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 

Abstract—In this paper, we propose an odor recognition 

framework for multiple electronic noses (E-nose), machine 

olfaction odor perception systems. Straight to the point, the 

proposed transferring odor recognition model is called 

cross-domain discriminative subspace learning (CDSL). General 

odor recognition problems with E-nose are single domain oriented, 

that is, recognition algorithms are often modeled and tested on the 

same one domain dataset (i.e., from only one E-nose system). 

Different from that, we focus on a more realistic scenario: the 

recognition model is trained on a prepared source domain dataset 

from a master E-nose system A, but tested on another target 

domain dataset from a slave system B or C with the same type of 

the master system A. The internal device parameter variance 

between master and slave systems often results in data 

distribution discrepancy between source domain and target 

domain, such that single domain based odor recognition model 

may not be adapted to another domain. Therefore, we propose 

domain adaptation based odor recognition for addressing the 

realistic recognition scenario across systems. Specifically, the 

proposed CDSL method consists of three merits: 1) an intra-class 

scatter minimization and inter-class scatter maximization based 

discriminative subspace learning is solved on source domain. 2) a 

data fidelity and preservation constraint of the subspace is 

imposed on target domain without distortion. 3) a mini-patch 

feature weighted domain distance is minimized for closely 

connecting the source and target domains. Experiments and 

comparisons on odor recognition tasks in multiple E-noses 

demonstrate the efficiency of the proposed method. 

 
Index Terms—Odor recognition, electronic nose, domain 

adaptation, cross-domain learning, subspace learning 

 

I. INTRODUCTION 

DOR recognition by using an electronic nose (E-nose) is an 

interesting but challenging issue in machine olfaction. The 

challenging aspect lies in the technical gap of olfactory sensors, 

with respect to the vision sensors (e.g., imaging sensor). In 

machine olfaction community, E-nose plays an important role 

in odor perceptron and data analysis based on pattern 

recognition algorithms [1, 2].  E-nose, as a cross-sensitive odor 

perceptron device with intelligent signal processing and pattern  
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Fig. 1. Diagram of the proposed odor recognition framework. The 

model training (cross-domain learning) is implemented in PC based on 

the acquired odor data from master system A, and the well-trained 

model parameters will be used to recognize the odors from slave B. 

 

recognition units, has witnessed a wide progress in systems, 

applications, and algorithms during the past two decades [3-6]. 

Specifically, Flammini et al. proposed a low-cost interface to 

high-value resistive sensors over a wide range, such that a wide 

detection range is possible [7]. Brudzewski et al. [8] proposed a 

differential electronic nose for recognition of coffees. 

Herrero-Carrόn et al. [9] proposed an active and inverse 

temperature modulation E-nose for odorant classification. 

Gosangi and Gutierrez-Osuna [10] proposed an active 

temperature programming method for odor recognition. Yin et 

al. [11] also proposed a temperature modulation method in 

E-nose for gases recognition, and the recognition accuracy with 

fewer sensors can also be guaranteed by modulation.  

In odor recognition, a number of pattern recognition 

algorithms for classification and regression have been 

presented for E-nose [12-15], such as support vector machines 

(SVM), neural networks (ANN), discriminant analysis (DA), 

learning vector quantization (LVQ), etc. Tudu et al. [16] 

proposed an incremental fuzzy approach for classification of 

black tea quality with an E-nose, such that the newly presented 

patterns can be automatically included in the training set 

because of the incremental learning ability. Zhang et al. [17] 

proposed a hybrid linear discriminant analysis based support 

vector machine method for classification of six kinds of air 

contaminants, and achieved the best accuracy. For those 

readers of interest, some excellent reviews in machine olfaction  
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Fig. 2. Schematic diagram of the proposed CDSL method; after a 

subspace projection P, the source domain and target domain of 

different space distribution lie in a latent subspace with good 

distribution consistency (the centers of both domains become very 

close and drift is removed); in this latent subspace, the classification of 

two classes is successfully achieved. Formally, the upper coordinate 

system denotes the raw data points of source domain and target 

domain in three dimensions. We use the word “center” to represent the 

mean of the features. From the upper figure, we can see that the 

difference between the mean of source domain and the mean of target 

domain is large in each dimension. After a subspace projection P in the 

below figure, we can see that the values of   
  and   

  become smaller, 

which demonstrate that the distribution difference becomes small, and 

both domains of different space distribution lie in a latent common 

subspace with good distribution consistency. 

 

and E-nose that have described pattern classification and signal 

processing methods can be referred to as [18,19]. 

By reviewing these research findings described above, we 

can observe a common property, that is, all these works tend to 

study highly efficient and effective odor recognition algorithms 

in a single E-nose system. This can be recognized to be method 

driven. It is useful to reveal some better algorithms for 

improving the odor recognition performance of an E-nose. 

However, in real application scenarios, multiple E-nose 

systems of the same type would be developed for odor 

detection and recognition. An essential issue that we should pay 

attention to is that although multiple systems are of the same 

type, the well-trained recognition algorithm based on one 

system cannot be easily adapted to another system. An explicit 

reason is the internal output differences (e.g., signal shift) 

between gas sensor arrays in multiple systems. Another reason 

is the slow instrumental aging of sensors (e.g., signal drift) 

when exposed to air for a long time. It is just the challenging 

aspect of machine olfaction claimed at the beginning of this 

section. The undesired result caused by this issue is that the 

obtained machine learning algorithm based on E-nose system A 

cannot be transferred to another E-nose system B of the same 

type. Therefore, the diverse application of E-noses is seriously 

restricted. This is exactly what we are paying attention to and 

aiming to solve in this paper. 

In terms of the non-transferrable restriction of E-nose in odor 

recognition, we propose a novel transferring odor recognition 

framework, which targets at odor recognition across systems. 

Specifically, the diagram of the proposed odor recognition 

framework is described in Fig. 1, which includes two parts: 

model training phase on system A (defined as master) and 

model testing phase on system B (defined as slave). To 

effectively address this issue, inspired by transfer learning [20] 

and domain adaptation [21] in machine learning community, 

each system is treated as a domain. Thus, the master E-nose 

system is viewed as source domain and other slave systems are 

viewed as target domains in this paper. From the viewpoint of 

domain distribution (i.e., data distribution), the data distribution 

between source domain (master system) and target domain 

(slave system) is different. That is, the data in source and target 

domain lie in different feature spaces. Therefore, we propose a 

cross-domain discriminative subspace learning (abbreviated as 

CDSL) method, by pursuit of a common (shared) subspace of 

both domain data, such that the data from different domains lie 

in the same (common) subspace. Then, with the proposed 

CDSL method, we are able to achieve transferring odor 

recognition across multiple systems (i.e., across domains).   

Specifically, the merits of the proposed CDSL method are 

three-fold: 

 The aim of the proposed CDSL is to learn a common 

subspace (projected by a transformation P) such that the 

source and target domains share similar feature distribution. 

Considering that our final task is classification, and the 

classification capability should be augmented in the learned 

subspace. Thus, in CDSL, a discriminative mechanism on 

the source domain data is integrated, by minimizing the 

intra-class scatter matrix and simultaneously maximizing 

the inter-class scatter matrix. That is, the class separability 

of the source domain data in the subspace can be further 

guaranteed with the discriminative learning mechanism. 

 To preserve the structure of the target domain data in the 

learned subspace and avoid the target data distortion, a data 

fidelity constraint is imposed in CDSL. With this constraint, 

much available information in the target domain we are 

interested (e.g., drift knowledge) is effectively preserved. 

 To learn a common subspace of source and target data, we 

propose a source to target domain distance minimization 

term in the learned subspace, such that the domain 

distribution consistency can be improved. Further, 

considering that the domain distribution is feature-specific, 

that is, different feature dimension may have different 

distribution discrepancy degree, we further propose a novel 

and effective mini-patch feature weighted domain distance 

representation. The weights measure the degree of feature 

mismatch between source and target domain. A larger 
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weight denotes a higher feature mismatch degree. 

With above characteristics of the proposed CDSL, a common 

(shared), discriminative, and robust subspace projected by P 

can be achieved. Further, the transferring odor recognition 

across domains (across multiple systems) can be improved with 

the proposed CDSL approach. Visually, the schematic diagram 

of the proposed CDSL is shown in Fig. 2, from which we can 

see that the ultimate goal is to achieve transferring odor 

recognition (classification) in the learned new subspace. The 

learning process of P is completed by jointly modeling on the 

source domain and target domain, based on three key 

characteristics (merits): discriminative learning on source 

domain, data fidelity on target domain and mini-patch feature 

weighted domain distance.  

The remainder of this paper is as follows. Section II presents 

the related works of shift calibration, drift correction and 

subspace learning. Section III describes the proposed 

cross-domain discriminative subspace learning (CDSL) 

approach including the model formulation, optimization and 

classification. The experiments and results have been discussed 

in Section IV. Finally, Section V concludes this paper. 

II. RELATED WORKS  

A. Shift Calibration (Reproducibility)  

 The signal shift in E-nose is an inherent problem, which 

results from the reproducibility of gas sensors [21]. Briefly, 

when two identical E-nose systems are exposed to the same 

conditions, their outputs are not the same. One reason is that the 

system is related to the physical condition such as temperature, 

humidity and pressure. Researchers have proposed different 

methods to calibrate the signal shift, such as global affine 

transformation based on robust weighted least square 

(GAT-RWLS) [22], the windowed piecewise direct 

standardization (WPDS) [23], partial least square regression 

(PLS) [24], and univariate direct standardization [25]. These 

methods are successful in shift calibration. However, the 

calibration model construction depends on the data amount, and 

thus the calibration becomes task specific. That is, for different 

odor recognition, the re-calibration should be conducted and 

also the generality is too weak. Additionally, the calibration is 

directly shown in signal magnitude, and independent of the 

subsequent learning algorithm. 

B. Drift Correction (Aging) 

Drift, that is supposed to be some slow, continuous and 

uncertain effect, is affecting the classification performance of 

an E-nose. Sensor drift effect is caused by many objective 

factors such as aging, poisoning, and the fluctuations of the 

ambient environmental variables (e.g., humidity, temperature) 

[25]. As a result, the instrument responds differently to a 

constant concentration of some contaminant at different 

ambient conditions. Drift is once thought to be an ill-posed 

problem due to its very irregular characteristics. Although 

researchers have proposed several methods to correct drift 

[26-31], the results are still unsatisfactory when both drift and 

shift happen. More importantly, these methods were proposed 

for drift compensation independent of shift. Our proposed work 

aims to solve more complex transferring odor recognition 

across multiple systems (i.e., drift plus shift). Specifically, Yan 

and Zhang [26] proposed an autoencoder method for 

time-varying drift correction. Big data should be used for 

training a deep model. Martinelli et al. proposed an artificial 

immune system based adaptive classifier for drift mitigation 

[27], however the classifier has no knowledge transfer ability. 

Vergara et al. proposed a classifier ensemble model for drift 

compensation, in which multiple SVMs with weighted 

ensemble are used [28]. The ensemble method can improve the 

classifier robustness, but it lacks transfer ability across systems.  

Zhang et al. [29] proposed a domain adaptation extreme 

learning machine based transfer learning method for drift 

compensation, which aims at proposing a robust classifier but 

lacks feature representation ability. Padilla et al. [30] proposed 

an orthogonal signal correction method for recognizing and 

removing the drift components, which imposes a strong 

assumption about the data property (e.g., orthogonality). Di 

Carlo et al. [31] proposed to correct drift evolutionarily by 

learning a transformation with respect to the best pattern 

recognition accuracy, in which overfitting is easily caused due 

to the lack of necessary constraint on the transformation.  

C. Subspace Learning 

Subspace learning aims at learning a low-dimensional 

subspace. Several popular subspace methods include principal 

component analysis (PCA) [32], linear discriminant analysis 

(LDA) [33], manifold learning based locality preserving 

projections (LPP) [34], and marginal fisher analysis (MFA) 

[35]. Specifically, PCA, as an unsupervised method, aims at 

preserving the maximum variance (energy) of the raw data. 

LDA is a supervised dimension reduction method, which 

targets maximizing the between-class scatter matrix trace and 

minimizing the within-class scatter matrix trace, such the linear 

separability is improved in the discriminative subspace. LPP is 

an unsupervised dimension reduction technique with manifold 

assumption and graph embedding, which preserves the local 

affinity structure in low dimensional embedding. MFA is 

recognized to be a comprehensive version of LDA and LPP, 

which integrates the intra-class compactness and the graph 

embedding. These subspace learning methods are applicable to 

single domain scenarios, but cannot be adapted to the 

transferring odor recognition scenario across domains. 

Therefore, cross-domain subspace learning model is desired for 

the proposed transferring scenario. 

III. CROSS-DOMAIN DISCRIMINATIVE SUBSPACE LEARNING  

A. Notations 

In this paper, the source and target domain are defined by 

subscript “S” and “T”, respectively. The training data of source 

and target domain is denoted as    [  
      

  ]         

and    [  
      

  ]       , respectively, where D is the 

dimensionality, NS and NT 
are the number of training samples in 

source and target domains.    [  
      

  ]
 

    denotes 

the labels with respect to the source data   . Let        
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represents a basis transformation that would map the source and 

target data from the raw space    to a new lower-dimensional 

subspace   . The symbol ‖ ‖  and ‖ ‖  denotes the Frobenius 

norm and l2-norm, respectively.   ( )  denotes the trace 

operator and ( )  denotes the transpose operator. Throughout 

this paper, matrix is written in capital bold face, vector is shown 

in lower bold face, and variable is written in italics. 

B. Problem Formulation 

As illustrated in Fig. 2, we aim to learn a basis transformation 

P that maps the original space of source data    and target data 

   to a new subspace, i.e.,    and   , such that the feature 

distribution between the mapped source and target data 

   [  
      

  ]        and    [  
      

  ]        

becomes similar. Therefore, it is rational to have an idea that the 

mean distribution discrepancy between YS and YT can be 

minimized. Considering that the discrepancy between domains 

is feature-specific (sensor-specific), that is, the discrepancy of 

each feature dimension between domains may be different in 

real application, we propose a mini-patch feature specific 

domain distance (MPD) to exactly describe the distribution 

discrepancy by imposing different weights on each mini-patch 

feature combination. Then, after domain adaptation, the MPD 

is expected to be minimized. Specifically, the proposed MPD 

minimization is formulated as follows. 
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where M denotes the size of mini-patch features, wi denotes the 

weight of the i-th mini-patch,   
  and  

  denote the source and 

target domain center of the i-th mini-patch after domain 

adaptation.   
  

 denotes the projected source data sample j under 

the i-th mini-patch and   
   represents the projected target data 

sample k under the i-th mini-patch. 

As can be seen from the MPD minimization, the weight wi is 

expected to be larger if the i-th mini-patch has smaller 

distribution discrepancy. Therefore, wi is computed as follows. 
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where wi is calculated based on between-center distance which 

can reflect the drift or discrepancy degree, and 0<wi<1.   
  and 

  
  represent the centers of the i-th mini-patch of source and 

target data, respectively. They can be computed as 
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where   
  

 denotes the j-th source data sample under the i-th 

mini-patch and   
   represents the k-th target data sample under 

the i-th mini-patch. 

According to the subspace projection P, the new 

representation of source and target data of the i-th mini-patch in 

the lower-dimensional subspace can be formulated as  
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Therefore, we have ij
S

ij
S xPy

T  and ij
T

ij
T xPy

T . By 

substituting Eqs.(5) and (6) into Eq.(1), the minimization 

problem Eq.(1) can be reformulated as 
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The narrowed mean distribution discrepancy between source 

and target domain after using the learned projection P can be 

guaranteed by minimizing (7). However, the discriminative 

property among multiple classes cannot be explicitly shown. 

That is, the separability of multiple odors in the source domain 

is not effectively described. Therefore, in the proposed CDSL 

model, we would also like to design a discriminative term that 

tends to minimize the trace of the intra-class scatter matrix   
  

and simultaneously maximize the trace of the inter-class scatter 

matrix   
  of the source data, such that the intra-class 

compactness and inter-class separability can be improved. As a 

result, the classification benefits from discrimination becomes 

easier in the learned linear subspace. Specifically, we aim to 

maximize the ratio between the inter-class and the intra-class 

scatter as follows, 
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where cScS ,
T

, uPμ   and uPμ
T . 

Therefore, the discriminative term (8) can be further 

simplified as 
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where   
  and    
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Algorithm 1. The proposed CDSL 

Input: Source data         , target data         ,   ,   , 

d, and the mini-patch size M; 

Procedure: 

1. Compute the center    
  of the i-th (i=1,…,M) mini-patch via (3); 

2. Compute the center    
  of the i-th (i=1,…,M) mini-patch via (4); 

3. Compute the inter-class scatter matrix   
  via (10); 

4. Compute the intra-class scatter matrix   
  via (11); 

5. Compute the weight wi  of the i-th mini-patch (i=1,…,M)  via (2); 

6. Compute the matrix R and Q via (15); 

7. Solve the eigenvalue decomposition problem (21); 

8. Compute the optimal subspace    ,          - via (22); 

Output: The basis transformation P (i.e., subspace projection). 
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where u represents the center of source data and uS,c represents 

the center of class c of source data in the raw space.  

Further, to guarantee that the projection P does not distort the 

data of target domain, much available information should be 

preserved in structure under the cross-domain subspace 

representation. Therefore, for target data, it is rational to 

maximize the following term, 
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(12) 

It means that by adding Eq. (12) as a constraint in the model, 

the variance (energy) of the target data in the new subspace can 

also be maximized. Therefore, much available information in 

target domain can be preserved without distorting the data. 

For learning a robust cross-domain subspace, three units 

such as Eq.(7), Eq.(9) and Eq.(12) have been formulated in the 

proposed CDSL model. In summary, the model has the 

following three characteristics: 

 As formulated in Eq. (7), the mini-patch feature specific 

domain distance is minimized, such that the proposed 

model can effectively handle the feature-specific 

distribution discrepancy. From the viewpoint of electronic 

nose, the drift is sensor-specific. Therefore, it can be treated 

individually or in mini-patch as shown in our model. 

 As formulated in Eq. (9), the discriminative property (i.e., 

separability) can be well described, such that in the learned 

subspace, different classes of the source domain can be 

easily classified. The objective of cross-domain subspace 

learning is to improve the probability distribution 

consistency (i.e., domain adaptation), such that the final 

classifier can be adapted to both domains. Note that the 

ultimate goal of the proposed model is for classification. 

 As formulated in the constraint of Eq. (12), which is 

motivated by principal component analysis (PCA), it is easy 

to observe that the structure of the target domain data can be 

well preserved, such that the target data would not be 

distorted after subspace projection,.   

After a detailed description of the three units in the proposed 

CDSL model, by incorporating the Eq. (7), Eq. (9) and Eq. (12) 

together, a complete CDSL model is formulated as follows 
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where λ0 and λ1 represent the regularization (trade-off) 

coefficients. From the CDSL model (13), we observe that it can 

be further simplified in formulation for easier solving.   

By substituting (3) and (4) into (13), the proposed CDSL 

model (13) is reformulated as  
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 (14) 

As can be seen from (14), the CDSL model is solving a ratio 

maximization problem, which is non-convex. Additionally, 

there will be a group of solutions P. Therefore, in optimization, 

we have imposed an equality constraint, such that the solving is 

transformed into an efficient eigenvalue decomposition 

problem. The solver is described in the following section. 

C. Model Optimization 

The optimal solution to (14) is equivalent to solving the 

Eigenvalue problem shown in the following Theorem 1. 

Theorem: An optimal solution to (14) is given by chosen P as 

the matrix whose columns are the eigenvectors v1, v2,…,vd, 

corresponding to the first d largest eigenvalues ρ1, ρ2,…,ρd of 

the following generalized eigenvalue decomposition problem: 

vRvQ ρ1 
 

where ρ denotes the eigenvalues, Q and R are represented as 

follows
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The proof of Theorem is shown in Appendix A. For easy 

following the proposed CDSL model in implementation, the 

algorithm is summarized in Algorithm 1. 

D. Classification 

The proposed CDSL is used to learn a cross-domain 

discriminative subspace P for domain adaptation. After 

projecting the data from source and target domains, the 

classifier is learned on the projected source data   
       

(master system), and the final task is for accurate classification  
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Algorithm 2. Classification 

Input: Source data         , target data         , source 

label   , and the subspace projection P.  

Procedure: 

1. Compute the projected source data   
      ; 

2. Compute the projected target data   
      ; 

3. SVM classifier training on *  
    + by solving (16); 

4. Classification of   
  by using (17); 

Output: the classification results of target data. 

 

of multiple kinds of odors in target data   
       (slave 

system). For classifier training, support vector machine (SVM) 

is used in this paper. For easier following, the briefs of SVM are 

simply provided as follows. 

Given a training set of N data points *     +   
 , where the 

label    *    +        . According to the structural risk 

minimization principle, SVM aims at solving the following risk 

bound minimization problem with inequality constraint. 
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where  ( ) is a linear/nonlinear mapping function, w and b are 

the parameters of classifier hyper-plane, C denotes the penalty 

coefficient, and ξ denotes prediction error. Generally, for 

optimization, the raw problem (16) of SVM can be transformed 

into its dual formulation with equality constraint by using 

Lagrange multiplier method. 

After solving Eq.(16), in classification, the goal of SVM is to 

construct the following decision function 

    



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   
byf

M

i iii1
,sgn xxαx 

                  
(17) 

where  ( ) is a kernel function.  (    )   (  )
  ( )    

   

for linear SVM and  (    )     ( ‖    ‖   ⁄ )  for 

nonlinear Gaussian SVM. In this paper, Gaussian kernel 

function is used due to its generalization and better 

performance in experiments. The odor classification algorithm 

based on SVM is summarized in Algorithm 2. 

E. Remark 

The proposed CDSL model is a cross-domain subspace 

learning method, and the learned subspace includes three 

important aspects: discriminative property of source data, data 

fidelity of target data, and mini-patch feature domain distance 

minimization. The task of CDSL is to learn a common subspace 

for source and target domains and achieve domain adaptation. 

In modeling, the labels of source domain are supposed to be 

available, while the labels of target domain are unavailable or 

very few labels are available. Also, the mini-patch feature is 

designed by considering that the domain difference may be 

different with respect to different features. When the 

mini-patch size M=1, all features contribute the same to the 

distribution inconsistency between source and target domains.  

In experiments, different M values are discussed, and different 

number of labeled target data is also evaluated and explored.  

IV. EXPERIMENTS 

A. Experimental data 

In this section, three odor datasets, including source domain 

dataset (S), target domain dataset 1 (T1), and target domain 

dataset 2 (T2), are experimented. The three datasets are with 

large knowledge shift (instrumental related) and drift (time 

related). These datasets are collected by using three electronic 

nose systems with completely the same type of metal oxide 

semi-conductor gas sensors, including TGS2620, TGS2602, 

TGS2201A and TGS2201B. An extra module for temperature 

and humidity sensing is also used. For each observation, the 

steady state response point is extracted, and as a result, a 

6-dimensional feature vector is formulated. Also, the source 

dataset was collected 5 years earlier than target dataset 1 and 

target dataset 2. That is, shift and drift are implied between 

source dataset and target dataset, while only shift is implied 

between target dataset 1 and target dataset 2. For each dataset, 

six kinds of odors (air contaminants) are included, such as 

toluene (C7H8), benzene (C6H6), ammonia (NH3), carbon 

monoxide (CO), nitrogen dioxide (NO2), and formaldehyde 

(CH2O). The detailed description of the three datasets is shown 

in Table I. The raw features of all samples acquired by using 

master system, slave 1 system and slave 2 system are described 

in Fig. 3(a), with respect to each class. As can be seen from Fig. 

3(a), six kinds of features (feature dimensionality) are included 

in each E-nose system and the feature value (sensing value) is 

normalized into (0, 1). The significant feature distribution 

difference between source and target domains for the same 

class can be easily observed. Further, the mean feature for 

master, slave 1 and slave 2 computed based on Fig. 3(a) is 

shown in Fig. 3(b) with respect to each class. It is clear that the 

mean source feature is different from slave features for the 

same class. To visualize the scatter points of the source dataset 

(master), target dataset 1 (slave 1) and target dataset 2 (slave 2) 

in raw feature space, PCA is analyzed on the three datasets, 

respectively. The scatter points of the first two principal 

components are shown in Fig. 4, from which we observe that 

the data points from different classes are almost clustered. 

B. Mini-patch Feature Combination 

As described in the experimental data, 6 kinds of features 

(i.e., six sensors) are formed, which is nominated as f1, f2,…,f6, 

respectively. In this paper, different mini-patch size M is 

discussed. Specifically, the description of the mini-patch 

(feature combination) is shown in Table II. In experiments, 

different M values have been discussed separately. Note that 

when M=5, two cases of feature combination are considered. 

From Table II, it is clear that when M=1, it is a general problem. 

When M=6, each kind of feature is viewed to be one patch, that 

is, the feature dimensionality for each patch is 1. 

C. Experimental Setting 

In experiments, according to the availability of the target 

data labels, two cross-domain settings are experimented 

respectively. The performance on target data is reported. 

Cross-domain setting 1: In CDSL training, the labels of the 

target domain data are unavailable. That is, the target labels are 

not used for model training and classifier learning and only the 

source data and source labels are used. 
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TABLE I 

DESCRIPTION OF EXPERIMENTAL DATASETS 

 

E-nose systems Dimensionality Toluene Benzene Ammonia 
Carbon 

monoxide 

Nitrogen 

dioxide 
Formaldehyde Total 

Source domain 6 66 72 60 58 38 126 420 

Target domain 1 6 106 108 81 98 107 108 608 

Target domain 2 6 94 87 84 95 108 108 576 

 

 
Fig. 3. Description of features of the source domain and target domain with respect to different classes  

 

 
Fig. 4. The principle component analysis (PCA) results of the three datasets: source domain (i.e., master), target domain 1 (i.e., slave 1), and target 

domain 2 (i.e., slave 2). Class 1~class 6 correspond the odors C7H8, C6H6, NH3, CO, NO2, and CH2O. 

 

TABLE II 

DESCRIPTION OF FEATURE COMBINATIONS WITH DIFFERENT MINI-PATCH SIZE M 

 

M Feature Patches  

1 
Patch 1 

Feature=[f1, f2, f3, f4, f5, f6] 

2 
Patch 1 Patch2 

Feature 1=[f1, f2] Feature 2=[f3, f4, f5, f6] 

3 
Patch 1 Patch 2 Patch 3 

Feature 1=[f1, f2] Feature 2=[f3, f4] Feature 3=[f5, f6] 

4 
Patch 1 Patch 2 Patch 3 Patch 4 

Feature 1=[f1, f2] Feature 2=[f3] Feature 3=[f4] Feature 4=[f5, f6] 

5 
Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 

Case 1 Feature 1=[f1, f2] Feature 2=[f3] Feature 3=[f4] Feature 4=[f5] Feature 5=[f6] 

Case 2 Feature 1=[f1] Feature 2=[f2] Feature 3=[f3] Feature 4=[f4] Feature 5=[f5, f6] 

6 
Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6 

Feature 1=[f1] Feature 2=[f2] Feature 3=[f3] Feature 4=[f4] Feature 5=[f5] Feature 6=[f6] 
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Fig. 5. The scatter points of the first two components by using the proposed CDSL method under Setting 1. The left denotes the task 1 (i.e., P1 of 

source domain → target domain 1) and the right denotes the task 2 (i.e., P2 of source domain → target domain 2). Class 1~class 6 correspond the 

odors C7H8, C6H6, NH3, CO, NO2, and CH2O, respectively. 

 

TABLE III 

COMPARISONS OF RECOGNITION ACCURACY ON TWO TASKS (SETTING 1) 

 
Cross-domain 

task SVM PCA LDA LPP NPE NCA MDS LFDA GFK SGF SA OSC DS GLSW CDSL  

Source domain → 

target domain 1 51.97 51.97 51.97 53.95 53.62 41.28 51.15 61.84 33.88 55.10 41.10 34.38 45.00 40.46 71.88 

Source domain → 
target domain 2 60.59 60.59 56.77 57.81 54.69 33.85 58.51 61.63 32.81 57.49 31.12 36.46 42.62 53.65 71.88 

 

TABLE IV 

RECOGNITION ACCURACY WITH DIFFERENT M-VALUE IN THE PROPOSED CDSL 
 

Cross-domain recognition task 
CDSL  

(M=1) 

CDSL 

(M=2) 
CDSL 

(M=3) 
CDSL 

(M=4) 
CDSL 

(M=5, case 1) 
CDSL 

(M=5, case 2) 
CDSL 

(M=6) 
Source domain → target domain 1 71.88 68.59 60.03 62.01 60.53 62.83 59.87 

Source domain → target domain 2 71.88 69.44 62.50 65.45 62.50 63.19 62.50 

 

Cross-domain setting 2: In classifier training, partial labels 

of target domain can be used. Specifically, for each class in the 

target domain, k labeled samples are used for classifier learning, 

and k=1, 3, 5, 7, 9 is discussed separately. The compared 

methods follow the same setup. 

Training and Testing Protocol: In experiments, the source 

domain data is fixed as training set for model training (CDSL) 

and classifier learning (SVM). A few target domain data is used 

as a validation set for the best regularization parameters tuning. 

The remaining target domain data is used for testing. Note that 

there is no overlap among training, validation and testing sets. 

D. Compared Methods 

To show the effectiveness of the proposed method, we have 

chosen 14 machine learning based methods of four categories. 

First, 3 baseline methods such as support vector machine 

(SVM), principal component analysis (PCA) and linear 

discriminant analysis (LDA) are compared. Second, 3 

representative calibration transfer methods in E-nose, such as 

orthogonal signal correction (OSC) [36], generalized least 

squares weighting (GLSW) [37] and direct standardization (DS) 

[38] are compared. Third, 5 semi-supervised learning methods 
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TABLE V 

COMPARISONS OF RECOGNITION ACCURACY ON SETTING 2 (TASK 1: SOURCE DOMAIN → TARGET DOMAIN 1) WITH DIFFERENT NO. 

OF LABELED TARGET DATA PER CLASS 
 

No. of labeled target data 

per class (k) 1 3 5 7 9 Average 

SVM 59.14 63.22 62.80 70.49 70.76 65.28 
PCA 59.14 63.39 65.40 70.49 70.76 65.84 

LDA 67.77 71.36 74.22 75.09 76.17 72.92 

LPP 65.46 69.83 71.45 72.08 71.48 70.06 

NPE 64.78 64.07 63.49 71.55 71.84 67.15 

NCA 52.49 50.85 53.81 50.00 63.00 54.03 

MDS 61.13 64.75 65.57 70.32 72.92 66.94 

LFDA 62.13 67.12 71.63 76.86 74.91 70.53 
GFK 33.39 34.07 35.81 37.63 38.45 35.87 

SGF 66.61 66.95 67.13 70.14 72.74 68.71 

SA 49.67 58.64 59.69 58.83 61.91 57.75 

OSC 41.03 45.25 45.85 43.29 45.13 44.11 

DS 54.69 62.56 59.78 59.09 59.49 59.12 

GLSW 52.99 51.69 69.90 60.42 59.75 58.95 

CDSL (M=1) 72.76 77.97 79.07 81.80 83.21 78.96 

CDSL (M=2) 71.10 76.61 78.20 79.51 81.05 77.29 

CDSL (M=3) 69.27 75.08 76.99 77.39 79.06 75.56 

CDSL (M=4) 69.10 75.25 77.34 77.92 78.88 75.70 

CDSL (M=5, case 1) 70.27 75.25 77.16 78.80 79.60 76.22 

CDSL (M=5, case 2) 69.10 75.25 77.16 78.09 78.88 75.70 

CDSL (M=6) 68.94 75.25 77.16 77.74 79.24 75.67 

 

TABLE VI 

COMPARISONS OF RECOGNITION ACCURACY ON SETTING 2 (TASK 2: SOURCE DOMAIN → TARGET DOMAIN 2) WITH DIFFERENT NO. 

OF LABELED TARGET DATA PER CLASS 
 

No. of labeled target data 

per class (k) 1 3 5 7 9 Average 

SVM 69.65 72.76 73.63 74.16 74.90 73.02 

PCA 69.65 72.76 73.63 74.16 74.90 73.02 

LDA 71.40 75.45 75.82 79.03 78.74 76.09 

LPP 69.82 74.19 73.63 72.85 76.82 73.46 

NPE 71.05 71.15 71.43 72.28 74.14 72.01 

NCA 56.32 47.49 52.01 55.62 58.03 53.90 

MDS 72.11 73.48 73.81 75.28 75.29 74.00 

LFDA 65.26 70.61 73.08 75.47 77.01 72.29 

GFK 35.26 39.78 43.22 44.57 46.17 41.80 

SGF 68.07 71.51 73.08 73.03 73.56 71.85 

SA 68.95 71.86 72.34 73.22 73.37 71.95 

OSC 33.68 41.04 33.70 41.57 31.42 36.28 

DS 48.59 52.97 52 51.30 48.52 50.68 

GLSW 66.49 60.04 63.92 75.09 76.82 68.47 

CDSL (M=1) 78.25 78.67 80.04 81.46 81.99 80.08 

CDSL (M=2) 77.37 78.85 79.67 81.84 83.14 80.17 

CDSL (M=3) 75.96 78.49 78.57 80.90 81.23 79.03 

CDSL (M=4) 75.96 78.85 78.57 80.90 81.23 79.10 

CDSL (M=5, case 1) 75.96 79.21 79.12 80.90 81.23 79.28 

CDSL (M=5, case 2) 76.32 78.85 78.75 80.90 81.23 79.21 

CDSL (M=6) 75.96 78.49 78.75 80.90 81.23 79.07 

 

based on manifold learning, including locality preservation 

projection (LPP) [34], multidimensional scaling (MDS) [39], 

neighborhood component analysis (NCA) [40], neighborhood 

preserving embedding (NPE) [41], and local fisher 

discriminant analysis (LFDA) [42] are explored and compared. 

Finally, 3 popular subspace transfer learning methods such as 

geodesic flow kernel (GFK) [43], sampling geodesic flow (SGF) 

[44] and subspace alignment (SA) [45] are also explored and 

compared. These methods are closely related with CDSL.  

E. Results 

In this section, the experimental results on cross-domain 

settings are reported to evaluate the proposed CDSL method.  

 Setting 1: 

Under the cross-domain setting 1, we first observe the 

qualitative result shown in Fig. 5 by plotting the scatter points 

of the first two components after subspace projection. We can 

see that after cross-domain subspace projection (i.e., P1) 

between source domain and target domain 1, and P2 between 

source domain and target domain 2, the separability among data 

points from different classes (represented as different symbols) 

is much improved in the learned common subspace compared   
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Fig. 6. Odor recognition accuracy with respect to different number of labeled target data per class for two cross-domain tasks: (a) Source 

domain→target domain 1 and (b) source domain→target domain 2. 

 

to Fig. 4 that is without cross-domain learning. 

Further, the odor classification accuracy of the target domain 

data has been reported in Table III. We can clearly observe that 

the proposed CDSL method significantly outperforms other 

methods. The recognition accuracy for two cross-domain tasks 

achieves 71.88%, which is almost 10% improvement in 

comparisons. Note that the result of CDSL is obtained when the 

mini-patch size M=1. The results with different M-values are 

shown in Table IV, from which we observe that M=1 shows 

better performance. The comparison results clearly 

demonstrate the effectiveness of the proposed CDSL method in 

cross-domain classification tasks. Note that, for cross-domain 

classification task, the classifier is trained on one domain, but 

tested on another domain. Traditional classification implies that 

the distribution between training data and testing data is the 

same or similar. However, due to the domain distribution 

discrepancy, this assumption is violated, such that 

cross-domain learning and classification (i.e. the proposed 

CDSL) is desired. In this paper, the odor datasets acquired by 

using different electronic noses (master and slaves) at different 

time interval are recognized as different domains. 

 Setting 2: 

Under the cross-domain setting 2, two tasks, i.e., source 

domain (master) → target domain 1 (slave 1) and the source 

domain (master) → target domain 2 (slave 2), are completed by 

using the proposed method respectively. Different from Setting 

1 that only the source data are used for classifier training, in 

Setting 2, k labeled target data are also used as auxiliary data of 

source data for classifier training. Considering that the number 

of labeled target data is very limited, k=1, 3, 5, 7, 9 samples per 

class (odor) are randomly selected from target domain for 

classifier learning. The recognition accuracy of the first task 

(i.e., source domain → target domain 1) is reported in Table V, 

from which we can clearly observe that the proposed CDSL 

performs the best cross-domain recognition with different M- 

value. Particularly, when M=1, the best accuracy for each k is 

achieved, which is about 5% improvement comparing to LDA 

based recognition result. 

Similarly, the recognition accuracy of the second 

cross-domain task (i.e., source domain → target domain 2) is  

 
Fig. 7. Recognition accuracies in single E-nose system by using 14 

methods. 

 

reported in Table VI. From the results, we also observe the 

better performance of the proposed CDSL method by 

comparing with other methods. These results demonstrate that 

the proposed method is very effective in cross-domain 

classification (i.e., odor recognition in multiple E-noses). 

The performance curves with respect to different number of 

labeled target data for two cross-domain classification 

(transferring odor recognition) tasks are shown in Fig. 6. From 

the accuracy curves, we can observe that the proposed CDSL 

method shows the best recognition results. Additionally, the 

accuracy becomes higher with the increasing of labeled target 

samples containing drift information, that are used as auxiliary 

data for training a more robust CDSL model. Therefore, the 

recognition performance and generalization ability become 

better by adding more target data into the source training data. 

However, in real applications it is difficult to obtain much 

labeled target data points, we have therefore discussed very few 

labeled target data as shown in Fig. 6. 

The performance of the proposed method has been validated 

in odor recognition across multiple E-nose systems. To show 

the performance of CDSL in odor recognition based on a single 

E-nose system, we have conducted further exploration. We 

select 50% samples from the master system to train a model 

using CDSL, and the remaining 50% samples are used for 

testing the model. The recognition accuracies with comparisons 

are described in Fig. 7, from which we can observe that the 

proposed CDSL still outperforms others. This experiment 

shows the double reliability of CDSL method in not only 

multiple E-noses, but single E-nose system. 
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Fig. 8. Performance variation curves with respect to the logarithm of λ1 by frozen log10(λ0)=-6, -4, -2, 0, 2, 4, and 6, respectively. 

 

 
Fig. 9. Performance variation curves with respect to the logarithm of λ0 by frozen log10(λ1)=-6, -4, -2, 0, 2, 4, and 6, respectively. 

 

F. Discussion 

In this paper, a mini-patch concept is used in modeling. From 

the results shown in Table IV, V and VI, we observe that a 

smaller value of M performs better results. We notice that when 

M=1, a single mini-patch with all sensors in multi-dimensional 

data takes place. This can better show the feature distribution 

discrepancy between systems. Unlike that M=6, each 

mini-patch only contains a single sensor, such that the 

distribution cannot be well learned and aligned based on a 

subspace projection. The cross-sensitivity among sensors may 

be lost and harmful to odor recognition. 

Additionally, the proposed CDSL model is a cross-domain 

learning framework, which can be used to handle 

heterogeneous data classification problems. In E-nose, the 

well-trained classifier based on master device may not be 

adapted to the slave devices due to some inherent differences. 

Also, in image classification, when the image data is from 

different domains (e.g., different sensors of low and high 

resolution), the classifier trained with high resolution images 

may not be adapted to the low resolution images. Therefore, the 

proposed cross-domain learning method can be expected to 

solve such kind of generalized heterogeneous problem.    

G. Parameter Sensitivity Analysis 

 In the proposed CDSL model, there are two parameters: the 

regularization coefficients λ0 and λ1. To observe the 

performance variations in tuning the two parameters, λ0 and λ1 

are fine-tuned increasingly according to    , where   
*                +. To show the performance with respect 

to each coefficient, one is tuned by frozen the other one. 

Specifically, the performance variation with respect to λ1 by 

frozen λ0 is shown in Fig. 8, from which we can see that a larger 

λ1 contributes positive effect on recognition of target domains 
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(i.e., slave 1 and slave 2). Similarly, the performance variation 

with respect to λ0 by frozen λ1 is shown in Fig. 9. We can see 

that a smaller λ0 contributes positive effect. 

Further, from the proposed CDSL formulation (14), we can 

see that λ1 is the coefficient of the mini-patch feature based 

domain distance term. Since a larger λ1 shows better recognition 

performance, it demonstrates that the proposed mini-patch 

feature based domain distance term is very helpful for 

cross-domain learning. Additionally, λ0 is the coefficient of the 

target data fidelity term, which is used to reduce data distortion 

and preserve more useful information in the learned subspace. 

Since a smaller λ0 shows better performance, it demonstrates 

that the proposed cross-domain subspace is useful and effective 

without distorting the target data too much. Even that without 

the data fidelity term the proposed CDSL may still be effective. 

V. CONCLUSION 

In this paper, we propose a cross-domain discriminative 

subspace learning (CDSL) model for handling transferring odor 

recognition tasks in multiple E-nose systems, and approximate 

actual application scenarios. The proposed transferring odor 

recognition concept denotes that the recognition model is 

learned on one odor dataset from master system A and tested on 

another odor dataset from slave system B of the same type as 

system A or another odor dataset still from system A but 

acquired at different time.  

Three novel aspects are included in the proposed method. 

First, a model is formulated by minimizing the intra-class 

compactness and simultaneously maximizing the inter-class 

separability based on source domain. Second, the data fidelity 

term is imposed as constraint in CDSL based on target domain 

for avoiding distortion. Third, a mini-patch feature-specific 

domain distance is proposed, such that we can give different 

penalty coefficients in terms of drift degree (e.g., the further the 

distance is, the more serious the drift is). In this way, those 

mini-patchs with more serious drift will be paid more attention 

to. Essentially, the proposed method in this paper is to address 

the issue of sensor drift in E-nose. Formally, we regard the drift 

issue as a cross-domain recognition problem that is rational and 

novel, such that cross-domain learning techniques can be 

developed to solve the transferring odor recognition problems. 

Different from existing subspace learning methods such as 

PCA and LDA that can only work on single domain, the 

proposed cross-domain method aims at learning a common 

subspace for connecting source and target domains. 

Experiments on olfaction datasets of multiple kinds of odors 

by using three E-nose systems (i.e., one master and two slaves) 

demonstrate the effectiveness of the proposed method and the 

superiority in comparisons. 

APPENDIX A 

 PROOF OF THEOREM 

Proof: We can re-write (14) with an equality constraint as 

follows 
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where R and Q are represented in Eq. (14), and  denotes a 

positive constant for equality constraint such that the solution 

can be normalized for uniqueness. 

By introducing Lagrange multiplier ρ, the objective function 

of model (15) can be formulated as 

        QPPRPPP
TT, TrTrJ                (19) 

By computing the partial derivative of J(P, ρ) with respect to P, 

and let it be zero, there is 
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where the optimal P is the matrix whose columns are the 

eigenvectors v1, v2,…,vd, corresponding to the first d largest 

eigenvalues ρ1, ρ2,…,ρd of the following generalized 

eigenvalue decomposition problem, 

vRvQ ρ1 

                                 
(21) 

where the optimal subspace projection P can be represented as
 

 dvvvP ,,, 21 

                     
      (22) 

where d denotes the expected dimensionality of the new 

subspace. Proof of the Theorem  is completed. 

APPENDIX B    

DATA PREPROCESSING 

Smooth filtering and the vector standardization are used 

for preprocessing and normalization, respectively. In this paper, 

the filtered signal vector x of each sensor can be calculated by 
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where i=1,...,n-L+1,   ,         -  is a response sequence 

for one sensor, and the length of raw signal is n. The filtered 

signal sequence of each sensor is indicated as   
, ( )    (     )- . The width L of the smoothing filter 

window is set as 20 in this work. By subtracting the maximum 

and minimum values, the noise may be removed, which is 

similar to averaging filters functioned essentially as a low-pass 

filter. For normalization, the steady-state point in each sensor 

sequence after filtering is selected as the feature of each 

observation, and divided by the maximum value of all 

observations. 
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