-
relation. There are also many challenging applications for
kinship verification, such as the human social relations ex-
ploration, social-media analysis, crime scene investigations,
missing children searching, etc.

Due to the various factors in unconstrained faces, such as
pose, illumination, expression, background clutters, etc. [22],
kinship verification is still a challenging and unsolved topic.
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Figure 2: Overview of the proposed multiple deep nets based ensemble method for kinship verification. Three
AdvNets with different loss and architecture, and one VGG-Face model are fused for feature augmentation.
Euclidean distance is used for face verification.

Also, different from face recognition based discriminative
feature representation, the kin-relation feature is implicit
and hard to discover. Recently, many proposals based on
hand-crafted low-level features (e.g. LBP, SIFT, etc.) have
been tried. A representative work by Lu, et al. [12] was
proposed to compress the distance of intra-class face pairs
while repulse the inter-class face pairs in a neighborhood.
Besides a single feature, multiple features were also jointly
used for learning a discriminative metric to achieve better
performance. However, these low-level features cannot well
represent the underlying kin-relation implied in facial images.
Thus kinship verification performance is restricted.

In recent years, convolutional neural networks (CNNs) in
computer vision have obtained a huge success [1, 5, 8]. Due
to its large-scale discriminative learning ability, deep CNNs
have greatly boosted the face recognition performance to an
unprecedent level [14, 16]. Recently, CNN has also been used
in kinship verification [9, 24]. Although these CNN based
algorithms greatly promote the performance of kinship veri-
fication on existing small-scale tasks such as KinFaces [12],
CNN on large-scale kinship tasks remains under-studied. The
existing methods usually adopt single loss function, such as
softmax loss [24] or triplet loss [13], to train a CNN net-
work from scratch. However, different from those typical face
recognition, the intra-class distribution difference between
pair-wise samples is not too significant, and therefore the
general deep model cannot well interpret the kin-faces. In this
paper, inspired by maximum mean discrepancy (MMD) [11]
and generative adversarial nets (GAN) [4], a novel adversarial
loss is proposed to interpret the distribution difference be-
tween pair-wise faces in the first fully-connected layer, which

tends to minimize the inter-class discrepancy and maximize
the intra-class variation. In contrast, a contrastive loss is for-
mulated to maximize the inter-class distance and minimize
the intra-class distance in the second fully-connected layer.
As the result of the adversarial process between adversarial
loss and contrastive loss, the discrimination and robustness
of feature layer can be promoted. For integrating the family
class, a softmax loss in the last layer can be further formulated
to improve the recognition performance. Finally, the feature
augmentation is achieved by the combined feature based on
the different deep models, which is shown in Figure 2.

Our major contributions can be summarized as follows:
- Inspired by GAN, we propose a new MMD based adver-

sarial loss function (AL in short), which is used to increase
the learning difficulty of convolutional network model by
minimizing the inter-class distribution discrepancy and max-
imizing the intra-class discrepancy. Thus the robustness of
deep kin-features is improved.

- In order to decrease the intra-class variation while increas-
ing the inter-class discrepancy, the proposed adversarial loss
is combined with the modified contrastive loss (CL in short)
and the family ID based softmax loss (SL in short), and
formulates an AdvNet model which has a residual structure.
The discrimination of deep kin-features is improved.

- Ensemble based feature augmentation is proposed in
our method. We concatenate the deep features of multiple
AdvNets with VGG-Face net, to further improve the verifi-
cation performance of our method. The generality of deep
kin-features is improved.



Table 1: Architectures for AdvNet1 and deeper AdvNet2. Building blocks are shown in brackets, with the num-
bers of blocks stacked. Down-sampling is performed by Conv1_x, Conv2_x, Conv3_x, Conv4_x, Conv5_x
with a stride of 2.

CNN Conv1_x Conv2_x Conv3_x Conv4_x Conv5_x Conv6_x FC1 FC2

AdvNet1 3 × 3, 32
[︂

3 × 3, 64
3 × 3, 64

]︂
× 1

[︂
3 × 3, 128
3 × 3, 128

]︂
× 2

[︂
3 × 3, 256
3 × 3, 256

]︂
× 5

[︂
3 × 3, 512
3 × 3, 512

]︂
× 3 - 1024 512

3 × 3, 64 3 × 3, 128 3 × 3, 256 3 × 3, 512

AdvNet2 3 × 3, 32
[︂

3 × 3, 64
3 × 3, 64

]︂
× 1

[︂
3 × 3, 128
3 × 3, 128

]︂
× 2

[︂
3 × 3, 256
3 × 3, 256

]︂
× 5

[︂
3 × 3, 512
3 × 3, 512

]︂
× 3

[︂
3 × 3, 512
3 × 3, 512

]︂
× 3 1024 512

3 × 3, 64 3 × 3, 128 3 × 3, 256 3 × 3, 512

2 RELATED WORK
The existing work in kinship verification and deep convolu-
tional networks are briefly introduced in the following.

2.1 Kinship Verification
Kinship verification based on facial image content is a chal-
lenging problem in computer vision. In recent years, there
are many typical algorithms have been proposed [15]. Some
of them are based on hand-crafted features, such as his-
togram of gradient (HOG) [3], scale-invariant feature trans-
form (SIFT) [22], and local binary pattern (LBP) [12, 23].
These methods aim to extract discriminative features to dis-
cover the kin-characteristic in facial images. Some algorithms
aim to learn an effective metric or model for determining hu-
man kinship relations via different learning strategies, such as
neighborhood repulsed metric learning (NRML) [12], transfer
subspace learning [21], large margin multi-metric learning [7],
ensemble similarity learning (ESL) [25], and scalable similar-
ity learning (SSL) [26]. Those previous work have achieved
significant progress over the challenging kinship verification
tasks. However, the essential flaw is that the extracted image
features are general low-level representation of faces, which
can not mining the implied kin-relation in facial images well.

2.2 Deep Convolutional Networks
Deep learning, proposed by Hinton and Salakhutdinov [6],
has become the most popular machine learning algorithm
for discovering the discriminative high-level representation
in a hierarchical manner. CNN is an end-to-end supervised
learning method from pixel to high-level semantic. The fea-
tures from bottom to top in the network architecture can
be recognized from low-level to high-level image representa-
tion. Several popular CNN models are summarized as follows.
FaceNet [14] constructed a triplet-loss model and trained
on nearly 200 million face images, which achieved state-of-
the-art face recognition performance. A 3D-aligned method
was also proposed by Deepface [18]. Recently, in order to
decrease the intra-class variation and enhance the feature
discrimination, the center-loss model was proposed in [20].
Further, the Sphereface is proposed to obtain within-class
separable features [10] based on angle modeling. Different
from the conventional CNN architecture, GAN [4] referred
to generative and discriminative model, which can generate

abundant labeled data via an adversarial process. Several
researchers have applied the CNN methods on kinship verifica-
tion task. For example, SMCNN [9] achieved the kin-relation
verification through a similarity metric based cost function.
The facial key-points were exploited to improve the accuracy
of verification. DKV [19] integrated excellent deep learning
architecture into metric learning to improve the performance
of kinship verification. The triplet loss was used to fine-tune
the VGG-Face model [13].

Compared with conventional metric learning, CNN based
methods have achieved surprisingly good performance for kin-
relation verification. However, the dataset (e.g. KinFaceW-I)
used to train the CNN model is still small and insufficient for
deep learning. In this paper, we propose a novel AdvNet and
ensemble based feature augmentation method for large-scale
kinship verification.

3 THE PROPOSED FAMILY ID BASED
ADVNET

Families in the Wild (FIW) [13] is by far the largest and
most comprehensive kinship dataset available in computer
vision and multimedia communities. Different from previous
kinship datasets, which only has kinship pair-wise mode (e.g.
KinFaceI), FIW also provides the family tree to reflect the
true data distribution of a family and their members. In
order to improve the performance of our method, the family
ID is also used in our model to obtain more discriminative
deep features, that can better interpret the kin-relation than
before. ResNet [5] has shown great performance in many
computer vision tasks. Therefore, the proposed AdvNet fol-
lows a siamese residual network architecture with different
depths. The inputs of the two residual CNN models are a pair
of 224 × 224 RGB kinship facial images, which are slightly
aligned by the developer of FIW.

3.1 The Family ID based Contrastive Loss
There are three fully-connected layers in AdvNet, and the
second one is used to extract the deep kinship features (i.e.
feature layer). The details of the two AdvNets with different
depths are described in Table 1.

Let 𝑥1
𝑛 and 𝑥2

𝑛 represent the deep features of the left
and right kinship image in the 𝑛𝑡ℎ pair, respectively. The
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Figure 3: The Family ID based AdvNet with multiple losses residual architecture

contrastive loss function is presented as follows.

𝐿𝐶 = 1
2𝑁

𝑁∑︁
𝑛=1

(𝑦𝑛𝑑2 + (1 − 𝑦𝑛) max(𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑, 0)2) (1)

where 𝑁 denotes the batch size, 𝑑 = ||𝑥1
𝑛 − 𝑥2

𝑛||2 is the
Euclidean distance between 𝑥1

𝑛 and 𝑥2
𝑛, and 𝑦𝑛 denotes the

label of the 𝑛𝑡ℎ pair of kinship faces. The label is 1 if there
is kinship relation between two persons, otherwise 0.

The family IDs have been provided in FIW, which means
that the pair of kin-relation samples must have the same
family ID, and vice versa. Thus, in order to adopt the family
ID to verify the kin-relation, the contrastive loss can be
modified as

𝐿𝐶 = 1
2𝑁

𝑁∑︁
𝑛=1

(𝛿(𝑦1
𝑛 = 𝑦2

𝑛)𝑑2−𝛿(𝑦1
𝑛 ̸= 𝑦2

𝑛) max(𝑚𝑎𝑟𝑔𝑖𝑛−𝑑, 0)2)

(2)
where 𝛿(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = 1 if the condition is satisfied. 𝑦1

𝑛 and
𝑦2

𝑛 are the family IDs of 𝑥1
𝑛 and 𝑥2

𝑛, respectively.
We observe that contrastive loss aims to train a model by

pulling the positive pair as close as possible, and repulsing
the negative pair as far as possible, simultaneously, but the
distribution difference of pair-wise faces is neglected. However,
this distribution difference of pais-wise kin faces in the wild
is especially significant, which may influence the performance
of kinship verification.

3.2 Family ID based Adversarial Loss
MMD is used to calculate the domain distribution discrepancy.
It is usually employed to minimize the distribution difference
between different domains in transfer learning [11].

Let ~ be the reproducing kernel Hilbert space (RKHS).
Given two distributions 𝑠 and 𝑡, which are mapped to a
reproducing kernel Hilbert space by using an implicit function

𝜑(·). The MMD between 𝑠 and 𝑡 is defined as

MMD2(𝑠, 𝑡) = sup
||𝜑||~≤1

||𝐸x𝑠∼𝑠[𝜑(x𝑠)] − 𝐸x𝑡∼𝑡[𝜑(x𝑡)]||2~ (3)

where 𝐸x𝑠∼𝑠[𝜑(·)] denoted the expectation with regard to
the distribution 𝑠, and ||𝜑||~ ≤ 1 defines a set of functions
in the unit ball of RKHS ~. The most important property is
that, we have MMD(𝑠, 𝑡) = 0 if 𝑠 = 𝑡.

Inspired by MMD, the distribution difference can be re-
duced by minimizing the distribution difference between
pairwise faces (e.g. father-son). Therefore, a MMD based con-
trastive loss is proposed. In RKHS, the proposed loss function
minimizes the intra-class variations (kin) while keeping the
inter-class features separable (non-kin), which is formulated
as

𝐿MMD = 1
2𝑁

𝑁∑︁
𝑛=1

(𝛿(𝑦1
𝑛 = 𝑦2

𝑛)||𝜑(x1
𝑛) − 𝜑(x2

𝑛)||2~

− 𝛿(𝑦1
𝑛 ̸= 𝑦2

𝑛)||𝜑(x1
𝑛) − 𝜑(x2

𝑛)||2~) (4)

We can see that the MMD based contrastive loss is a
straightforward method for decreasing the distribution differ-
ence across kin domains. Besides, some indirect approaches
are used to augment the network. For example, CNN ro-
bustness can be improved by introducing additive noise. In
Generative Adversarial Nets (GAN) [4], the generative model
aims to generate the labeled samples as similar as possible
with the source data, while the discriminative model aims
to distinguish the generated data and source data as much
as possible. It can be considered that, the objectives of gen-
erative model and discriminative model are exactly reverse,
and the performance of GAN is promoted by this adversarial
process. Inspired by the adversarial characteristic of GAN, in
order to further improve the discrimination and robustness
of deep features, a MMD based adversarial loss is proposed



Table 2: Accuracy of 2L based AdvNet with different trade-off weight 𝜆

Loss 𝜆 M-D M-S S-S B-B SIBS F-S F-D Mean
2L 0 61.06 61.95 62.45 65.32 62.05 61.33 59.18 61.91
2L 0.2 60.50 64.07 64.17 63.76 61.99 62.23 60.53 62.46
2L 1.0 50.69 49.58 63.60 62.20 61.89 60.27 59.23 58.21

Table 3: Accuracy of AdvNet with different loss

Loss M-D M-S S-S B-B SIBS F-S F-D Mean
CL 61.06 61.95 62.45 65.35 62.05 61.33 59.18 61.91
2L 60.50 64.07 64.17 63.76 61.99 62.23 60.53 62.46
3L 64.11 65.65 64.53 65.80 64.82 63.42 63.18 64.50

Table 4: Accuracy of AdvNet with different depth

Loss CNN M-D M-S S-S B-B SIBS F-S F-D Mean
3L AdvNet1 64.11 65.65 64.53 65.80 64.82 63.42 63.18 64.50
3L AdvNet2 63.65 66.80 65.48 65.77 65.35 64.14 63.59 64.97

as

𝐿𝐴 = − 1
2𝑁

𝑁∑︁
𝑛=1

(𝛿(𝑦1
𝑛 = 𝑦2

𝑛)||𝜑(x1
𝑛) − 𝜑(x2

𝑛)||2~

− 𝛿(𝑦1
𝑛 ̸= 𝑦2

𝑛)||𝜑(x1
𝑛) − 𝜑(x2

𝑛)||2~) (5)

By comparing Eq.(5) with Eq.(4), the only difference is
the minus sign. It means that the adversarial loss plays an
opposite role that the MMD based contrastive loss does. The
adversarial loss is added on the fully-connected layers (1st
layer) before the deep features layer (2nd layer), so that the
adversarial process can be constructed between the first two
fully-connected layers. Further, the AdvNet can be trained
by combining the adversarial loss and the contrastive loss as
follows,

𝐿 = 𝐿𝐶 + 𝜆𝐿𝐴

= 1
2𝑁

𝑁∑︁
𝑛=1

(𝛿(𝑦1
𝑛 = 𝑦2

𝑛)𝑑2 − 𝛿(𝑦1
𝑛 ̸= 𝑦2

𝑛) max(𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑, 0)2)

− 𝜆( 1
2𝑁

𝑁∑︁
𝑛=1

((𝛿(𝑦1
𝑛 = 𝑦2

𝑛) − 𝛿(𝑦1
𝑛 ̸= 𝑦2

𝑛))||𝜑(x1
𝑛) − 𝜑(x2

𝑛)||2~)

(6)

where 𝜆 is a scalar used for balancing the two functions.
The contrastive loss can be considered as a special case of
this joint supervision, if 𝜆 is set to 0. Induced by the game
between adversarial loss and contrastive loss like Eq.(6), the
robustness of deep feature layer can be further improved.

In Eq.(6), 𝜑(·) denotes the implicit feature map, which can
be solved by using kernel function 𝑘(x1

𝑛, x2
𝑛) = ⟨𝜑(x1

𝑛), 𝜑(x2
𝑛)⟩.

Thus, the Eq.(4) can be rewritten as

𝐿𝐴 = 1
2𝑁

𝑁∑︁
𝑛=1

(𝛿(𝑦1
𝑛 ̸= 𝑦2

𝑛) − 𝛿(𝑦1
𝑛 = 𝑦2

𝑛))(𝑘(x1
𝑛, x1

𝑛)

+ 𝑘(x2
𝑛, x2

𝑛) − 2𝑘(x1
𝑛, x2

𝑛)) (7)
In this paper, we adopt the Gaussian kernel function as

𝑘(x, y) = exp(−||x − y||22
2𝜎2 ) (8)

where 𝜎2 denotes the bandwidth (kernel parameter). In this
way, Eq.(7) can be substituted into Eq.(9) as

𝐿𝐴 = 1
𝑁

𝑁∑︁
𝑛=1

(𝛿(𝑦1
𝑛 ̸= 𝑦2

𝑛)−𝛿(𝑦1
𝑛 = 𝑦2

𝑛))(1−exp(−||x1
𝑛 − x2

𝑛||22
2𝜎2 ))

(9)
The gradients of 𝐿𝐴 with respect to x1

𝑛 and x2
𝑛 are com-

puted respectively as:
𝜕𝐿A

𝜕x2
𝑛

= 1
𝑁𝜎2 (𝛿(𝑦1

𝑛 ̸= 𝑦2
𝑛) − 𝛿(𝑦1

𝑛 = 𝑦2
𝑛))

exp(−||x1
𝑛 − x2

𝑛||22
2𝜎2 )(x1

𝑛 − x2
𝑛) (10)

𝜕𝐿A

𝜕x2
𝑛

= 1
𝑁𝜎2 (𝛿(𝑦1

𝑛 ̸= 𝑦2
𝑛) − 𝛿(𝑦1

𝑛 = 𝑦2
𝑛))

exp(−||x1
𝑛 − x2

𝑛||22
2𝜎2 )(x2

𝑛 − x1
𝑛) (11)

Therefore, the mini-batch SGD algorithm can be used to
optimize the AdvNet.

3.3 Family based Joint Loss
In terms of the training protocol, the family ID for each
kin-face is provided in large-scale FIW task which contain-
s 300 families. Therefore, it is reasonable to integrate the
most common supervisory signals by using softmax loss in



Table 5: Accuracy of different model, loss and feature augmentation

Index Loss Model M-D M-S S-S B-B SIBS F-S F-D Mean
1 2L AdvNet1 60.50 64.07 64.17 63.76 61.99 62.23 60.53 62.46
2 3L AdvNet1 64.11 65.65 64.53 65.80 64.82 63.42 63.18 64.50
3 3L AdvNet2 63.56 66.80 65.48 65.77 65.35 64.14 63.59 64.97
4 SL VGG-Face 65.99 58.88 74.59 71.99 64.69 64.71 62.87 66.25

1+2+3 Joint Feature Augmentation 64.20 67.55 65.71 66.82 66.45 64.78 64.04 65.65
2+3+4 Joint Feature Augmentation 70.07 65.60 77.52 71.88 69.72 68.79 67.56 70.16

1+2+3+4 Joint Feature Augmentation 69.93 67.33 77.44 71.76 69.80 68.77 67.82 70.41
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Figure 4: ROC curves of different models on 7 types of kin-relation

AdvNet training. Different from the contrastive loss and the
adversarial loss, the softmax loss aims to improve the family
class separability of deep features. With this motivation, we
also combine the softmax loss in AdvNet to further discover
the implicit kin-relation of deep features. Considering the
pairwise structure of AdvNet, two softmax loss functions will
be formulated. Specifically, the joint loss is formulated as

𝐿 = 𝐿𝐶 + 𝜆𝐿𝐴 + 𝐿𝑆1 + 𝐿𝑆2

where 𝐿𝑆1 and 𝐿𝑆2 denote the softmax loss (cross entropy)
for 𝑥1

𝑛 and 𝑥2
𝑛, respectively.

In order to adopt the softmax loss, a new output layer (soft-
max layer) with 300 neurons (i.e. 300 families) is added after
the feature layer (contrastive loss layer). The architecture of
AdvNet with joint loss is shown in Figure 3.

4 EXPERIMENTS
4.1 Experimental Data and Setup
FIW is the largest and most comprehensive image database
for automatic kinship recognition, with over 12,000 family
photos of 1,001 families. FIW closely reflects the true data
distribution of families. The dataset used in this paper comes
from the 1st Large-Scale Kinship Recognition Data Challenge.
The challenge supports 2 laboratory style evaluation proto-
col: Kinship Verification (Track1) and Family Classification
(Track2), we only focus the Track1. In Track1, FIW includes
a total of 644,000 pairs , from which 538,518 pairs (i.e. over 1
Million kin-facial images) of 7 different kin-relations will be
used for this data challenge. These datasets are partitioned
into 3 disjoint sets referred to as Train, Validation, and Test
sets. The ground truths for train and validation sets are
provided, and the test set is “blind”. In order to verify the
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Figure 5: L2-distances of kinship pairs on 7 types of kin-relation. The points in red and blue denote the kinship
pairs and non-kinship pairs, respectively. The black line denote the searched threshold for verification.

proposed AdvNet in this paper, the validation set is used for
testing the performance. Finally, the result on test set in this
competition is reported.

In the competition, 7 different types of kinship: Father-
Daughter (F-D), Father-Son (F-S), Mother-Daughter (M-D),
Mother-Son (M-S), Sister-Brother (SIBS), Brother-Brother
(B-B), Sister-Sister (S-S) are explored. The distribution of
each kin in Train, Validation, and Test is shown as follows.

- In the Train set, 282,186 kinship pairs are included, which
consists of 42,458, 53,974, 34,828, 38,312, 40,846, 52,482 and
19,286 pairs for 7 different types, respectively.

- In the Validation set, 76,664 kinship pairs are included,
which consists of 11,460 13,696, 10,698, 9,816, 7,434, 17,342,
6,218 pairs for 7 different types, respectively.

- In the Test set, 179,668 kinship pairs are included, which
consists of 23,506, 45,988, 20,674, 47,954, 15,076, 19,946 and
6,524 pairs for 7 different types, respectively.

In experiments, the proposed AdvNet with different loss is
trained from scratch on the Train set, and finally Euclidean
distance is used for kinship verification on the Validation set.

4.2 Parameter Analysis
In the joint loss function shown in Eq.(6), 𝜆 is a scalar used
for balancing the contrastive loss (i.e. CL) and adversarial
loss (i.e. AL). The joint CL and AL loss is called 2L in short.
For showing the performance variation w.r.t. different loss

weight 𝜆, Table 2 reports the accuracy of our method versus
𝜆. We can see that the 2L based AdvNet obtains the best
classification performance when 𝜆 is set as 0.2.

4.3 Comparison with Different Loss
Functions of AdvNet

In order to learn more separable features, the softmax loss (i.e.
SL) is combined with 2L loss, which is called 3L in short. The
loss weight is set as 1. As can be seen from Table 3, the results
of 2L outperform the CL, which means that the adversarial
loss can improve the discrimination and robustness of the
kin-relation features. Besides, the results of 3L outperform
the 2L, which means that the softmax loss can improve the
separability of feature and kinship verification performance,
by feeding the families information into the network.

4.4 Comparison with Different Depth of
AdvNet

Depth is a very important factor of CNN model in classifica-
tion performance [17]. In order to demonstration the influence
of depth of AdvNet, the comparative results of different depth
(AdvNet1 vs. AdvNet2) are listed in Table 4. It can be seen
that the deeper AdvNet2 outperforms the AdvNet1.



4.5 Performance of Feature Augmentation
Many researches show the fact that, the performance of
algorithm can be improved by feature augmentation and
fusion [12, 16]. Therefore, feature augmentation based on
AdvNets and VGG-Face also have been adopted in this pa-
per. The performances of single model and multiple models
is shown in Table 5. The features from index 1, 2, 3 and 4
represent the single feature (without augmentation). The last
three rows denote the performance after feature augmenta-
tion by concatenating the features from each model together.
The dimension of the augmented feature (e.g. 1+2+3) is
1536 (512 × 3), and the accuracy is improved. In addition,
considering the excellent performance of the VGG-Face mod-
el, which is used as the feature extractor for FIW dataset
in this paper, and the dimension of features extracted from
VGG-Face model is 4096. After ensemble of the 4 network-
s (e.g 1+2+3+4), we can observe significant performance
improvement. Notably, the L2-normalization is used twice
before and after feature augmentation. It is noteworthy that,
although the performance of VGG-FACE model is a little
better than our AdvNets, the number of training data of Ad-
vNets (i.e 0.01 Million faces) is far less than the VGG-Face
model (i.e. 2.6 Million faces). Therefore, direct comparison
is unfair. Note that the claimed 1 million data in this work
denote the formulated kinship pairs based on the 0.01 million
faces.

To better visualize the performance of different method-
s, the receiving operating characteristic (ROC) curves of
different methods are shown in Figure 4, where Figure 4(a)-
Figure 4(g) describe the ROC curves of the results on 7 types
of kin-relation, respectively. We can see from this figure that
the augmented features can yield the best performance in
terms of the ROC curves.

In addition, the Euclidean distances of augmented features
of kinship pairs are also visualized in Figure 5. It can be
seen that the kin pairs and non-kin pairs are easy to be
distinguished via a threshold (black line), however, there are
still many pairs incorrectly recognized with L2-distance. In
the future, some metric learning models may be utilized for
better discrimination.

4.6 Competition on Blind Test Set
For competition on the blind test set, the feature augmenta-
tion method of AdvNets and VGG-Face model is finally used.
With the help of the developers of this challenge, our final
result on test set is 70.6588%, 65.2229%, 72.1030%, 63.5867%,
66.5097%, 63.3839% and 64.5963% for M-D, M-S, S-S, B-B,
SIBS, F-S and F-D, respectively. The mean accuracy of the
7 kinship verification tasks is 66.5802%.

5 CONCLUSIONS
In this paper, we propose an adversarial contrastive residual
network (AdvNet) and feature augmentation for large-scale
Kinship verification over 1 Million faces. In AdvNet, the fam-
ily ID based adversarial loss, motivated by the MMD and
GAN, is proposed for feature robustness. Also, the family

ID based contrastive loss is formulated for feature similarity
measure. Further, two softmax losses with family class of
the pairwise inputs are integrated for feature discrimination.
With the joint loss, AdvNet is trained from scratch on the
FIW faces based on mini-batch SGD optimization. In order
to further promote the performance of our method, the fea-
ture augmentation is also adopted in this paper. Extensive
experiments on the FIW challenge show the effectiveness of
our proposed deep convolutional network.
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