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Abstract. Recently, many sparse coding techniques like sparse repre-
sentation based classification (SRC) have been proposed to deal with
face recognition (FR) problem. In SRC, a test image is linearly coded by
the training images to calculate the sparse coefficients by l1-norm mini-
mization. Then, SRC needs to compute the representation error of each
category when classifying the test image. The corresponding category of
the test image would have the minimum representation error. In other
words, representation errors of all classes show class discrimination. In
this paper, we take advantage of this distinct representation errors that
are transformed into softmax vector and find that the sub-pattern of
the whole image is sometimes more discriminative than the whole im-
age. Sparse softmax vector coding based deep cascade model (SSVD) is
proposed to improve the pattern classification performance. The experi-
ments demonstrate that the proposed model is much more effective than
state-of-the-art methods.

Keywords: Sparse coding, softmax vector, spatial pyramid, deep cas-
cade model

1 Introduction

Face recognition can be viewed as one of the most popular and challenging topic
in computer vision and pattern recognition. In the past 20 years, substantial
face recognition methods [1–13] have been developed by numerous researchers.
Among these methods, sparse coding and discriminative methods have yielded
significant results.

Nassem et al. [1] proposed the linear regression classifier (LRC) for face recog-
nition. The main idea of LRC is representing a testing face by a suitable way
and classifying it to one class, which can represent it better than other classes.
One after another, l1-norm regularization term is imposed upon the LRC model
to avoid over-fitting by Wright et al. [2] who proposed a sparse representation
based classification (SRC) framework to solve FR problems. In SRC, a testing
image is coded by a sparse linear combination of training samples via the l1-
norm minimization. SRC classifies the testing image through estimating which
class of training samples could generate the smallest reconstruction error of it
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with the corresponding class coding coefficients. Zhang et al. [3] illustrate that
not only l1-norm but also l2-norm could achieve parallel results on coding coef-
ficients and proposed the collaborative representation classifier (CRC) scheme.
Among the above models, the fidelity terms are measured by the l2-norm or
l1-norm, which follows the assumption that the pixels of error obey Gaussian or
Laplacian distribution independently. Nevertheless, if there were some illumina-
tion variation, occlusion, or disguise in the images, the above assumption might
be unconscionable.

Subsequently, several scholars enhanced the sparse coding based models and
proposed some new methods. Typically, to obtain more robustness, Yang et al. [4]
proposed a robust sparse coding (RSC) model for FR, in which the residual of
the test image and the estimated one is assumed independently and identically
distributed according to some probability density function (PDF), where the
parameter characterizes the distribution. Then, RSC finds an maximum likely-
hood estimation solution of the sparse coding, which can be viewed as a weighted
LASSO problem. He et al. [5] took advantage of the correntropy induced robust
error metric and proposed the correntropy based sparse representation (CESR)
model. What is interesting is that RSC and CESR can be viewed similar work
of M-estimator with different kernel size. Recently, He et al. [6] proposed a new
model of using different half-quadratic functions to measure the error image,
which combines the ideas of SRC, CESR and RSC. In addition, to make the
LRC more robust to random pixel disguise, occlusion, or illumination, Nassem
et al. [7] extended the LRC to the robust linear regression classification (RLRC)
by making use of Huber estimator. Zhou et al. [8] borrowed the markov random
field model into the sparse coding scheme and proposed sparse error correction
with MRF model. Jia et al. [9] utilized structured sparsity-inducing norm into
the SRC model and presented a structured sparse representing classifier (SSRC).

To improve the recognition rate of sparse coding methods, we propose a deep
cascade model based on sparse softmax vector coding (SSVD) in this paper, in-
spired by [23]. The main contributions of our work are as follows. (1) The use of
discriminative softmax vector. SRC codes a testing image by sparse linear com-
bination of all training images and classifies it to the class which has minimum
representation error. In other words, representation errors of all classes show
class discrimination. Most existing sparse coding based methods only focus on
the original or extracted image feature. To further explore the effectiveness of
sparse coding method on the discriminative representation errors, we propose
the SSVD method, in which the softmax vectors transformed by representation
errors are used to do sparse representation repeatedly. (2) Three-level spatial
pyramid structure is used to enhance class discrimination. Most of the sparse
coding methods are based on the whole images, which ignores the local infor-
mation of the subregion. Because the subregions of the whole image show more
detailed local information and more discriminative than the whole image, SSVD
combines the whole image and its subregions to obtain softmax vectors by us-
ing three-level spatial pyramid structure as shown in the image coding part of
Fig. 1. (3) Deep cascade model based on concatenated softmax vectors is pro-
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Fig. 1. An example is given to illustrate how the deep model works when classifying a
test image y under all training images X.

posed. As the cascade model goes deep, the concatenated softmax vectors obtain
more class discrimination, which is in favour of classification. Our extensive ex-
periments in benchmark databases show that the proposed deep model achieves
better performance than many existing sparse coding methods.

The rest of this paper is organized as follows. Section 2 presents the proposed
deep model. Section 3 presents the solving algorithm of sparse representation.
The experiment results are shown in Section 4. Section 5 concludes this paper.

2 The Proposed Approach

In this section, we illustrate how we classify the testing image by giving all
training images. First, we define a procedure getting new feature in the first
part. Then, in the second part, we present a detailed illustration that how the
deep cascade model goes as shown in Fig. 1

2.1 Getting New Feature

According to SRC, suppose that we have C classes of subjects and define that
d represents one of testing sample and D = [D1,D2, · · · ,DC ] represents the
dictionary. The representation model can be transformed into following problem
[15]:

min
α
‖ d−Dα ‖22 +λ ‖ α ‖1 (1)

where λ is a scalar constant. After solving the above function, we compute the
representation error of each class as follow:

rc =‖ d−Dcαc ‖22 (2)
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where Dc is the c-th class samples, and αc is the coefficient vector associated
with c-th class. Softmax vector r is computed by softmax function as follow:

r =
e−rc∑C
c=1 e

−rc
(3)

where r = [r1, r2, · · · , rC ] ∈ RC . If the test sample d belonged to class i(≤ C),
ri should be bigger than other atoms in softmax vector r, which is called class
discrimination. The above process of obtaining softmax vector r is named as
Getting New Feature on dictionary D (GNFD)

2.2 Sparse Softmax Vector Coding based Deep Cascade Model

Without loss of generality, we let X represents the training images and Y repre-
sents the testing images. The class number is C. The numbers of training images
and testing images are N1 and N2. For each image, a three-level spatial pyramid
is used to compute the softmax vector. We take one testing image y and all
training images X as an example to explain how to obtain the softmax vectors
and classify the testing image y as shown in Fig. 1.

There are 3 parallel channels that are designed to process the input images.
In the first channel, the original testing image y is represented by all training
images X and go through the GNFX procedure to get a softmax vector. Simi-
larly, a softmax vector set of training images will be obtained after each training
image goes through GNFX procedure. In the second channel, all the input im-
ages are equally divided into 4 subregions. Let yi denote the i-th(i = 1, · · · , 4)
subregion of test image y and Xi denote the i-th(i = 1, · · · , 4) subregion set of
all the training images X. Similar to the first channel, yi goes through GNFXi
procedure, then 4 softmax vectors will be generated. Those 4 softmax vectors
is transformed into one vector after max pooling or average pooling. Like the
testing image, each subregion of per training image goes through the correspond-
ing GNFXi procedure, and 4 softmax vectors will be generated. After the max
pooling or average pooling, the 4 softmax vectors are transformed into 1 vector.
Then the transformed vector of each image is parallel integrated into one ma-
trix as shown in Fig. 2 that is an instance presented in red dashed part of the
second channel in Fig. 1 to illustrate max pooling and average pooling. In the
third channel, each input images are equally divided into 16 subregions. Using
the same approach in the second channel, a transformed softmax vector of test-
ing image y and a transformed softmax vector set of training images X will be
generated.

After those 3 channels, 3 softmax vectors (tinted with blue) of testing image
are concatenated into one vector d0 and 3 softmax vector sets (tinted with red)
are concatenated into one vector set D0. Then, d0 goes through GNFD0

proce-
dure to compute the softmax vector that is concatenated with d0 to construct
input sample d1 of second layer. Similarly, each column in D0 also goes through
GNFD0 procedure to compute the softmax set that is concatenated with D0

to construct input dictionary D1 of second layer. Using the same way, we can
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Fig. 2. Illustration of the max pooling and average pooling. 4 softmax vectors will be
obtained after each subregion of per image goes through GNFXi procedure. Then, we
compute the maximum value or average of the 4 values in the corresponding dimension
to construct a new vector. Finally, the new vector of each image is parallel integrated
into one matrix.

obtain the testing sample dL and dictionary DL of level L. Finally, dL goes
through GNFDL to get the softmax vector. The prediction will be obtained by
taking the class with the maximum value in softmax vector.

3 Solving Algorithm of Sparse Representation

In recent years, many algorithms have been proposed for sparse representation.
In particular, the alternating direction method of multipliers (ADMM), first
proposed in 1970s [14], has drawn a lot of attention. Yang and Zhang [15] inte-
grated the proximal methods into ADMM when solving l1-norm minimization
problems.

In this paper, we also use ADMM method to solve sparse representation
problem. In the SSVD model, sparse representation problems need to be solved
in different stages. We just take the first channel in Fig. 1 for an instance to
illustrate how we solve the sparse coding coefficients of testing samples based
on the dictionary X. Let X = [x1,x2, · · · ,xN1 ] ∈ Rd×N1 denote training sam-
ples and Y = [y1,y2, · · · ,yN2 ] ∈ Rd×N2 denote testing samples. Each column
represents a sample. To learn the representation coefficients, a general sparse
representation model is formulated as

min
W
‖ Y −XW ‖2F +λ ‖W ‖1 (4)

where λ is the regularization parameter for balancing respective term. We in-
troduce Z = W to solve model (4) by using augmented Lagrangian function
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according to ADMM method. The augmented Lagrangian function of problem
(4) is formulated as

 Lµ(W,Z,Λ) = min
W,Z,Λ

‖ Y −XW ‖2F +λ ‖ Z ‖1 + < Λ,W − Z >

+
µ

2
‖W − Z ‖2F

(5)

where < P,Q >= tr(PTQ), Λ is a Lagrange multiplier and µ is a scalar con-
stant. The augmented Lagrangian is minimized alone one coordinate direction
at each iteration. ADMM consists of the following iterations.
(i) Given Z = Zt,Λ = Λt, updating W by

Wt+1 = argmin
W

Lµ(W,Z,Λ) (6)

(ii) Given W = Wt+1,Λ = Λk, updating Z by

Zt+1 = argmin
Z
Lµ(W,Z,Λ) (7)

(iii) Given W = Wt+1,Z = Zt+1, updating Λ by

Λt+1 = Λt + µ(Wt+1 + Zt+1) (8)

The key steps are to solve the optimization problems in Eqs.(6) and (7).
Based on the augmented Lagrangian function in Eq.(5), Eq.(6) can be expressed
as

Wt+1 = argmin
W

(‖ Y −XW ‖2F + < Λ,W − Z > +
µ

2
‖W − Z ‖2F ) (9)

Since Eq.(9) is a standard regression model, we can get its closed-form solution
as follows

Wt+1 = (XTX + µI)−1(XTY −Λt + µZt) (10)

where I is a identity matrix. Based on the augmented Lagrangian function in
Eq.(5), Eq.(7) can be rewritten as

Zt+1 = argmin
Z

(λ ‖ Z ‖1 + < Λ,W − Z > +
µ

2
‖W − Z ‖2F ) (11)

Because l1-norm problem is indifferentiable, the shrinkage technique [15] is used
to solve this problem. The optimal solution presents as

Wt+1 = shrinkageλ
µ

(Wt+1 +
Λt

µ
) (12)

According to ADMM algorithm, the objective function value will be conver-
gence until certain optimality conditions and stopping criteria are satisfied. In
this paper, to simplify this problem, we set a max iteration instead. The detailed
process for solving problem (4) is summarized in Algorithm 1.
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Algorithm 1. The proposed SSVD

Input: Training samples X and testing samples Y normalized with l2-norm,
parameters λ = 10−4, µ = 10−1, identity matrix I

Output: W, Z, Λ
1: Initialize: W0 = Z0 = Λ0 = 0
2: repeat
3: update W: Wt+1 = (XTX + µI)−1(XTY − Λt + µZt)

4: update Z: Zt+1 = shrinkageλ
µ

(Wt+1 + Λt

µ
)

5: update Λ: Λt+1 = Λt + µ(Wt+1 − Zt+1)
6: until convergence

4 Experimental Results

In this section, we present the experimental results of our proposed SSVD
method on publicly available databases, following the same experimental set-
tings in [16]. We randomly split the databases into two part. To avoid special
case, all the experiments are run 10 times, and the average recognition rates are
reported. Different from [16], we just validate our proposed framework on three
face databases (Extended Yale B [17], CMU PIE [18], AR [19]) and one object
database (COIL-100 [20]). We compare the proposed method with the popular
methods such as LLC, LRC, CRC, SRC, SVM [21] and three methods (ENL-
R, DENLR, MENLR) proposed in [16]. Our (Max) and Our (Ave) respectively
represent the methods to obtain the final softmax vectors in the Image Coding
part by using max pooling and average pooling.

In the experiments, we reshape each image into one vector or extract the
random feature of image. The l2-normalization is used for all the samples. The
experimental results shows that our method can achieve more significant results
than many compared methods especially on face databases. The bold numbers
represent the best recognition rate. In the following experiments, we let λ1, µ1

represent the parameters in image coding part and λ2, µ2 represent the param-
eters in softmax vector coding part in Fig. 1. The number of layers is set as 10
on all database.

1) Extended Yale B Database: The Extended Yale B database contains 2414
frontal face images of 38 individuals each of them has around 64 near frontal
images under different illuminations. We randomly select 15, 20, 25, 30 images
per person for training, and the rest for testing. We set λ1 = 10−4, µ1 = 10−1,
λ2 = 10−4, and µ2 = 1.7. The recognition rates of different methods on this
database are summarized in Table 1. Note that the mean recognition rate are
reported, and the bold numbers represent the best recognition rates. It is worth
noting that our method can achieve the best recognition rates. Typically, when
the number of training samples is 15, the recognition rate of our method is 4
percent higher than MENLR that achieves the best result among the compared
methods. Besides, it meas that our method can achieve good recognition rate
when there is less training samples on this database.
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2) CMU PIE Database: The CMU PIE face database contains 41,368 face
images from 68 subjects as a whole. The images under five near frontal poses
(C05, C07, C09, C27 and C29) are used in our experiment. We randomly select
15, 20, 25, 30 images from each subject as training samples and the remaining
images as test samples. We set λ1 = 10−4, µ1 = 10−1, λ2 = 10−4, and µ2 = 10−2.
The classification rates of different methods are summarized in Table 2. It is
clear that our method outperforms the compared methods in different cases.

Table 1. Recognition rates (%) on Ex-
tended Yale B database with different
number of training samples

Alg. 15 20 25 30

LLC 88.63 91.52 94.20 95.21
LRC 89.47 92.52 93.50 94.62
CRC 91.39 94.26 95.91 97.04
SRC 91.72 93.71 95.56 96.37
SVM 89.35 92.74 95.07 96.20

ENLR 92.18 94.28 95.70 96.80
DENLR 94.34 96.66 97.70 98.51
MENLR 94.76 97.27 97.68 98.74

Our(Max) 98.87 99.51 99.63 99.79
Our(Ave) 98.68 99.44 99.62 99.73

Table 2. Recognition rates (%) on CMU
PIE database with different number of
training samples

Alg. 15 20 25 30

LLC 84.62 90.90 93.27 94.46
LRC 85.61 90.17 92.65 94.01
CRC 89.76 92.42 93.80 94.61
SRC 88.97 91.14 92.62 93.71
SVM 86.66 90.70 92.66 93.06

ENLR 90.47 92.82 93.94 94.67
DENLR 92.25 94.06 95.61 95.86
MENLR 93.21 94.88 95.74 96.18

Our(Max) 91.44 93.73 94.95 95.66
Our(Ave) 93.79 95.59 96.37 96.84

3) AR Database: The AR face database contains about 4,000 color face im-
ages of 126 subject, which consist of the frontal faces with different facial ex-
pressions, illuminations and disguises. In this experiment, we select a subset
including 2600 images from 50 female and 50 male subjects. We randomly select
8, 11, 14, 17 images for each subject as training samples and the rest of images as
test samples. Following the experiment in [22], each image and its subregion are
projected onto a 540-dimensional feature vector with a randomly generated ma-
trix from a zero-mean normal distribution. We set λ1 = 10−5, µ1 = 2, λ2 = 10−5,
and µ2 = 10−3. The recognition rates of different methods on this database are
summarized in Table 3. From the table, we can see that our method achieves
the best recognition rates.

4) COIL-100 Database: Columbia Object Image Library (COIL-100) database
contains various views of 100 objects (72 images per object) with different light-
ing conditions. In our experiments, the images are converted to gray-scale images
with the 32× 32 pixels. We randomly select 15, 20, 25, 30 images per object to
construct the training set, and the test set contains the rest of the images. We
set λ1 = 10−2, µ1 = 1, λ2 = 10−4, and µ2 = 10−2. The recognition rates of
different methods on this database are summarized in Table 4. We can see that
our method is inferior to the best MENLR, but still better than other methods.
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Table 3. Recognition rates (%) on AR
database with different number of training
samples

Alg. 8 11 14 17

LLC 54.26 60.87 66.88 71.58
LRC 63.87 76.87 85.20 90.88
CRC 86.53 91.66 94.06 95.74
SRC 84.08 89.45 92.20 95.14
SVM 75.74 86.19 91.99 95.08

ENLR 90.42 93.80 95.41 96.31
DENLR 91.94 95.69 97.30 98.21
MENLR 92.61 95.63 97.16 98.56

Our(Max) 92.72 96.66 97.65 98.27
Our(Ave) 95.15 97.31 98.13 98.70

Table 4. Recognition rates (%) on
COIL-100 database with different num-
ber of training samples

Alg. 15 20 25 30

LLC 86.93 90.25 92.50 93.84
LRC 85.33 88.79 91.09 92.63
CRC 81.36 84.33 86.33 87.72
SRC 86.10 89.47 91.99 93.91
SVM 84.89 88.10 90.80 92.44

ENLR 88.40 91.28 93.37 94.66
DENLR 91.92 94.36 95.80 96.87
MENLR 92.75 94.88 96.34 97.36

Our(Max) 89.51 92.77 94.55 95.90
Our(Ave) 91.09 93.95 95.48 96.89

In summary, the proposed SSVD model can achieve remarkable results on
face databases. It is also worth noting that SSVD (Max) outperforms SSVD
(Ave) on Extended Yale B database and is inferior to SSVD (Ave) on CMU PIE,
AR and COIL-100 database. The important advantage of SSVD model is that
each image is divided into 4 or 16 subregions, which means that one image can be
represented 4 or 16 times. It is useful to amend the misclassified image. We take
an example to explain the effect of max pooling and average pooling. Suppose
that there is a four categories image set split into two parts training set and test-
ing set. Given a misclassified testing image that is actually from class 1, we will
obtain its softmax vector r = [0.25 0.40 0.15 0.20]T . As for its subregions,
there are two cases. (1) There exist one subregion (first subregion we suppose)
which shows much more discriminative than the whole image and other subre-
gions. We let r1 = [0.60 0.20 0.10 0.10]T , r2 = [0.30 0.45 0.10 0.15]T ,
r3 = [0.25 0.50 0.10 0.15]T , and r4 = [0.30 0.35 0.25 0.10]T respective-
ly represent the softmax vectors of the 4 subregions. After the max pooling, we
will obtain the final softmax vector r′ = [0.60 0.50 0.25 0.15]T which can
amend the misclassified image. (2) The above case is unusual in reality. Instead,
there more likely exist most subregions which show a lot discriminative than
other subregions. The misclassified image and its softmax vector are the same as
case (1). We let r1 = [0.35 0.25 0.15 0.25]T , r2 = [0.40 0.20 0.30 0.10]T ,
r3 = [0.20 0.50 0.10 0.20]T , and r4 = [0.45 0.15 0.20 0.20]T respective-
ly represent the softmax vectors of the 4 subregions. After the average pooling,
we will obtain the final softmax vector r′ = [0.35 0.28 0.19 0.19]T which can
also amend the misclassified image.

Discussion of Layers: To better illustrate our methods, we give the sample
curves (presented in Fig. 3) that shows the recognition rates with different layers
in the deep model for each database. It is clear that as the number of layers
increases, the recognition rate represents a rising tendency, which demonstrates
the effectiveness of deep cascade model.
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Fig. 3. The recognition rates with different layers on different database: (a) Extended
Yale B database, (b) CMU PIE Database, (c) AR database, (d) COIL-100 database.

Convergence: To illustrate the effectiveness of our solving algorithm for
problem (4), we show the objective function values with the varying iteration
number (presented in Fig. 4) on the Extended Yale B database by using the
Algorithm.1 to solve problem (4). It is easy to find that the objective function
values present a convergence trend, which demonstrates the effectiveness of the
Algorithm.1.

0 5 10 15 20 25 30 35 40 45 50

Iteration number

0

0.5

1

1.5

2

2.5

3

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Fig. 4. The convergence of Algorithm.1.

5 Conclusion

This paper presented a novel sparse softmax vector coding based deep cascade
model (SSVD). One important advantage of this model is using the class dis-
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crimination softmax vector. Besides, some sub-patterns show more discrimina-
tive than the whole image, which can amend the misclassified image by using
max-polling or average-polling. We also explored the effectiveness of the concate-
nated softmax vector. The extensive experimental results clearly demonstrated
that the proposed method outperforms significantly previous methods.
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