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Abstract. Kinship verification in the wild is an interesting and chal-
lenging problem, which aims to determine whether two unconstrained
facial images are from the same family. Most previous methods for kin-
ship verification can be divided as low-level hand-crafted features based
shallow methods and kin data trained generic convolutional neural net-
work (CNN) based deep methods. Nevertheless, these general methods
cannot well mining the potential information implied in kin-relation data.
Inspired by MMD and GAN, Adv-Kin method is proposed in this paper.
The discrimination of deep features can be improved by introducing M-
MD loss (ML) to minimize the distribution difference between parents
domain and children domain. In addition, we propose the adversarial
loss (AL) can further improve the robustness of CNN model. Extensive
experiments on the benchmark KinFaceW-I, KinFaceW-II, Cornell Kin-
Face and UB KinFace show promising results over many state-of-the-art
methods.

Keywords: Kinship verification · Convolutional neural networks · Max-
imum mean discrepancy · Adversarial Loss

1 Introduction

Human face carries with lots of individual information, and most human char-
acteristics such as identity, age, gender, emotion etc. can be distinguished by
facial images. Facial analysis has been widely studied in computer vision. Face
verification aims to verify whether the two persons belong to the same family [1].
Biologists find that human facial appearance is an important cue for genetic sim-
ilarity measurement. The purpose of kinship verification is to recognize whether
the two persons are from the same family. It has many potential application-
s, such as missing children searching and social media mining, etc. [2]. In this
work, the parent-child based kinship is studied, such as father-daughter, father-
son, mother-daughter and mother-son. Some facial image pairs with kinship and
no kinship have been shown in Fig.1, from which the difficulty of kin-relation
discovery is shown.



2 Adv-Kin

.

. 

. … 

.

. 

. 

.

.

.

Target data

Transfer FC layers

… 

CFT

… 

… 

.. . 
45K 4K

...

.

. 

. 

.

.

.

1500

.

.

.

512

1500

Source data 

Pre-train 

Retrain 

… 

CFT* 

… 

Coarse CNN model 

10575 

512 

512 

Fig. 1. Some positive (with kinship relation) and negative pairs (no kinship relation)
from KinFaceW-I, KinFaceW-II, Cornell KinFace and UB KinFace, respectively. The
first two rows are positive pairs and the last two rows are negative pairs. The kinship
relation types from left to right are: father-daughter, father-son, mother-daughter and
mother-son, respectively.

There are many algorithms proposed for kinship verification. Most of these
work follow the technical routine from hand-crafted low-level feature extrac-
tion to large-margin metric learning. A representative work can be referred to
as [2], in which a neighborhood repulsed metric learning (NRML) was proposed
by learning a projection based metric with large margin and achieved excellent
performance on kinship verification. Also, the hand-crafted features (e.g. LBP,
HOG) are often used for general face analysis. However, this kinship verification
algorithm strongly depends on the choice of metric learning, not the kin-relation
specific features. As a result, the implicit and abstract kinship information can-
not be adequately represented [3].

Deep learning, proposed by Hinton and Salakhutdinov [4], has become the
most popular machine learning algorithm for discovering discriminative interme-
diate and high-level representations in a hierarchical manner [5]. In particular,
convolutional neural networks have recently been shown to achieve great success
in various computer vision tasks, such as face recognition [1, 6], object recog-
nition, etc. Recently, CNNs have also been used for kinship verification [7, 3].
Although these work greatly promote kinship verification, they adopted a con-
ventional CNN architecture. The loss functions are normally connected on the
last fully-connected layer, but the distribution difference between the different
input domains is not considered. The accuracy of kinship verification will be af-
fected by this distribution difference. Maximum mean discrepancy (MMD) can
be used to solve this problem, motivated by this fact, a MMD based loss is
proposed in this paper. In addition, inspired by GAN, an adversarial loss is pro-
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Fig. 2. Pipeline of our proposed approach. Circle denotes kinship pair, triangle denotes
no-kinship pair.

posed to further improve the robustness and avoid overfitting. The pipeline of
the proposed Adv-Kin methods is shown in Fig.2.

The key contributions of this work are threefold.
- We propose a new loss function (called MMD loss) to solve the problem of

distribution difference in high-level features. With the joint supervision of the
MMD based loss and the contrastive loss, the highly discriminative features can
be obtained.

- In order to further improve the robustness of CNN model, inspired by GAN,
an adversarial loss is proposed in this paper. The discrimination and robustness
of deep features can be further enhanced by the game between the contrastive
loss and the adversarial loss.

- Experimental comparisons with shallow and deep learning methods demon-
strate that our methods outperform many state-of-the-art methods, and the gap
of human-machine performance is further narrowed.

2 Related Work

In this section, we review two closely related topics with this paper: kinship
verification and deep convolutional networks.

2.1 Kinship Verification

Kinship verification via facial image analysis is an challenging problem in com-
puter vision. Existing feature representation approaches for kin-relation data in-
clude histogram of gradient (HOG) [8], scale-invariant feature transform (SIFT)
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[2], and local binary pattern (LBP) [2]. Some algorithms aim to learn an effec-
tive metric or model for distinguishing whether two face images are with kinship
relation, such as neighborhood repulsed metric learning (NRML) [2], prototype-
based discriminative feature learning (PDFL) [9], transfer subspace learning [10,
11], support vector machine (SVM) [9], large margin multi-metric learning [12],
ensemble similarity learning (ESL) [13], and scalable similarity learning (SS-
L) [14]. Those previous works have achieved great progress over the challenging
kinship verification. However, the common shortcoming is that the extracted im-
age features are general representation of faces and lack of structural kin-relation
meaning.

2.2 Deep Convolutional Networks

Deep learning has shown its effectiveness in face recognition. CNN is an end-
to-end supervised learning methods from pixel based images to the high-level
semantic. The features from the bottom to top in the network architecture can
be identified from low-level and high-level image representation. Several popular
CNN models are summarized as follows. MTCNN [15]used the candidate CNNs
to detect facial landmarks. A Deepface [16] was proposed to solve 3D-align issue.
FaceNet [1] constructed a triplet-loss model to improve the face verification accu-
racy. Recently, the center-loss model proposed in [6] aims to obtain within-class
separable features. GAN [17] is a hot framework with generative and discrim-
inative model via an adversarial process. SMCNN [3] achieved the kin-relation
verification through a similarity metric based cost function. Although these algo-
rithms achieved surprisingly good performance for computer vision, the progress
of kinship verification is still insufficient.

3 Adv-Kin method

3.1 The Contrastive Loss

Table 1. Baseline Configuration.

Conv1 Pool1 Conv2 Pool2 Conv3 Pool3 Conv4 FC

conv11-6
max-2

conv21-16
max-2

conv31-30
max-2 conv4-60

FC1-128
conv12-6 conv22-16 conv32-30 FC2-80

In order to obtain kinship specific features, a siamese CNN that contains
4 convolutional layers is adopted. Each convolutional layers are followed by a
max pooling layer. The input is a pair of 64 × 64 RGB kinship images. There
are two fully-connected layers, and the discriminative deep features are drawn
from the last fully-connected layer. For clarity, the CNN model with contrastive
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loss is termed as the baseline. The details of the baseline model are described in
Table 1.

In baseline model, contrastive loss is acted as a supervisory signal. Let x1n, x2n
are the nth features of left and right kinship image, respectively. The contrastive
loss function is presented as follows.

LC =
1

2N

N∑
n=1

(ynd
2 + (1− yn) max(margin− d, 0)2) (1)

where N denotes the batch size, d = ||x1n − x2n||2 is the Euclidean distance
between x1n and x2n, and yn denotes the label of the nth pair of kinship samples.
The label is 1 if there is a kinship relation between two persons, otherwise 0.
margin is a adjustable parameter, which can control the maximal distance of
negative pair.

Hence, it is concluded that the aim of contrastive loss is to train a model by
pulling the positive pair as close as possible, while repulsing the negative pair as
far as possible, simultaneously. In generic CNN model, contrastive loss normally
acts on the last fully-connected layer only, but the distribution difference between
the two fully-connected layers is not considered. The discrimination of deep
features cannot be further improved under the influence of this distribution
difference.

3.2 MMD based Adversarial Loss

C C P FC FCC C P C...

C C P FC FCC C P C...

ML/AL CL+
λ 

Share

Img1

Img2

Fig. 3. The proposed Adv-Kin architecture.

MMD is a straight-forward test statistic to calculate the difference between
distribution embeddings. It can be used to minimize the distribution difference
between different domains on the domain adaptive issue [18]. Let ~ be the re-
producing kernel Hilbert space (RKHS). Given two distributions s and t, which
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are mapped to a reproducing kernel Hilbert space by using function φ(·). The
MMD between s and t is defined as

MMD2(s, t) = sup
||φ||~≤1

||Exs∼s[φ(xs)]− Ext∼t[φ(xt)]||2~ (2)

where Exs∼s[φ(·)] denoted the expectation with regard to the distribution s,
and ||φ||~ ≤ 1 defines a set of functions in the unit ball of a RKHS ~. The most
important property is that, we have MMD(s, t) = 0 if and only if s = t.

Inspired by MMD and GAN, we propose the Adv-Kin method, as shown in
Fig.3. The input of our CNN model is a pair of face images, one comes from
parents, and the other from children. Thus, the distribution difference exists be-
tween parents domain and children domain. In order to minimize this difference,
inspired by MMD, a MMD based loss is proposed as

LM =
1

2N

N∑
n=1

(yn||φ(x1
n)− φ(x2

n)||2~ − (1− yn)||φ(x1
n)− φ(x2

n)||2~) (3)

However, some indirect approaches are also used to optimize the property of
a system or a network. For example, robustness can be improved by introducing
the additive interference. This thought is also applied to the CNN model, the
performance of Generative Adversarial Nets (GAN) has been improved just by
the adversarial process between generative model and discriminative model [17].
Inspired by GAN, in order to further improve the discrimination and robustness
of deep features, the adversarial loss is proposed as

LA = − 1

2N

N∑
n=1

(yn||φ(x1
n)− φ(x2

n)||2~ − (1− yn)||φ(x1
n)− φ(x2

n)||2~) (4)

We adopt the joint supervision of contrastive loss and adversarial loss to train
the CNN model for kin-relation features learning, as formulated in Eq.(5).

L = LC + λLA

=
1

2N

N∑
n=1

(ynd
2 + (1− yn) max(margin− d, 0)2 (5)

+ λ(1− 2yn)(||φ(x1
n)− φ(x2

n)||2~)

where λ is a scalar used for balancing the two functions. The contrastive loss can
be considered as a special case of this joint supervision, if λ is set to 0. Effected
by game between adversarial loss and contrastive loss like Eq.(5), the robustness
of deep features layer can be further improved.

By comparing MMD loss with adversarial loss, the only difference is the
minus sign. So only the optimizion of adversarial loss is explained as follows.

In Eq.(4), φ(·) denotes the feature map associated with the kernel map
k(x1

n,x
2
n) = 〈φ(x1

n), φ(x2
n)〉. Thus, the Eq.(4) can be rewritten as

LA =
1

2N

N∑
n=1

(1− 2yn)(k(x1
n,x

1
n) + k(x2

n,x
2
n)− 2k(x1

n,x
2
n)) (6)
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Here, we adopt the Gaussian kernel function to optimize the proposed loss.
The gradients of LA with respect to x1

n and x2
n are computed respectively as:

∂LA
∂x1

n

=
1

Nσ2
(1− 2yn) exp(−||x

1
n − x2

n||22
2σ2

)(x1
n − x2

n) (7)

∂LA
∂x2

n

=
1

Nσ2
(1− 2yn) exp(−||x

1
n − x2

n||22
2σ2

)(x2
n − x1

n) (8)

4 Experiments

In this section, in order to demonstrate the effectiveness of our proposed ap-
proach, four benchmark kinship datasets are used.

4.1 Datasets

In experiments, KinFace data (4K) is considered, which includes four publicly
available datasets, such as KinFaceW-I, KinFaceW-II [2], Cornell KinFace [8]
and UB KinFace [19].

- Both KinFaceW-I and KinFaceW-II include four different types of kin
relationships: father-son (F-S), father-daughter (F-D), mother-son (M-S) and
mother-daughter (M-D). KinFaceW-I consists of 156, 134, 116, and 127 pairs,
respectively. KinFaceW-II consists of 250 pairs for each relationship.

- Cornell KinFace contains totally 150 parent-child pairs.
- UB KinFace contains 200 triplets and each triplet is structured by child,

young parent and old parent.

Table 2. Accuracy of different methods. ML and AL denote the Adv-Kin method with
MMD loss and adversarial loss, respectively.

Methods
KinFaceW-I KinFaceW-II UB Cor

F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean 0-1 0-2 Mean -

Human A 62.0 60.0 68.0 72.0 65.6 63.0 63.0 71.0 75.0 70.9 - - - -

Human B 68.0 66.5 74.0 75.0 70.9 72.0 72.5 77.0 80.0 75.4 - - - -

MNRML 72.5 66.5 66.2 72.0 69.6 76.9 74.3 77.4 77.6 76.5 67.3 66.8 67.1 71.6

MPDFL 73.5 67.5 66.1 73.1 70.1 77.3 74.7 77.8 78.0 77.0 67.5 67.0 67.3 71.9

SMCNN 75.0 75.0 68.7 72.2 72.7 75.0 79.0 78.0 85.0 79.3 - - - -

DKV 71.8 62.7 66.4 66.6 66.9 73.4 68.2 71.0 72.8 71.3 - - - -

Baseline 74.7 77.6 72.4 81.1 76.5 85.8 85.8 84 83.8 84.5 58.3 60.0 59.2 76.2

ML 77.3 74.6 78.0 83.6 78.4 85.8 84.6 86.6 88.0 86.3 59.8 61.0 60.4 78.3

AL 76.9 77.3 75.8 85.9 80.0 86.2 86.2 87.4 87.0 86.9 60.3 63.8 62.1 79.6
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Table 3. Accuracy of ML and AL with different bandwidth σ2.

Methods σ2 KinFaceW-I KinFaceW-II
F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean

ML 0.5 77.3 74.6 78.0 83.6 78.4 85.8 84.6 86.6 88.0 86.3

ML 1.0 75.0 76.9 73.7 83.5 77.3 84.4 84.0 85.4 87.0 85.2

ML 2.0 75.4 76.8 75.9 82.3 77.6 84.8 83.2 85.2 88.0 85.2

AL 0.5 75.3 74.3 75.4 79.5 76.1 85.2 82.6 84.0 86.8 84.7

AL 1.0 74.4 76.9 75.9 85.0 78.1 87.4 85.0 86.8 87.0 86.6

AL 2.0 74.7 74.3 77.1 81.4 76.9 85.8 85.4 83.4 87.0 85.4

4.2 Experimental Setup

In experiments, the proposed models are trained on KinFace via 5-fold cross
validation, and finally NRML metric [2] is used for kinship verification. The
mini-batch Stochastic Gradient Descent (SGD) based error back propagation
algorithm is used for training, with an initial learning rate of 10−2. The Batch
size is 151 images, and the margin of contrastive loss is set as 1.

We have compared Adv-Kin method with four state-of-the-art methods in
kinship verification, including two shallow learning methods such as MNRM-
L [2] and MPDFL [9], and two deep learning methods such as SMCNN [3] and
DKV [7]. Additionally, the performance comparison with human score [9] is also
analyzed. Notably, for all algorithms, 5-fold cross-validation is used by following
the standard setting.

4.3 Comparison with Previous Methods

The verification results of the proposed MMD Loss (i.e. ML) and Adversarial
Loss (i.e. AL) on four benchmark kinship datasets have been shown in Table 2.
Specifically, from the results listed in Table 2, we can observe that:

- The proposed Adv-Kin methods consistently outperform state-of-the art
face verification methods, i.e. MNRML and MPDFL based on feature ensemble
and metric learning. The effectiveness of high-level kin-relation semantic discov-
ery is demonstrated.

- The proposed Adv-Kin methods also outperform the deep learning based
face verification methods, i.e. SMCNN and DKV which are modeled under the
generic loss.

- By comparing our method with human knowledge on the KinFaceW-I and
KinFaceW-II, the results show that our methods achieve even better performance
than human.

- By comparing ML with AL, we get that AL based Adv-Kin shows supe-
riority to ML based Adv-Kin. Thus it can be seen that the robustness of deep
features can be further improved by introducing adversarial characteristic.

- For UB dataset, the accuracy of our methods is lower than MNRML and
MPDFL. The reason may be that UB datasets consists of triplet samples, the
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contrastive loss may not distinguish the positive samples and negative samples in
this dataset. However, the result of Adv-Kin methods are better than contrastive
loss based baseline, it means that our methods still work in UB data.

4.4 Parameter Analysis

The parameter σ2 is first to be investigated. Table 3 shows the accuracy of ML
and AL versus different bandwidth σ2. It can be seen that ML and AL based
Adv-Kin can obtain the best classification performance when σ2 is 0.5 and 1.0,
respectively. We can also observe that the proposed methods demonstrate a
stable recognition performance with different bandwidth σ2.

After fixing σ2, we also evaluate the performance with different loss weight
λ. Table 4 shows the accuracy of ML and AL versus different loss weight λ.
We can see that ML and AL based Adv-Kin can obtain the best classification
performance when λ is set as 2.0 and 0.2, respectively.

Table 4. Accuracy of ML and AL with different loss weight λ.

Methods λ
KinFaceW-I KinFaceW-II

F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean

ML 0.2 76.0 73.9 73.6 80.7 76.1 83.8 83.8 82.6 83.4 83.4

ML 1.0 75.0 76.5 75.0 81.9 77.1 84.0 83.8 87.0 86.2 85.3

ML 2.0 77.3 74.6 78.0 83.6 78.4 85.8 84.6 86.6 88.0 86.3

AL 0.2 76.9 77.3 75.8 85.9 80.0 85.2 85.4 88.6 88.0 86.8
AL 1.0 76.3 77.3 74.6 84.6 78.2 86.2 86.2 87.4 87.0 86.9
AL 2.0 74.4 76.9 75.9 85.0 78.1 87.4 85.0 86.8 87.0 86.6

5 Conclusion

In this paper, we propose two loss functions as supervisory signals for kinship
verification, which is motivated by the MMD and GAN. The performance of
CNN model for kinship verification can be improved by use of the MMD loss
to minimize the distribution difference between parents domain and children
domain. In order to improve the discrimination and robustness of deep features,
inspired by GAN, the adversarial loss is proposed. Extensive experiments on the
benchmark KinFaceW-I, KinFaceW-II, Cornell KinFace and UB KinFace show
the promising results compared to many state-of-the-art methods. In future, the
combined deep learning and metric learning will be studied.
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