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a  b  s  t  r  a  c  t

Electronic  nose  (E-nose),  as an artificial  olfactory  system,  can  be used  for estimation  of  gases  concentration
combined  with  a pattern  recognition  module.  This  paper  studies  the concentration  estimations  of  indoor
contaminants  for  air  quality  monitoring  in  dwellings  using  chaos  based  optimization  artificial  neural
network  integrated  into  our  self-designed  portable  E-nose  instrument.  Back-propagation  neural  network
(BPNN)  has  been  recognized  as  the  common  pattern  recognition.  Considering  the  local  optimal  flaw
eywords:
lectronic nose
rtificial olfactory system
ack-propagation neural network
haotic sequence optimization
article swarm optimization

of  BPNN,  this  paper  presents  a novel  chaotic  sequence  optimization  BPNN  method  for  improving  the
accuracy  of  E-nose  prediction.  Further  comparison  with  particle  swarm  optimization  is also  employed,
and  maximum  26.03%  and  16.4%  prediction  error  decreased  after  using  chaotic  based  optimization  for
formaldehyde  and  benzene  concentration  estimation.  Experimental  results  demonstrate  the  superiority
and  efficiency  of  the  portable  E-nose  instrument  integrated  with  artificial  neural  network  optimized  by
chaotic  sequence  based  optimization  algorithms  in  real-time  monitoring  of air  quality  in  dwellings.
. Introduction

An electronic nose can be a better alternative to conventional
ethods for continuous and real-time monitoring of air quality

ndoor in dwellings or in a car as a portable E-nose instrument. Four
lasses of contaminants (physical, chemical, biological and radioac-
ive) were reported in indoor air quality standard [1].  Chemical
ontaminants including sulfur dioxide, nitrogen dioxide, carbon
onoxide, carbon dioxide, ammonia, ozone, formaldehyde, ben-

ene, toluene, inhalable particle, and volatile organic compounds
ere recognized as harmful substances to public health indoor

1].  The common contaminants in people’s dwellings which we
ainly aim to employ in our project using E-nose technology con-

ain formaldehyde and benzene. These odorants have been mostly
nvestigated for their potential harms to public health as pollut-
nts of indoor air quality from numerous studies [1–3]. Besides,
he emissions from new furniture, oil paint, and building materials
f residuals often contain formaldehyde and benzene [4].

Chaos is a bounded unstable dynamic behavior that exhibits

ensitive dependence on initial conditions and also unstable peri-
dic motions in nonlinear systems [5].  Although it appears to be
tochastic, it occurs in a deterministic nonlinear system under

∗ Corresponding author. Tel.: +86 13629788369; fax: +86 23 65111745.
E-mail address: leizhang@cqu.edu.cn (L. Zhang).

924-4247/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.sna.2012.10.023
© 2012 Elsevier B.V. All rights reserved.

deterministic conditions. Chaotic sequences generated from many
chaotic maps commonly possess certainty, ergodicity and stochas-
tic property, and therefore they have been used instead of random
sequences and somewhat good results have also been demon-
strated when combined with particle swarm optimization [6] for
global solutions search. In prediction, classification, and pattern
recognition, hybrid forecasting models based on chaotic map-
ping have been presented together with Gaussian support vector
machine, particle swarm optimization and genetic algorithm in
[7,8]. Similarly, chaos optimization has also been used in predic-
tion of silicon content in hot metal [9] and faults classification
[10,11]. Chaos search immune algorithms have been presented
in [12,13] for neuro-fuzzy controller design and pattern recog-
nition. The choice of chaotic sequences is justified theoretically
by their unpredictability including spread-spectrum characteristic,
non-periodic, complex temporal behavior, and ergodic properties.

Electronic nose, as an artificial olfactory system, includes a
central process unit, chemical gas sensor array, other peripheral
circuits and pattern recognition module [14]. It has been widely
used for analysis of volatile organic compounds [15], vapor chem-
icals [16], waters [17], wine [18] and breath alcohol measurement
[19]. Neural network, especially back-propagation neural network

(BPNN), has been widely used for recognition and function approx-
imation based its strong regression ability [20]. So, in this paper,
BPNN is used for concentration estimation of formaldehyde in an
electronic nose. However, BP neural network still posses some

dx.doi.org/10.1016/j.sna.2012.10.023
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:leizhang@cqu.edu.cn
dx.doi.org/10.1016/j.sna.2012.10.023
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nherent problems. First, BP model can easily get trapped in local
inima for the problems of pattern recognition and complex

unctions approximation [21], so that a local optimal solution is
btained. Second, the solutions are different for every train with
he random initial weights.

Particle swarm optimization (PSO) developed by Kennedy and
berhart in 1995 [22] has been widely used in engineering appli-
ation for best solution search and its superiority has attracted
any researchers in forecasting [9–11]. However, in this paper,
e present a novel mutative scale chaotic sequence method to

ptimize the weights of BPNN considering the characteristic of
rgodicity. Two kinds of chaotic mapping equations with tent
ap  and logistic map  have been used for generation of chaotic

equences. Besides, PSO is also developed in neural network
ptimization for concentration estimation by an E-nose for com-
arisons.

. Materials and methods

.1. Our electronic nose

Our sensor array in E-nose system consists of four gas sensors
rom the TGS series including TGS2602, TGS2620 and TGS2201
ith dual outputs (TGS2201A and TGS2201B). The characteristics

f these sensors have been listed in Table 1 which demonstrates
he detected gases and applications. Also, we refer readers to the
ensors’ datasheets for more information on TGS sensors available
n http://www.figaro.co.jp/en/product/index.php?mode=search
kbn=1. In addition, a module (SHT2230 of Sensirion in
witzerland) with two auxiliary sensors for the temperature
T) and humidity (H) are also used for compensation. The sensors
ere mounted on a custom designed printed circuit board (PCB),

long with associated electrical components. A 12-bit analog-
igital (A/D) converter with type of TLC2543 is used as interface
etween the Field Programmable Gate Array (FPGA) processor
epresented as the central processor unit (CPU) and the sensors. A
ynchronous Dynamic Access Memory (SDRAM) connected with
PGA processor is used for data collection, storage and processing.
he E-nose system designed with FPGA processor and other
eripheral circuits is connected to a personal computer (PC) via a

oint Test Action Group (JTAG) port which can be used to transfer
ata and debug programs. An input vector with 6 variables can be
btained in each observation; the multidimensional response data
et presents a nonlinear relation with the target gas concentration.
ormaldehyde and benzene measurements were employed by
n E-nose in the constant temperature and humidity chamber in
hich the temperature and humidity can be effectively controlled

n terms of the target temperatures and humidity. Note that the
recisions of the chamber for temperature and humidity are
0.1 ◦C and ±5%RH. The self-designed electronic nose is shown

n Fig. 1. The left picture in Fig. 1 denotes the impression of the
roduct, and the right one in Fig. 1 denotes the internal PCB with

ntegrated circuits including the main modules highlighted.

.2. Data acquisition

In terms of the indoor monitoring of the formaldehyde and
enzene concentrations, formaldehyde and benzene were mea-
ured at the concentration range of 0–10 ppm, respectively, target
emperatures of 15, 25, 30 and 35 ◦C and target humidity of 40%,
0%, 80%RH (relative humidity) in order to imitate the real envi-

onment indoor. For each measurement, the total measurement
ycle time for one single measurement was set to 20 min, i.e. 2 min
or reference air (baseline), 8 min  for gas sampling and 10 min
or cleaning of the chamber through injecting clean air before
ors A 189 (2013) 161– 167

the next measurement begins. Totally, 116 observation samples
were collected. For model building of formaldehyde monitoring,
71 training samples, 25 test samples and 20 validation samples
were divided from the whole sample set. Also, for model building
of benzene monitoring, 40 training samples, 22 test samples and
10 validation samples were divided from the whole sample set.
The actual concentration of formaldehyde for each sample was
obtained through the spectrophotometer analysis of the chemical
sampling using the air sampler. The actual concentration of ben-
zene is analyzed using gas chromatograph (GC). In detail, Table 2
presents the specific experimental samples of formaldehyde and
benzene with different combinations of temperature (T) and
relative humidity (RH). 12 combinations {(15, 60), (15, 80), (20,
40), (20, 80), (25, 40), (25, 60), (25, 80), (30, 40), (30, 60), (30, 80),
(35, 40), (35, 60)} in manner of (T, RH) were employed for covering
the indoor conditions. From Table 2, we can find that various
concentrations were employed for estimation model construction
considering the various environments in dwellings. For each
sample, a vector with 6 variables was  extracted at the steady
state response. Besides, a simple normalization method divided by
4095 was  used for subsequent pattern analysis in voltage. Notice
that 4095 is calculated as 212–1 with the principle of 12-bit A/D
converter. The specific experimental platform is illustrated in Fig. 2
which has been used in our previous publication [23]. Five ports
(ports 1–5) are used in the chamber. Port 1 is used for injection
of contaminants, port 2 is used to clean the chamber through
injection of fresh air, port 3 is set to control the relative humidity
in the chamber by using a humidifier with a valve, port 4 is for
data collection by connecting the electronic nose instrument to the
PC with a JTAG and port 5 is set to sampling by a gas sampler for
sample’s concentration analysis using spectrophotometer and GC.

2.3. Back-propagation neural network

Back-propagation algorithm (BP) with a gradient descending
strategy was proposed in [24]. Rumelhart further formulated the
standard back propagation algorithm (BP) for multilayered per-
ceptrons. The architecture of a multilayered perceptron neural
network is shown in Fig. 3 which presents a two hidden layered BP
neural network. BP neural network has been widely used to clas-
sify nonlinearly separable patterns in real application for its strong
ability in recognition [25]. However, BP neural network still posses
some inherent problems. First, BP model can easily get trapped in
local minima for the problems of pattern recognition, and fail to
find the global optimal solution. Second, the initial weight matrix
W and bias vectors B of back-propagation neural network are ran-
domly produced for training so that different weights and biases
would produce different trained neural networks. Thus, obtaining
the global minimum of regression error by only using back propa-
gation neural network becomes little impractical. In our previous
work, we have employed these problems using heuristic and bio-
inspired methods [20].

2.4. Mutative scale chaotic sequence optimization

Chaos optimization is developed using chaotic variables. Three
chaos map  equations were studied in this paper. The logistic map
is shown by

zk = � · zk · (1 − zk) (1)
where zk is the k-th chaotic variable and k denotes the iteration
number. Obviously, zk ∈ (0,1) under the conditions that the initial
z0 ∈ (0,1) and the z0 cannot be the digits of {0, 0.25, 0.75, 1}. Here,
� = 4 can be a completely chaotic state.

http://www.figaro.co.jp/en/product/index.php?mode=search&kbn=1
http://www.figaro.co.jp/en/product/index.php?mode=search&kbn=1
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Table  1
Characteristics of the sensors in use.

Sensor type Objectives Applications

TGS2602 High sensitivity to VOCs, odorous gases, gaseous air contaminants; Air cleaners, ventilation control, air quality, VOC, and odor monitors;
TGS2620 High sensitivity to alcohol and organic solvent vapors; Alcohol testers, organic vapor detectors/alarms, solvent detectors;
TGS2201A Sensitivity to diesel exhaust gas NOx; Automobile ventilation control, air contaminants detection;
TGS2201B Sensitivity to gasoline exhaust gas CO, H2, etc. Automobile ventilation control, air contaminants detection.

Fig. 1. Self-designed electronic nose for indoor air quality monitoring. The left picture is the integral electronic nose; the right picture is the internal PCB with integrated
circuits  with the main modules labeled.

Fig. 2. Schematic of the experimental platform with our designed electronic nose system.

W1

B1

W2

B2

Input layer Hidden layer  1 Output layer

6 neurons 10 neurons 1 neuron

W3

B3

Hidden layer 2

10 neurons

Fig. 3. Architecture of neural network with two  hidden layers.
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Table 2
Concentration (ppm) conditions of all experimental samples in different combinations (T, RH) in which T denotes temperature and RH (%) denotes relative humidity.

(15, 60) (15, 80) (20, 40) (20, 60) (20, 80) (25, 40) (25, 60) (25, 80) (30, 40) (30, 60) (30, 80) (35, 40) (35, 60)

Conditions of formaldehyde samples
0.22 0.10 0.07 0.08 0.08 0.13 0.05 0.04 0.10 0.13 0.09 0.08 0.04
0.25  0.16 0.14 0.10 0.06 0.07 0.10 0.04 0.23 0.06 0.20 0.21 0.12
0.19  0.14 0.16 0.24 0.11 0.14 0.08 0.20 2.61 0.16 0.25 0.12 0.09
0.20  1.44 0.07 0.10 0.24 0.26 0.11 0.25 1.42 0.22 0.10 0.21 0.04
0.06  0.56 0.09 0.18 0.13 0.21 0.17 0.07 0.15 0.13 2.46 0.17
0.08  2.62 4.53 0.15 0.17 0.26 0.25 3.67 2.22 2.28 0.25
0.12  1.05 1.09 3.17 0.22 0.24 0.11 2.40 1.78 0.04
0.71  0.47 1.73 0.17 2.13 0.17
0.77  1.23 0.27 1.76 1.04
1.06  0.22 1.42
2.68  0.25 5.32
0.92  0.11 1.36
1.87  0.23 3.51

0.25
0.12
1.22
2.38
1.75
3.00
1.28
2.99

Conditions of benzene samples
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.28  0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.49  0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
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0.91  0.91 0.91 0.91 0.91 0.91 0
0.71  0.71 0.71 0.71 0.71 0.71 0
0.11  0.06 0.09 0.08 0.20 0.19 0

The tent map  [6] resembles the logistic map. It can also generate
haotic queue in (0, 1) in terms of the following form

k =
{

zk/0.7 , zk < 0.7

10/3 · zk · (1 − zk), zk ≥ 0.7
(2)

The Gauss map  [6] which can also generate a chaotic queue in
0, 1) can be represented by

k+1 =
{

0, zk = 0

1/zk −
⌊

1/zk

⌋
, zk ∈ (0,  1)

(3)

here �x� denotes the largest integer less than x.
The algorithm procedure of mutative scale chaotic sequence

ptimization neural network can be concluded as follows
Step 1: Initialization g = 0. Randomly generates one M-

imensional population X0 with N individuals within (0, 1) and
etermine the initial optimization boundary [a, b] in the optimiza-
ion space.

Step 2: Map  the variable Xk
i into the optimization space and

btain one new population MXk
i using the following equation

Xk
i = ak

i + MXk
i (bk

i − ak
i ), i = 1, . . . , N; k = 1, . . . , M (4)

Step 3: Evaluate the new population MX  using BPNN algorithm
nd find the best individual Xgbest.  The cost function has been
efined as the maximum absolute relative error of the train and
est samples shown by

 = max

⎧⎨
⎩1/n1 ·

n1∑
i=1

|ytri − ttri|/ttri, 1/n2 ·
n2∑
j=1

|ytej − ttej|/ttej

⎫⎬
⎭

× 100 (5)
here n1 and n2 denote the number of train samples and test sam-
les; ytr and ttr denote the predictive concentrations and actual
oncentrations of train samples; yte and tte denote the predic-
ive concentrations and actual concentrations of test samples. Note
0.91 0.91 0.91 0.91 0.91 0.91
0.71 0.71 0.71 0.71 0.71
0.15

that a decoding of MX  for the initial weights and bias of the neu-
ral network is necessary, because each individual is encoded as the
weights and bias.

Step 4: Mutative scale of chaotic variable search.
If the best solution keeps invariant within T iterations, the shrink

of the search boundary [a, b] can be performed using the following
strategy for specific search in a smaller space

ag+1 = Xgbest− �g · (bg − ag) (6)

bg+1 = Xgbest + �g · (bg − ag) (7)

�g+1 = ˇ1 · �g (8)

where ag+1 and bg+1 denote the new search boundary, � is the radius
of search, ˇ1 denotes decay coefficient less than 1.

Step 5: The constraints process of the boundary using the fol-
lowing strategy

If ak
i < −Cg, ak

i = −Cg; if bk
i > Cg, bk

i = Cg (9)

Cg+1 = ˇ2 · Cg (10)

where C denotes the maximum boundary and ˇ2 denotes the atten-
uation coefficient similar to simulated annealing.

Step 6: if the current solution satisfies the termination criteria
or that the maximization iterations finished, stop; else go to step 7.

Step 7: Generate the new population X using the chaotic map
equations, and go to step 2.

2.5. Standard particle swarm optimization (SPSO)

In this standard PSO system, a number of particles cooperate
to search for the best solutions by simulating the movement and
flocking of birds [22]. These particles fly with a certain velocity and
find the global best position after certain generations. At each gen-

eration t, the velocity is updated and the particle is moved to a
new position. This new position is simply calculated as the sum
of the previous position and the new velocity. The mathematical
description of PSO is defined as follows
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Suppose the dimension for a searching space is D, the total num-
er of particles is N, the position of the i-th particle can be expressed
s vector Xi = (xi1, xi2,. . .,  xiD); the best position of the i-th particle
earching until now is Pi = (pi1, pi2,. . .,  piD); the best position of all
he particles searching until now is Pg = (pg1, pg2,. . .,  pgD); the veloc-
ty of the i-th particle is represented as Vi = (vi1, vi2,. . .,viD), then the
tandard PSO can be illustrated as

id(t + 1) = w · vid(t) + c1 · rp
1i

(t) · [pid(t) − xid(t)]

+ c2 · rp
2i

(t) · [pgd(t) − xid(t)] (11)

id(t + 1) = xid(t) + vid(t + 1); 1 ≤ i ≤ N, 1 ≤ d ≤ D (12)

here c1, c2 are the acceleration constants with positive values; w
s called inertia factor;
p
1i

(t) ← U(0, 1),  rp
2i

(t) ← U(0, 1) (13)

Noteworthy is that, placing a limit on the velocity vmax and
djusting the inertia weight w, the PSO can achieve better search
erformance.

i
p(t + 1) =

⎧⎪⎨
⎪⎩

vi
max, vi

p(t + 1) > vi
max

−vi
max, vi

p(t + 1) < −vi
max

vi
p(k + 1),  otherwise

(14)

In this paper, the inertia weights w is updated through a cosine
echanism by

(t) = wstart + wend · cos(t/10) (15)

here wstart is the initial value, and wend is the terminal value. In
his work, wstart and wend are set as 0.85 and 0.45, respectively.

.6. Parameter settings

Due to that the determination of the number of hidden lay-
rs and neurons in neural network cannot be fixed theoretically,
n this paper, a two hidden layered neural network whose struc-
ure is 6-10-10-1 was used for each gas monitoring in experience.
enerally, the log-sigmoid function and pure linear function were
sed in the hidden layers and output layer, respectively. In terms
f the network structure, matrix W1 (10 × 6), W2 (10 × 10) and W3
1 × 10) represent the weights between the input layer and the hid-
en layer-1, the hidden layer-1 and the hidden layer-2, the hidden

ayer-2 and the output layer; vectors B1 (10 × 1), B2 (10 × 1) and
3 (1 × 1) represent the bias in hidden layer-1, hidden layer-2 and
utput layer. An individual L = [l1,l2,. . .,lN] can be shown as follow

W1
 ︸︸  ︷

1, . . . , l60,

B1︷  ︸︸  ︷
l61, . . . , l70,

W2︷  ︸︸  ︷
l71, . . . , l170,

B2︷  ︸︸  ︷
l171, . . . , l180,

W3︷  ︸︸  ︷
l181, . . . , l190,

B3︷︸︸︷
l191 (16)

Therefore, the length N of one individual L can be calculated as
 = 6 × 10 + 10 + 10 × 10 + 10 + 10 × 1 + 1 = 191.

The training goal of neural network is dynamically set as
.05–0.5 for formaldehyde, and 0.005–0.05 for benzene. Consider
he long running time of the whole algorithm, the size M of popula-
ion is set as 50, the maximum iterations G1 = 100 for formaldehyde,
nd G2 = 10 for benzene, and the permissible iterations T = 10 for
tagnation. The initial boundaries of a and b are set as −20 and 20,
nd C = 20. Besides, the decay coefficient ˇ1 and attenuation coef-
cient ˇ2 are set as 0.98 and 0.95, respectively. The initial search
adius � is set as 0.2. The fitness function f in each optimization is

et as the maximum relative error of the average relative training
rror and the average relative test error shown as Eq. (5).  It is wor-
hy noting that the parameters settings are experienced and can be
djusted according to respective optimization problem.
ors A 189 (2013) 161– 167 165

2.7. On-line use

The whole chaos and PSO based neural network optimization
and learning algorithms are implemented in PC for learning the
best weights W = {W1,W2,W3} and B = {B1,B2,B3} of the neural
network, and then W and B would be transferred to the E-nose
system for prediction on line. In real-time application of the E-nose
instrument, the forward computation process of neural network
without backpropagation will be implemented in FPGA combined
with learned neural network weights W and B for concentration
estimation. The forward computation process in FPGA is illustrated
as three steps:

Step 1: y1 = 1/[1 + e−(W1·x+B1)]
Step 2: y2 = 1/[1 + e−(W2·y1+B2)]
Step3: y3 = W3 · y2 + B3

where x is the real-time observation vector of the sensor array, y1
is the output vector of the first hidden layer with a log-sigmoid
transfer function, y2 is the output vector of the second hidden layer
with a log-sigmoid transfer function and y3 is the final output of
the neural network prediction with a pure linear function.

3. Results and discussion

The estimation results for the formaldehyde and benzene exper-
iments analyzed using the chaotic sequence optimization neural
network and standard particle swarm optimization (PSO) neural
network have been presented in this section. The model building
is based on the train samples and test samples. The role of the test
samples is used to control the possible overfitting of training sam-
ples and evaluate the fitness function of chaotic sequence and PSO
optimization. We apply the maximum relative error of training and
test samples as the fitness function to improve the robustness of
the model. The validation samples are finally used to verify the
efficiency of the model. Fig. 4 illustrates the formaldehyde predic-
tion results of the test samples (left) and validation samples (right)
using four optimization methods combined with BPNN. Similarly,
Fig. 5 illustrates the benzene predictions of the test samples (left)
and validation samples (right) using four optimization BPNN meth-
ods. From the trace of predictions and actual concentrations, we
can find that the four methods can track the actual concentrations
approximately. The predicted curve using chaos with logistic map
can approach the actual curve better for formaldehyde concentra-
tion estimation. However, for benzene estimation, chaos method
with Gaussian map  presents a better prediction. For quantification
of the prediction error, Table 3 presents the relative prediction error
using four optimization methods. From this table, we can find that
the chaotic sequence optimization with logistic map  has the mini-
mum  prediction error 32.34% of formaldehyde validation samples
and 26.03% error decreased compared with the prediction error
58.37% using single neural network. And Gaussian map  obtains
the minimum prediction error 13.31% of benzene validation sam-
ples and 16.4% error decreased compared with the predictor error
29.71% using single neural network. Due to that the neural network
is trained separately for each gas, therefore in real time application
of our electronic nose for formaldehyde and benzene estimation,
the best neural network with minimum prediction error is selected
for each gas monitoring.

From the analysis of estimation results, the optimization meth-
ods are effective for neural network optimization. From the

comparisons of chaotic sequence methods and PSO on the results,
we cannot definitely decide which one has better optimization
ability because their prediction difference for each gas is not very
obvious. However, from the characteristic of chaotic sequence, the
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Fig. 4. Formaldehyde prediction results of the test samples (left) and validation samples (right) using four optimization methods.
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Fig. 5. Benzene prediction results of the test samples (left) and validation samples (right) using four optimization methods.

Table 3
Relative prediction error using different optimization neural network methods.

Estimation models Relative prediction error (%)

Formaldehyde Benzene

Train Test Validation Train Test Validation

Single BP 46.55 40.38 58.37 27.18 16.53 29.71
Logistic map-BP 28.35 28.89 32.34 16.57 12.15 17.96

49.49
50.64
47.06

e
m
c
S
o

4

n
b
P
b
d
m
t
c
o
e
b

Tent  map-BP 29.78 30.27 

Gaussian map-BP 30.06 23.06 

Standard PSO-BP 29.94 29.56 

rgodicity of chaos can help to find the global optimal in opti-
ization after a number of generations. However, PSO has a fast

onvergence performance and get to a local optimal in a short time.
o, researchers can decide which optimization can be used in terms
f their need.

. Conclusions

This paper presents a novel chaos sequence optimization neural
etwork method for concentration prediction of formaldehyde and
enzene in dwellings by a portable electronic nose. For comparison,
SO is also used for optimization. Through the formaldehyde and
enzene samples obtained in experiments combined with the self-
esigned electronic nose, we built the neural network prediction
odel combined with the chaos optimization and PSO, respec-

ively. By comparison of the prediction error of models based on

haotic sequence and PSO, both methods are effective for weights
ptimization. The neural network has been improved to a large
xtent and the concentration estimations for formaldehyde and
enzene indoor have also been realized in our project.
 8.910 13.12 19.16
 11.62 11.73 13.31

 12.49 12.21 16.08
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