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Abstract: Recently, low-rank and sparse model-based dimensionality reduction (DR) methods have 
aroused lots of interest. In this paper, we propose an effective supervised DR technique named 
block-diagonal constrained low-rank and sparse-based embedding (BLSE). BLSE has two steps, i.e., 
block-diagonal constrained low-rank and sparse representation (BLSR) and block-diagonal 
constrained low-rank and sparse graph embedding (BLSGE). Firstly, the BLSR model is developed 
to reveal the intrinsic intra-class and inter-class adjacent relationships as well as the local 
neighborhood relations and global structure of data. Particularly, there are mainly three items 
considered in BLSR. First, a sparse constraint is required to discover the local data structure. Second, 
a low-rank criterion is incorporated to capture the global structure in data. Third, a block-diagonal 
regularization is imposed on the representation to promote discrimination between different 
classes. Based on BLSR, informative and discriminative intra-class and inter-class graphs are 
constructed. With the graphs, BLSGE seeks a low-dimensional embedding subspace by 
simultaneously minimizing the intra-class scatter and maximizing the inter-class scatter. 
Experiments on public benchmark face and object image datasets demonstrate the effectiveness of 
the proposed approach. 

Keywords: dimensionality reduction; low-rank representation; sparse representation;  
block-diagonal; image classification 

 

1. Introduction 

With the rapid development of information technology, nowadays high precision sensors sense 
large-scale data, especially image data, all the time. These data often feature high dimensionality, and 
consist of redundant information or noise. How to analyze these high-dimensional data has attracted 
the interest of many researchers. Dimensionality reduction (DR) is a practical way to deal with this 
problem. DR aims to find a lower-dimensional embedding subspace where some desired properties 
can be preserved as much as possible [1–3]. The most well-known DR methods are, for example, 
principal component analysis (PCA) [4] and linear discriminate analysis (LDA) [5]. PCA is 
unsupervised, and applies orthogonal projection to maximize data variance. As a supervised method, 
LDA finds the linear projection axes on which the ratio between the between-class and within-class 
scatters is maximized. LDA cannot be directly applied to small size sample (SSS) problem because 
the within-class scatter matrix is singular. To avoid this problem, Li et al. [6] adopted the difference 
of between-class scatter and within-class scatter as the discriminating criterion for embedding 
learning. The method, termed maximum margin criterion (MMC), is simple and effective. However, 
these linear methods cannot reveal the essential structure of data with non-linear distributions. With 
kernel tricks, kernel principal component analysis (KPCA) [7] and kernel Fisher discriminate analysis  
(KFD) [8] were developed to handle data with non-linearity structures. Some manifold learning 
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algorithms such as LLE [9], Isomap [10], and Laplacian eigenmaps (LE) [11] have also been presented 
to discover the intrinsic manifold structure in data. 

Yan et al. [12] proposed a general DR framework called graph embedding (GE), where some DR 
methods, e.g., PCA, LDA, Isomap, LLE, and LE, could be considered as special instances under the 
framework. Based on GE, some discriminant DR methods, e.g., marginal Fisher analysis (MFA) [12], 
neighborhood preserving discriminate embedding (NPDE) [13] and sparse discriminate manifold 
embedding (SDME) [14], have been developed. The differences between these methods lie in the 
design of intrinsic and penalty graphs and the type of embedding. Graph construction has become 
the key of most GE-based DR methods. However, the way to establish high-quality graphs is an open 
problem. Common graph construction methods include k-nearest neighbor and ε-radius ball, both of 
which connect graph vertices with simple rules which are, however, highly sensitive to dataset noise 
and it is difficult to determine the parameters for real-world applications. 

Sparse and low-rank models have been widely applied for visual analysis. Sparse representation 
(SR) and low rank representation (LRR) are utilized to construct the affinity matrix (or graph) [15–19]. 
They express each datum as a linear combination of all other data points, and use the representation 
coefficient to measure the similarity or neighborhood relationship of samples. Contrastively, sparse 
graphs are able to preserve local linear structure but lack global constraints. LRR takes the correlation 
structure of data into account, and finds a low-rank representation instead of a sparse one.  
The low-rank property has been proved to be effective in preserving global data structures. 

The block-diagonal structure is often desired in affinity matrix construction. Ideally, the affinity 
matrix should be block-diagonal, and the inter-class affinities are all zeros [20]. However, SR and LRR 
can only generate a block-diagonal affinity matrix under restrictive conditions. For example, it has 
been shown that when the subspaces are independent, the solution to LRR is block-diagonal [20]. For 
a block-diagonal structured solution, Zhao et al. [21] incorporated least square regression and graph 
regularization to construct a sparse graph with block-wise constraint (SGB) for face representation. 
The method can well uncover the global structure of the multiple subsets of the data, and preserve 
the local intrinsic information. The performance can be further boosted by introducing the idea of 
ensemble learning [22]. Tang et al. [23] developed an extension of LRR termed as structure-constrained 
LRR (SC-LRR) for general disjoint subspace clustering by introducing an explicit structure constraint. 
Zhang et al. [24] presented a discriminative, structured low-rank method to explore structure 
information by incorporating an ideal-code regularization term. Li et al. [25] proposed to restrict the 
representation coefficients outside the diagonal block to be small to get a block-diagonal structure 
representation. Alternatively, Feng et al. [26] explicitly pursued a block-diagonal structure solution 
via a graph Laplacian constraint-based formulation. In [27], sparse graph-based discriminate analysis 
(SGDA) was developed by preserving the sparse connection in a block-structured affinity matrix with 
class-specific samples. Similarly, low-rank graph-based discriminate analysis (LGDA) [28] preserves 
the global structure in data using low-rank constraints. Meanwhile, low-rank and sparse graphs have 
been applied for semi-supervised learning [29,30]. A sparse and low-rank graph-based discriminate 
analysis (SLGDA) method was developed in [28] to purse block-diagonal structured affinity matrix 
with both sparsity and low-rank constraints. However, SGDA, LGDA and SLGDA consider intra-class 
affinity relationship class by class, which suffers from high computation costs. Besides, these methods 
find the representation of each sample using only the intra-class samples, which might not be able to 
reveal inter-class adjacent relationships.  

In this paper, motivated by recent achievements in SR and LRR [15–30], we propose a novel 
supervised DR method, namely block-diagonal constrained low-rank and sparse-based embedding 
(BLSE). The model has two steps: first, a self-expressive model, i.e., block-diagonal constrained  
low-rank and sparse representation (BLSR) model is developed to reveal the intra-class and inter-class 
adjacent relationships among samples and discover the local and global structures latent in data. The 
desired representation learning example is shown in Figure 1. Here, different colors stand for samples 
of different classes. With the block-diagonal constraint, each sample is encouraged to be represented 
by intra-class samples. The obtained representation matrix ܈ tends to be block-diagonal and has good 
identification capability highlighting both intra-class similarities and inter-class differences. Due to 
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these merits, the intra-class and inter-class representations obtained by BLSR are utilized to construct 
corresponding intra-class and inter-class graphs.  

 
Figure 1. An example for desired block-diagonal constrained low-rank and sparse representation 
(BLSR). Samples in dataset ܆ are encouraged to be represented by samples from the same class with 
noise ۳ removed, and the representation matrix ܈ tends to have a block-diagonal structure. 

Then, as shown in Figure 2, the block-diagonal constrained low-rank and sparse graph 
embedding (BLSGE) method finds a low-dimensional subspace with enhanced intra-class 
compactness and inter-class separation using the graphs. It is worth noting that there are some major 
differences between our BLSR model and the model presented in [23], although they have similar 
formulations. In that method, a weight matrix is defined to provide a moderate amount of correct 
information for the solution. Different from their strategy, we separately optimize the solution to be 
sparse, and develop an iteration method to explicitly optimize the diagonal elements of the solution 
to be large, and the rest ones to be small via a predefined block-diagonal mask matrix. Since our aim 
is to induce inter-class and inter-class graphs from the solution for further embedding learning, our 
strategy of promoting intra-class affinity weights large and inter-class affinity weights small is more 
applicable for the problem of interest. In sum, the main contributions of this paper are as follows: 

(1) A self-expressive model, i.e., BLSR is devised by incorporating sparsity, low rankness as 
well as a novel block-diagonal constraint. BLSR can not only simultaneously capture the 
local and global structures, but also highlight both the intra-class similarities and inter-class 
differences of samples. 

(2) With the intra-class and inter-class graphs derived from BLSR, BLSGE seeks an optimal 
feature space by simultaneously minimizing the intra-class scatter and maximizing the 
inter-class scatter. Generally, a novel supervised dimensionality reduction method namely 
BLSE is developed by taking the advantages of BLSR and GE framework. 

(3) BLSE is applied for the dimensionality reduction and classification of visual data. Extensive 
experiments on the public face and object datasets verify the effective of proposed method. 

 

Figure 2. Illustration for block-diagonal constrained low-rank and sparse based embedding (BLSE) 
model. ① BLSR is applied to get the block-diagonal constrained low-rank and sparse representation 
of data. ② The representation results of BLSR is utilized to construct the intra-class and inter-class 
graphs. ③ BLSGE finds a low dimensional embedding with enhanced intra-class compactness and 
inter-class separation using the graphs. 

The remainder of this paper is organized as follows: in Section 2, we briefly introduce some 
related works. In Section 3, we will introduce our BLSE model. Its two steps, i.e., BLSR and BLSGE, 
will be presented in detail. The experimental results are given in Section 4. Finally, we provide the 
discussion and conclusions in Section 5.  
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2. Related Works 

Let us suppose a labeled dataset ܆ = ሾܠଵ, ,ଶܠ … , ሿܠ ∈ ℜୈ	×	, D is the dimension of sample in 
original space. ݊ is the number of training samples with ݊	ሺ݇ = 1,2, … ,  ሻ samples per class. Theܥ
label of ܠሺ݅ = 1,2, … , ݊ሻ is denoted as ݈ሺܠሻ. Data points in ܆ are ordered, as is common, in terms of 
their class labels. 	܇ = ሾܡଵ, ,ଶܡ … , ሿܡ ∈ ℜௗ	×	 (typically d << D) is the lower dimensional projected 
data of 	܆ with projection matrix ܄ ∈ ℜ	×	ௗ. 

2.1. Low Rank and Sparse Representation 

Low rank and sparse models have been seen a surge of interests in recent years, and been 
successfully exploited in many applications, such as subspace clustering [16,17], face  
recognition [25,31,32], head pose estimation [33], information processing [34–37], transfer learning 
[38,39], and extreme learning machine [40]. Low-rankness is an appropriate criterion to capture  
low-rank dimensional structure in high-dimensional data, and low-rank representation (LRR) is 
robust to sparse noise. Sparse representation (SR) has been shown good discrimination capacity. 
Low-rank and sparse representation is pursued to take the merits of both the two aspects. Learning 
the low-rank and sparse representation ܈  of dataset ܆  on dictionary ۲  can be formulated as 
follows: min۳,܈ ሻ܈ሺ݇݊ܽݎ	 + ‖۳‖ߣ + ߚ ܆ . s.t‖܈‖ = ܈۲ + ۳ (1) 

where ‖·‖  is used to characterize noise ۳. It can be sparse noise ‖۳‖  or sample specific noise ‖۳‖ଶ,ଵ ߚ and ߣ .  control the effects of noise term ۳ and sparse representation term ܈. Since the  
l0-norm and rank minimization problems are non-convex, the problem is NP-hard. Alternatively, 
rank function can be relaxed with nuclear norm, which is defined as the sum of the singular values 
of a matrix. The l0-norm can be surrogated with l1-norm. Thus, one can get the following relaxed 
optimization problem: min۳,܈ ∗‖܈‖	 + ‖۳‖ߣ + ߚ ܆ .ଵ s.t‖܈‖ = ܈۲ + ۳ (2) 

With dataset ܆ itself as the dictionary, Reference [28] proposed the following optimization 
problem with sample-specific noise: min۳,܈ ∗‖܈‖	 + ଶ,ଵ‖۳‖ߣ + ߚ ܆ .ଵ s.t‖܈‖ = ܈܆ + ۳, diagሺ܈ሻ =  (3) 

where diag	ሺ܈ሻ represents the vector containing the diagonal elements of ܈, and  is a zero vector. 
The obtained low rank and sparse representation matrix ܈ can be utilized to construct intrinsic graph 
for DR [28]. 

2.2. Graph Embedding 

The GE framework provides a unified perspective to understand many DR algorithms [12]. In 
GE, an intrinsic graph ۵ = ሼ܅,܆ሽ that describes certain desired statistical or geometrical properties 
of data, and a penalty graph ۵ = ሼ܅,܆ሽ characterizes a statistical or geometric property which 
should be avoided need to be constructed. Both ۵ and ۵ are undirected weighted graphs. ܆ is the 
vertex set. ܅ ∈ ব	×	 and ܅୮ ∈ ব	×	 are the weight matrices.  

Assuming that the low-dimensional vector representations of the vertices can be obtained from 
a linear projection as ܡ = ܠ܄ . The purpose of GE is to map each vertex of graph into a  
low-dimensional space that preserves the similarity between the vertex pairs. Then an optimal  
low-dimensional embedding is given by the graph preserving criterion as: ܄∗ = arg min܄ۺ܆౦܆܄ୀ۷ฮ܄ܠ − ஷ܅ฮଶܠ܄  (4) 
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= arg minࢂۺ܆౦܆܄ୀ۷ trሺ܄܆ۺ܆܄ሻ 
where ۺ = ۲ ۲ is a diagonal matrix with ۲	 is the Laplacian matrix. ܅− = ∑ ୀଵ܅ . The weight ܅ is used to measure the similarity of the edge connecting vertices. ۺ is the Laplacian matrix of 
the penalty graph ۵ or a simple scale normalization constraint. The linearization extension of graph 
embedding is computationally efficient for both projection learning and final classification. The 
construction of intrinsic graph and penalty graph becomes the crux of most dimensionality reduction 
methods. Besides, the intrinsic and penalty graphs could be, as our method shows, the intra-class and 
inter-class graphs. 

3. Proposed Method 

In Section 3.1, we will detail the two steps of BLSE, i.e., BLSR and BLSGE. The optimization 
processes for BLSR and BLSGE will be given in Section 3.2. Section 3.3 describes the classification 
process. 

3.1. Block-Diagonal Constrained Low-Rank and Sparse Based Embedding (BLSE) 

3.1.1. Block-Diagonal Constrained Low–Rank and Sparse Representation (BLSR) 

To reveal the intra-class and inter-class adjacent relationships and discover the local and global 
structures in data, a self-expressive model, i.e., BLSR is firstly developed. The label information of 
data is harnessed by introducing a block-diagonal constraint to purse a block-diagonal solution. 
Specifically, the BLSR model is formulated as:  min۳,܈ ∗‖܈‖	 + ఈଶ ܈‖ − ிଶ‖ۻ⊙܈ + ߚ ଵ‖܈‖ + ܆ .ଵ s.t‖۳‖ߛ = ܈܆ + ۳, diagሺ܈ሻ =  (5) 

where ߚ ,ߙ and ߛ are the trade-off parameters for each component, and ‖∙‖ி denotes the Frobenius 
norm of a matrix. In (5), we try to discover the block-diagonal structure of the resolution via the block-
diagonal regularization ‖܈ − ிଶ‖ۻ⊙܈ , where ⊙ is the Hadamard product operator of matrices and ۻ is a predefined mask matrix with an ideal block-diagonal structure. Figure 3 shows an example 
for the definition of ۻ⊙܈ .ۻ is used to extract the intra-class representation coefficients for each 
sample. By minimizing ‖܈ − ிଶ‖ۻ⊙܈ , representation coefficient of each sample corresponding to 
the inter-class samples is promoted to be small, but not necessarily be zero. Each sample is 
encouraged to be represented by the intra-class samples. The obtained block-diagonal representation 
matrix ܈ has good identification capability highlighting both the intra-class similarities and inter-
class differences. 

X1 X2 X3 X4 X5 X6 X7 X8 X9

1   1   1   0   0   0   0   0   0  
1   1   1   0   0   0   0   0   0  
1   1   1   0   0   0   0   0   0  
0   0   0   1   1   1   0   0   0  
0   0   0   1   1   1   0   0   0  
0   0   0   1   1   1   0   0   0  
0   0   0   0   0   0   1   1   1  
0   0   0   0   0   0   1   1   1  
0   0   0   0   0   0   1   1   1  

(a) (b)

Figure 3. An illustration for the definition of matrix ۻ. (a) 9 training samples from 3 classes with 3 
samples per class; (b) The defined mask matrix ۻ . If ݈ሺܠሻ = ݈൫ܠ൯ , ,ۻ	 = 1 , ,ۻ	 = 1 , otherwise ۻ, = ,ۻ	,0 = 0. The diagonal-block elements of ۻ are all ones, and the rest are zeros. 

3.1.2. Block-Diagonal Constrained Low–Rank and Sparse Graph Embedding (BLSGE) 

The representation matrix ܈ of BLSR is then employed as affinity weights matrix to construct 
intra-class graph ۵୧୬୲୰ୟ = ሼ܅,܆୧୬୲୰ୟሽ and inter-class graph ۵୧୬୲ୣ୰ = ሼ܅,܆୧୬୲ୣ୰ሽ. First, we define the 
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affinity matrix as ܅ = ሺ|܈| + |ሻ܈| 2⁄ , then the connecting weights for intra-class and inter-class 
graphs are respectively defined as: ܅୧୬୲୰ୟ = ൜܅, if ܅ ≠ 0 and ݈ሺܠ୧ሻ = ݈൫ܠ൯0, otherwise  (6) 

୧୬୲ୣ୰܅ = ൜܅, if ܅ ≠ 0 and ݈ሺܠሻ ≠ ݈൫ܠ൯0, otherwise  (7) 

Whether two arbitrary points in the graphs are connected or not and the connection weight are 
adaptively determined by our BLSR model. It is desired that samples from the same class in feature 
space should be as close as possible, and those from different classes should be as far as possible. 
With projection matrix ܄, the optimization objective functions are defined as: 

۔ۖەۖ
ࢂminۓ 12ฮ܄ܠ − ࢂ୧୬୲୰ୟ,max܅ฮଶܠ܄ 12ฮ܄ܠ − ୧୬୲ୣ୰,܅ฮଶܠ܄

 (8) 

For ease of classification, a big ܅୧୬୲୰ୟ is required in (8) to make the projected samples from the 
same class close to each other, and a small ܅୧୬୲ୣ୰ is needed in (8) to make the projected samples from 
different classes far away from each other. The requirements can be satisfied by the representation 
strategy in BLSR. With some mathematical operations, we have: ቊminࢂ trሺ܄ۺ܆୧୬୲୰ୟ܆܄ሻmaxࢂ trሺ܄ۺ܆୧୬୲ୣ୰܆܄ሻ (9) 

Then, the objective function of BLSGE can be formulated as:  minࢂ trሺ܄ۺ܆୧୬୲୰ୟ܆܄ሻtrሺ܄ۺ܆୧୬୲ୣ୰܆܄ሻ (10) 

3.2. Optimizations for BLSR and BLSGE 

3.2.1. Optimization for BLSR 

We convert problem (5) into the following equivalent problem by introducing auxiliary variables ۸ and ۺ: minۺ,۳,۸,܈ 	‖۸‖∗ + ଶ ܈‖ − ଶ‖ۻ⊙܈ + β‖ۺ‖ଵ + ܆ .ଵ s.t‖۳‖ߣ = ܈܆ + ۳, ܈ = ۸, ܈ =  (11) ۺ

We then have the corresponding Augmented Lagrange Multipliers (ALM) [41] function: Ξ = minۺ,۳,۸,܈ 	‖۸‖∗ + 2ߙ ܈‖ − ிଶ‖ۻ⊙܈ + ߚ ଵ‖ۺ‖ + ଵ‖۳‖ߣ + ,ଵ܇〉 ܆ − ܈܆ − ۳〉 
,ଶ܇〉+ ܈ − ۸〉 + ,ଷ܇〉 ܈ − 〈ۺ + μ2 ሺ‖܆ − ܈܆ − ۳‖ிଶ + ܈‖ − ۸‖ிଶ + ܈‖ −  ிଶሻ (12)‖ۺ

where ܇ଵ ∈ ℜ	×	 , ଶ܇	 ∈ ℜ	×	  and ܇ଷ ∈ ℜ	×	  are Lagrange multipliers and ߤ > 0  is a penalty 
parameter. The problem can be solved iteratively by updating each variable with others fixed. The 
steps to solve the problem in (k + 1)-th iteration are as follows: 

Step 1 (Update	܈): ܈ can be updated by solving the following optimization problem (13): ܈ାଵ = argminࢆ 2ߙ	 ܈‖ − ிଶ‖ۻ⊙܈ + ,ଵ܇〉 ܆ − ܈܆ − ۳〉 + ,ଶ܇〉 ܈ − ۸〉 
,ଷ܇〉+ ܈ − 〈ۺ + μ2 ሺ‖܆ − ܈܆ − ۳‖ிଶ + ܈‖ − ۸‖ிଶ + ܈‖ −  ‖ிଶሻ (13)ۺ
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Since the sub-problem for ܈ involves Hadamard product operator, which makes the problem 
hard to optimize. Alternatively, the ܈ in ۻ⊙܈ can be obtained from former iteration. Thus, an 
iterative algorithm can be formed to solve the sub-problem of ܈, we have: ܈ାଵ = argmin܈ 2ߙ	 ܈‖ − ܈ ிଶ‖ۻ⊙ + ,ଵ܇〉 ܆ − ܈܆ − ۳〉 + ,ଶ܇〉 ܈ − ۸〉 + ,ଷ܇〉 ܈ − 〈ۺ 	+ μ2 ሺ‖܆ − ܈܆ − ۳‖ிଶ + ܈‖ − ۸‖ிଶ + ܈‖ − ାଵ܈ ‖ிଶሻۺ = argmin α2 ܈‖ − ܈ ிଶ‖ۻ⊙

+ μ2 ൭ብ܆ − ܈܆ − ۳ + ଵμብଶ܇ + ብ܈ − ۸୩ + ଶμ୩ብଶ܇ + ብ܈ − ୩ۺ + = ଷ୩μ୩ብଶ൱܇ ቀ൫α μ୩⁄ + 2൯۷ + ቁିଵ܆܆ ሺ܆ሺ܆ − ۳ሻ + ۸ + +ۺ ሺαሺ܈ ሻۻ⊙ + ଵ܇܆ − ଶ܇ − ଷሻ܇ μ⁄ ሻ
(14) 

Step 2 (Update	۳): ۳ can be updated by solving following optimization problem (15): ۳ାଵ = argmin۳ 	 ଵ‖۳‖ߣ + ,ଵ܇〉 ܆ − ାଵ܈܆ − ۳〉 + μ2 ܆‖ − ାଵ܈܆ − ۳‖ிଶ  

= argmin۳ 	 ଵ‖۳‖ߣ + μ2 ብ܆ − ାଵ܈܆ − ۳ + ଵμብிଶ܇ = ܵఒ ஜೖ⁄ ቆ܆ − ାଵ܈܆ +  ଵμቇ܇
(15) 

Step 3 (Update	۸): ۸ can be updated by solving the following optimization problem: 

۸ାଵ = argmin۸ 	‖۸‖∗+μ2 ብ܈ାଵ − ۸ + ଶμብிଶ܇ = ଵܵ܃ ஜೖ⁄ ሾሿ(16) ்܄ 

where ሺ܃, , ሻ܄ = SVD൬܈ାଵ + మೖఓೖ൰, ܵఌሾ·ሿ is the soft-thresholding (shrinkage) operator given by:  ܵఌሾxሿ܇ = ൝ x − ,ߝ ݂݅ x > xߝ + ,ߝ ݂݅ x < ,0ߝ− otherwise  (17) 

Step 4 (Update ۺ): ۺ can be updated by solving following optimization problem (18): 

ାଵۺ = argminۺ ߚ	 ଵ‖ۺ‖ + μ2 ብ܈ାଵ − ۺ + ଷμብிଶ܇ = ܵఉ ஜೖ⁄ ቆ܈ାଵ +  ଷμቇ (18)܇

Step 5: Update the multipliers and μ: 

۔ۖەۖ
ଵାଵ܇ۓ = ଵ܇ + μሺ܆ − ାଵ܈܆ − ۳ାଵሻ܇ଶାଵ = ଶ܇ + μሺ܈ାଵ − ۸ାଵሻ	܇ଷାଵ = ଷ܇ + μ୩ሺ܈ାଵ − ାଵሻμାଵۺ = minሺρμ, μ௫ሻ  (19) 

 
Algorithm 1. Solving BLSR by Inexact ALM 
Input: Training data ܆. Parameters ,ߙ		ߚ and ߣ. 
Initialization: ܈ = ۸ = ۳ = , ܇ଵ = ଶ܇ = ଷ܇ = , μ = 10ିହ, μ௫ = 10଼, ε = 10ି, ρ = 1.1. 
1: While not converged do  
2: Fix other variables and optimize ܈ାଵ via (14). 
3: Fix other variables and optimize ۳ାଵ via (15). 
4: Fix other variables and optimize ۸ାଵ via (16). 
5: Fix other variables and optimize ۺାଵ via (18). 
6: Update the multipliers and μ via (19). 
7: Check the convergence conditions: ฮ܆ − ାଵ܈܆ − ۳ାଵฮஶ < ାଵ܈ฮ	,ߝ − ାଵฮஶۺ <  ߝ



Sensors 2017, 17, 1475  8 of 17 

 

ฮ܈ାଵ − ۸ାଵฮஶ < ߝ
8: End while 
Output:	܈ 

Generally, we outline the optimization process of BLSR in Algorithm 1. The major 
computational burden of BLSR is solving (14) and (16) because they involve matrix inversion and 
singular value decomposition (SVD). The overall computational complexity of BLSR is ࣩ൫߬ሺnଶD + nଷሻ൯, 
where ߬ is the iteration number, and n is the number of training samples. 

3.2.2. Optimization for BLSGE 

The trace-ratio problem in the form of (10) does not have a closed-form solution [27]. 
Consequently, such problem can be approximately solved as a determinant-ratio problem, so we turn 
to solve the following problem (20): min܄ ห܄ۺ܆୧୬୲୰ୟ܆܄ห|܄ۺ܆୧୬୲ୣ୰܆(20) |܄ 

With the method of Lagrangian multiplier, the solution of problem (20) is transformed to solve 
a generalized eigenvalues problem as follows: 

܄܆୧୬୲୰ୟۺ܆  = λ  (21) ܄܆୧୬୲ୣ୰ۺ܆

Then we obtain the eigenvectors corresponding to the ݀  minimum eigenvalues, and the 
projection matrix can be got as ܄ = ሾܞଵ, ,ଶܞ … , ௗሿܞ . The detailed process of BLSGE is given in 
Algorithm 2. The complete procedure of BLSE is outlined in Algorithm 3. 

Algorithm 2. BLSGE 
Input: Affinity weights matrix ܈, reduced dimension ݀. 
1: Compute the weights of inter-class graph (6) and intra-class graph (7) through affinity matrix	܈.  
2: Solve the generalized eigenvalue problem (21), and get the eigenvectors corresponding to the ݀ minimum 
eigenvalues. 
Output: Projection matrix 	܄. 

 

Algorithm 3. BLSE 
Input: labeled training data ܆ ∈ ℜୈ	×	. Reduced dimension ݀. 

Tradeoff parameters α, ߚ and ߛ. 
1: Run Algorithm 1 to get the affinity weights matrix ܈ of ܆. 
2: Run Algorithm 2 to obtain the optimal projection matrix ܄. 
Output: Projection matrix	܄. 

3.3. Classification 

For classification, we directly use the calculated projection ܄  to obtain the transformation 
results of the training and testing data. One can apply existing classifier such as  
1-Nearest Neighbor (NN) to classify the projected results of testing data. 

4. Experimental Results 

4.1. Analysis of BLSE 

The representation results of BLSR have a great influence on the graph construction and the 
performance of BLSE. There are three parameters in BLSR, i.e., regularization parameters α, β and λ. 
λ and β controls the sparsity noise term ۳  and representation ܈ . α is used to regularize the 
representation to be block-diagonal. We conduct experiments to study the sensitivity of the proposed 
BLSE over a wide range of these parameters. ORL data [42] are divided into training and testing 
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samples for tuning these parameters, and the reduced dimension is 50. The experimental results 
obtained are used to find an effective range of parameters to ensure a reliable performance. The 
results are reported in Figure 4. From the results, one can observe that the performance of BLSE is 
not especially sensitive to λ and is robust in a quiet large range for α and β. 

 
(a) α = 5 (b) λ = 50

(c) β = 50

Figure 4. Sensitivity analysis of α, β and λ on ORL dataset. (a) Tuning β and λ with α fixed; (b) tuning 
α and β with λ fixed; (c) tuning α and λ with β fixed. 

Figure 5 further shows the graph weights matrix obtained by BLSR and the corresponding 
recognition accuracy obtained by BLSE with α = 1, 10, and 100 respectively. A larger penalty will be 
imposed on the block-diagonal regularization term as α increases. The obtained graph weights matrix 
tends to show a better block-diagonal structure. Benefitting from the block-diagonal graph weights 
matrix, BLSE achieves higher recognition accuracy. The results demonstrate that the proposed 
method can enhance the block-diagonal structure of graph weights matrix, which helps achieve better 
recognition performance. However, an extremely large α will regularize the inter-class representation 
in ܈ to be zero, which might not be able to reveal the inter-class adjacent relationship among samples 
well. To achieve reliable and stable performance, a suggested parameter settings are 100 > α >1,  
50 > β > 0.01, 50 > λ >1. 

 
(a) α = 1 (Acc = 93.85%) (b) α = 10 (Acc = 94.18%) (c) α = 100 (Acc = 94.35%) 

Figure 5. Visualization of the graph weights and corresponding recognition accuracy obtained by 
BLSE. From left to right, α is 1, 10 and 100, respectively. 
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4.2. 2-D Visualization Experiment on CMU PIE Dataset 

In this part, a partial CMU PIE face database [43] (120 images of five persons) is used to 
intuitively show the discriminate ability of different methods using t-SNE [44]. In the experiment, 
seven images per person are randomly selected for training, and the remaining about 17 images for 
testing. Figure 6a–g visualize the testing data distributions along the first two dimensions acquired 
by different methods. From Figure 6, we may draw several conclusions. First, as classical supervised 
DR methods, LDA and MMC can yield superior performance to that of unsupervised PCA. Second, 
SGDA [27] only exploits the local neighborhood structure via sparse representation, and it does not 
perform well, as shown in Figure 6d. Some parts of class 1, 2, 3 and 4 mix together. By introducing 
global low-rank regularization, LGDA [28] shows better separation ability. Nevertheless, there are 
overlaps between class 2 and class 5, class 1 and class 3. With both sparse and low-rank constraints, 
SLGDA [28] performs better than SGDA and LGDA. However, class 2 and class 5 still have significant 
overlaps as shown in Figure 6f. Contrastively, the proposed BLSE successfully separates all the 
classes with clear boundaries between them, which can be explained by the simultaneously imposed 
local sparse, global low-rank and the discriminative block-diagonal structure constraint. The 
experiment shows that BLSE has the capacity to separate complex face data distribution. 

(a) (b) (c) (d) 

 

(e) (f) (g)  

Figure 6. Two-dimensional five-class CMU PIE data projected by different DR methods. (a) PCA; (b) 
LDA; (c) MMC; (d) SGDA; (e) LGDA; (f) SLGDA; (g) BLSE. 

4.3. Experimental Results on Image Datasets 

We conducted extensive experiments to evaluate the performance of the proposed method on 
widely used face and object databases (ORL [42], Yale [45], CMU PIE [43], and COIL 20 [46]). Figure 7 
visually demonstrates characteristics of each database. Our approach is compared with several  
state-of-the-art subspace learning approaches including PCA, LDA, MMC [6], SGDA [27], LGDA [28], 
and SLGDA [28]. To make the comparison fair, for all the evaluated algorithms we first apply PCA 
as preprocessing step by retaining 99% energy. A nearest neighbor classifier is employed in the 
projected feature space for all the methods. 
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(a)

(b)

(c)

(d)

Figure 7. The sample images of public datasets used in our experiment. (a) The ORL dataset; (b) The 
Yale database; (c) The CMU PIE dataset; (d) The COIL20 dataset. 

The ORL face database consists of a total of 400 face images from 40 individuals with 10 images 
per person. The images were taken at different times, lighting variation, facial expressions 
(open/closed eyes, smiling/not smiling) and facial details (glassed/no glassed) against a dark 
homogeneous background. In the experiments, each image in ORL database is manually cropped 
and resized to 32 × 32. Using the five samples per person from ORL database as training set, we 
present the first five basis vectors of Eigenfaces, Fisherfaces, and our BLSEFaces in Figure 8. 

 

 
(a)

 
(b)

 
(c)

Figure 8. The first five basis vectors calculated by (a) PCA (Eigenfaces); (b) LDA (Fisherfaces); (c) 
BLSE (BLSEFaces) on ORL dataset. 

A random subset with t (=3, 4, 5, 6) images of each individual is selected for training and the rest 
for testing. For each t, we run the programs 10 times and calculate the recognition rates as well as the 
standard deviations with different reduced dimensions. 

The Yale face database contains 165 gray scale images of 15 individuals, each individual has 11 
images. The images demonstrate variations in lighting condition, facial expression (normal, happy, 
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sad, sleepy, surprised, and wink). In our experiments, each image in Yale database was manually 
cropped and resized to 32 × 32. A random subset with t (=4, 5, 6, 7) images each individual is selected 
for learning the embedding and the rest for testing. For each giving t, we run each program 10 times 
to randomly choose the training set and report the average recognition rates as well as the standard 
deviations with different reduced dimensions. 

The CMU PIE dataset contains over 40,000 face images of 68 individuals. Images of each 
individual were acquired across 13 different poses under 43 different illumination conditions, and 
with four different expressions. Here we use a near frontal pose subset, namely C07, for experiments, 
which contains 1629 images of 68 individuals. Each individual has about 24 images. All images are 
manually cropped and resized to 32 × 32 pixel. A random subset with t (=4, 5, 6, 7) images for each 
individual is selected for learning the embedding and the rest for testing. For each giving t, we 
perform 10 times to randomly choose the training set and report the average recognition rates as well 
as the standard deviations under different dimensions. 

The COIL20 image dataset contains 1440 gray scale images of 20 objects with 72 images per 
subject. The images of each object were taken 50 apart as the object was rotated on a turntable. Each 
image is of size 32 × 32. Following the experimental setting in [47], we selected the first 36 images per 
subject for training and the remaining images for testing in this experiment. 

Figures 9–12 plot the curves of average recognition accuracy versus different dimensions on 
ORL, Yale, CMU PIE and COIL 20 databases, respectively. Moreover, the details of experiments 
results, namely maximal recognition rates together with the standard deviation and dimension of 
different algorithms are summarized in Table 1. 

Table 1. Recognition rates (%) and the corresponding standard deviations and dimensions (in 
parenthesis) on ORL, Yale, CMU PIE and COIL20 databases. 

Dataset t 
Compared Methods Ours

PCA LDA MMC SGDA LGDA SLGDA BLSE

ORL 

3 
75.32 ± 2.58 

(80) 
83.63 ± 2.38 

(38) 
82.39 ± 2.73 

(56) 
83.61 ± 2.72 

(40) 
83.79 ± 2.15 

(40) 
84.96 ± 1.78 

(40) 
87.68 ± 2.36

(38) 

4 
82.92 ± 1.79 

(72) 
88.71 ± 2.26 

(38) 
89.58 ± 2.44 

(72) 
89.42 ± 2.08 

(40) 
88.83 ± 2.36 

(40) 
89.08 ± 2.63 

(40) 
92.63 ± 2.28

(40) 

5 
87.45 ± 1.70 

(48) 
93.15 ± 1.13 

(38) 
93.95 ± 1.55 

(64) 
93.10 ± 1.94 

(40) 
93.00 ± 0.91 

(40) 
92.95 ± 1.41 

(40) 
96.05 ± 0.96

(42) 

6 
89.75 ± 1.65 

(86) 
95.75 ± 1.31 

(38) 
95.81 ± 1.22 

(70) 
94.06 ± 1.48 

(40) 
95.50 ± 1.09 

(40) 
95.44 ± 1.22 

(40) 
97.88 ± 0.67

(44) 

Yale 

4 
52.00 ± 2.34 

(46) 
72.76 ± 2.30 

(14) 
69.05 ± 3.51 

(14) 
68.29 ± 3.81 

(16) 
72.86 ± 2.16 

(16) 
73.90 ± 2.92 

(14) 
74.38 ± 2.48

(16) 

5 
56.33 ± 5.57 

(32) 
75.67 ± 2.31 

(14) 
73.44 ± 4.52 

(14) 
74.00 ± 3.52 

(16) 
74.56 ± 3.33 

(16) 
76.11 ± 2.83 

(14) 
78.89 ± 3.10

(20) 

6 
59.60 ± 5.76 

(34) 
80.27 ± 3.81 

(14) 
78.13 ± 5.56 

(16) 
79.47 ± 3.51 

(16) 
81.87 ± 3.51 

(16) 
79.60 ± 5.34 

(14) 
83.20 ± 4.71

(18) 

7 
61.33 ± 5.02 

(42) 
83.00 ± 2.70 

(14) 
81.67 ± 4.30 

(14) 
82.83 ± 3.34 

(16) 
84.17 ± 4.10 

(28) 
83.83 ± 4.45 

(22) 
85.83 ± 3.17

(20) 

CMU 
PIE 

4 
53.72 ± 1.28 

(100) 
91.14 ± 1.25 

(64) 
88.61 ± 1.50 

(96) 
89.44 ± 1.35 

(100) 
91.33 ± 0.81 

(86) 
90.40 ± 1.03 

(94) 
92.28 ± 1.07

(80) 

5 
60.31 ± 1.78 

(100) 
92.60 ± 0.83 

(66) 
91.27 ± 0.85 

(98) 
89.95 ± 1.84 

(98) 
92.60 ± 0.83 

(66) 
91.82 ± 0.99 

(100) 
93.26 ± 1.03

(92) 

6 
65.88 ± 1.92 

(120) 
93.56 ± 0.88 

(66) 
93.17 ± 1.03 

(106) 
92.15 ± 0.95 

(112) 
93.24 ± 1.04 

(104) 
92.84 ± 0.92 

(118) 
93.93 ± 1.01

(92) 

7 71.12 ± 1.61 
(120) 

94.34 ± 0.83 
(66) 

94.09 ± 0.66 
(110) 

93.54 ± 0.58 
(120) 

94.09 ± 0.72 
(104) 

93.88 ± 0.59 
(102) 

94.64 ± 0.59
(70) 

COIL20 36 86.39 (28) 88.75 (14) 90.97 (12) 78.33 (26) 87.78 (12) 90.00 (90) 92.22 (8)
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(a) (b)

 
(c) (d)

Figure 9. Recognition rate (%) versus dimension of different methods on the ORL database. (a) Three 
training samples per person; (b) Four training samples per person; (c) Five training samples per 
person; (d) Six training samples per person. 

 
(a) (b)

 
(c) (d)

Figure 10. Recognition rate (%) versus dimension of different methods on the Yale dataset. (a) Four 
training samples per person; (b) Five training samples per person; (c) Six training samples per person; 
(d) Seven training samples per person. 
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(a) (b)

 
(c) (d)

Figure 11. Recognition rate (%) versus dimension of different methods on the CMU PIE dataset. (a) 
Four training samples per person; (b) Five training samples per person; (c) Six training samples per 
person; (d) Seven training samples per person. 

 

Figure 12. Recognition rate (%) versus dimension of different methods on the COIL20 database. 

5. Discussion and Conclusions 

Based on the experimental results on face and object image datasets, one can conclude that with 
the increase of dimensions and the number of training samples per class, all the methods tend to 
achieve better performance. PCA is simple to calculate, and performs well in some cases, but its 
unsupervised nature restricts its performance. By introducing supervised information with different 
discrimination criteria, LDA and MMC can achieve better performance. SGDA, LGDA and SLGDA 
can adaptively select neighbors for graph construction, and find the representation of each sample 
using the labeled samples in the same class to purse block-diagonal structure representations. 
However, this process may result in large representation error due to the limited samples per class, 
which might not be able to reveal the intra-class adjacent relationship well. Besides, SGDA, LGDA 
and SLGDA disconnect inter-class samples in graph construction. The operation cannot capture the 
inter-class adjacent relationship well. As a result, SGDA, LGDA and SLGDA do not perform well, as 
the experimental results show. Comparably, the proposed BLSE model can achieve better 
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performance. The reason is twofold. Firstly, the developed BLSR method can capture both local 
neighborhood relations and global structures latent in data with low-rank and sparse constraints. 
Different from SGDA, LGDA and SLGDA, all samples are employed in BLSR when finding the 
representation of each sample. The introduction of block-diagonal regularization can capture the 
intra-class and inter-class adjacent relationships hidden in data, and enhance the identification 
capability of BLSR. Secondly, benefit from BLSR and GE framework, the discriminative capacity of 
low dimensional subspace learned by BLSGE is further boosted by simultaneously minimizing the 
intra-class scatter and maximizing the inter-class scatter. 

To conclude, we have proposed a novel block-diagonal constrained low-rank and sparse based 
embedding (BLSE) model for the dimensionality reduction and classification of image data. Two 
procedures of BLSE, namely, block-diagonal constrained low-rank and sparse representation (BLSR) 
and block-diagonal constrained low-rank and sparse graph embedding (BLSGE), are detailed. BLSR 
takes the advantages of local discriminative capacity of SR and the global low-rank property of LRR. 
Meanwhile, a novel block-diagonal regularization term is introduced to fully harness the label 
information and purse a block-diagonal representation. The affinity weights matrix obtained by BLSR 
can well reveal the intra-class similarities and inter-class differences of data. With the intra-class and 
inter-class graphs derived from BLSR, BLSGE finds a low-dimensional subspace with enhanced intra-
class compactness and inter-class separation. Experimental results on public face and object datasets 
are performed, and validate the effectiveness of BLSE model. 
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