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Naı̈ve sparse representation has stability problem due to its unsupervised nature, which is not preferred for classification tasks.
For this problem, this paper presents a novel representation learning method named classification-oriented local representation
(CoLR) for image recognition. The core idea of CoLR is to find the most relevant training classes and samples with test sample by
taking the merits of class-wise sparseness weighting, sample locality, and label prior. The proposed representation strategy can
not only promote a classification-oriented representation, but also boost a locality adaptive representation within the selected
training classes. The CoLR model is efficiently solved by Augmented Lagrange Multiplier (ALM) scheme based on a variable
splitting strategy.Then, the performance of the proposed model is evaluated on benchmark face datasets and deep object features.
Specifically, the deep features of the object dataset are obtained by a well-trained convolutional neural network (CNN) with five
convolutional layers and three fully connected layers on the challenging ImageNet. Extensive experiments verify the superiority of
CoLR in comparison with some state-of-the-art models.

1. Introduction

Image recognition is a fundamental problem inpattern recog-
nition community. Industrial prospects and research interests
in image recognition have been motivated by a wide range of
real-world applications [1–3]. There are mainly two compo-
nents for a common image recognition system: (1) robust and
discriminant feature learning [4–7], such as Gabor wavelet-
based features [8] and local binary pattern (LBP) [9]. The
linear holistic appearance-based approaches, such as princi-
pal component analysis (PCA) [10] and linear discriminative
analysis (LDA) [11], have greatly advanced image recognition
technology. In addition, nonlinear subspacemethods, such as
Kernel PCA [12], use kernel tricks to map original data into a
high-dimensional space to make data separable. The second
component is (2) classifier construction, for example, Nearest

Neighbor (NN) [13], Nearest Feature Line (NFL) [14], and
Nearest Feature Plane (NFP) [15]. These classifiers, known
as representation-based models, concern how to identify the
query image based on the linear combination of training
samples [16].

According to the labels of the training samples used to
represent test sample, representation-based approaches could
be divided into within-class representation-based methods
and across-class representation-based methods [16]. Within-
class representation-based methods evaluate the relation
between query sample and the training samples of each
individual class separately by class. NN is the simplest non-
parametric within-class representation-based classification
method. It classified the test sample by searching for its NN in
training dataset. As a simple extension of NN, NFL classifies
the test sample according to the nearest feature line of every
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two samples in each training class. NFP further uses three
independent training samples to represent the test sample.
Classifiers using more training samples to represent test
image have also been proposed, such as the nearest subspace
(NS) classifiers [17], which represent the test sample by all the
training samples of each class.

Recent research has demonstrated that sparse coding (or
sparse representation) is a powerful image representation
model. The most typical across-class representation-based
method is sparse representation-based classification (SRC)
method [16], where test samples are first sparsely coded over
all the training samples based on the 𝑙1 -normminimization of
representation coefficients, and then performs classification
according to the representation results. SRC is robust to
occlusion, illumination, and noise. Many related works have
been developed to improve SRC, such as kernel based SRC
[18], robust sparse coding [19], Gabor feature based SRC [20],
and sparse dense hybrid representation [21]. SRC assumes
that samples from a single subject lie on a subspace and
restricts the representation of test sample to be sparse by
the regularization of sparsity-inducing l1-norm.This endows
SRC with discriminative ability. Although SRC has shown
excellent results, its working mechanism has been heat-
debated. Zhang et al. [22] argued that all the samples should
give a contribution to represent the test sample and proposed
a collaborative representation (CR) based method for classifi-
cation with 𝑙2-norm constraint. Yang et al. [23] indicated that𝑙0-optimizer can achieve sparsity only, whereas 𝑙1-optimizer
in SRC can achieve closeness as well as sparsity. It is closeness
that guarantees the effectiveness of the 𝑙1-optimizer based
SRC. Akhtar et al. [24] suggested that sparseness explicitly
contributes to improved classification; hence it should not be
completely ignored for computational gains. More recently,
the discriminant nature of collaborative representation was
analyzed in [25].

Ideally, the representation of a test example should
focus on the training data from the identical class with the
assumption of independence of sample subspaces, and such
a representation is also discriminative for classification. Nev-
ertheless, the assumption cannot always be guaranteed due
to the similarity of patterns between different classes. That
is, samples from different classes may have high correlation,
and SRC tends to randomly select a single representative
sample from the high-correlation training samples [26–28].
Meanwhile, SRC might select quite different training sample
with test sample to favor sparsity.This trait is undesirable as it
will produce different representations for similar images and
thus destroy the classification performance.

One feasibleway for the limitation is to go beyond sparsity
and take into account additional information about the
underlying structure of the solution. A desired representation
for a test sample should have a group structure with the
significant representation coefficients focusing on the correct
subject [29]. For this purpose, Huang et al. [30] proposed a
class specific sparse representation for classification (CSSRC)
to seek certain group sparsity structure by harnessing the
label information of training data. CSSRC could be solved as
a classical group lasso (GL) problem attaining the purpose of
sparsity at the group level by minimizing the 𝑙1-norm across

classes and 𝑙2-norm within each class. The minimization
of 𝑙1-norm across classes can help find the correct subject.
However, the dense representation within the selected class
may prevent the attained result from the desired solution
as the optimal representation of a test sample over training
samples of the correct subject may not necessarily be dense
[31]. The class-wise sparse representation (CSR) method
is proposed in [31] to seek an optimum representation of
the test image by minimizing the class-wise sparsity of the
training data. However, the class-wise sparsity regularization
treats different training classes equally and does not take
the relation between test sample and each training class
into consideration, which may restrict the discrimination of
obtained representation.

Furthermore, Yu et al. [32] empirically observed that
sparse coding results tend to be local, and the nonzero
coefficients are often assigned to training samples nearby the
represented sample.They theoretically pointed out that under
certain assumption locality is more essential than sparsity,
as locality must lead to sparsity but not necessarily vice
versa. Based on the observation, Wang et al. [33] developed
a locality-constrained linear coding (LLC) scheme to find
a locality-constrained representation of test sample by its
nearest neighbors. Lu et al. [34] proposed a weighted sparse
representation-based classification method, where both data
locality and linearity were considered. Several two-phase
sparse representation-based methods have been proposed to
conduct coarse-to-fine classification and achieved good per-
formance [35–38].Thesemethods actually illustrate the effect
of “locality” in representation-based classification methods
and illustrate the principal that samples closer to the test
sample should have more significance in representing it.
By considering both data locality and label information
of training data, Chao et al. [39] proposed a locality and
group sensitive sparse representation (LGSR). Nevertheless,
the group sparsity penalized term was directly added to the
data locality constraint term, whichmay disarrange the group
sparse structure of the solution. In [40], a weighted group
sparse representation classification (WGSRC) is developed by
minimizing the weighted mixed-norm (𝑙2,1-norm) regular-
ized reconstruction error with respect to training samples.
However, the 𝑙2-norm reconstruction error measurement
might not handle real world contamination well [31]. Table 1
tabulates a brief comparison of several related state-of-the-
artmethods. Besides, some dictionary learningmethods have
been developed to learn a dictionary from the training sam-
ples to replace the original training samples for representation
learning [41–49]. The K-SVD algorithm is one of the typical
dictionary learning algorithms [41]. K-SVD is a generalized𝑘-means clustering algorithm. However, the K-SVD algo-
rithm is not suitable for classification tasks, because it only
requires that the learned dictionary should well reconstruct
the training samples. To enhance the discriminative ability
of learned dictionary, Zhang and Li studied a discriminative
K-SVD (D-KSVD) algorithm [42]. Jiang et al. [43] proposed
a label consistent K-SVD (LC-KSVD) dictionary learning
algorithm, which associated the label information with the
atoms to improve the classification performance. Li et al.
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Table 1: A comparison between several representation-based learning methods.

Methods Sparse Sample local Representation residual measure
Sample sparse Group sparse Class-wise sparse

SRC [16] √ × × × 𝑙2-norm
LLC [32] × × × √ 𝑙2-norm
LGSR [39] × √ × √ 𝑙2-norm
CSSRC [30] × √ × × 𝑙2-norm
WGSRC [40] × √ × √ 𝑙2-norm
CSR [31] × × √ × 𝑙1-norm
CoLR × × √ √ 𝑙1-norm

Test
sample

Figure 1: Overview of the proposed method. CoLR adopts a coarse-
to-fine strategy to search for the most relevant training samples
and classes with test sample. Nonneighbor training classes and
samples are implicitly excluded by imposing bigger punishment
(in red dotted line). This way, the test sample is guided to be
represented by its nearby training classes and samples for a more
discriminative classification-oriented local representation. This is
the discriminability origin of CoLR.

[44] developed a discriminative dictionary learning algo-
rithm termed as locality constrained and label embedding
dictionary learning (LCLE-DL) algorithm. More recently, a
mechanism-based structured analysis discriminative dictio-
nary learning (ADDL) framework is developed to seam-
lessly integrate analysis discriminative dictionary learning,
analysis representation, and analysis classifier training into
a unified model [45]. A discriminative block-diagonal low-
rank representation (BDLRR) method is proposed to learn
discriminative data representation by imposing an effective
structure in the low rank representation framework [50].

One of the key problems for representation-based clas-
sification method is to fully utilize the prior information of
data distribution. This paper aims to learn discriminative
classification-oriented local representation for image recog-
nition with the guiding of prior information induced from
the observed data. The overview of the proposed method is
shown in Figure 1. The idea is that the training samples and
classes near the test sample should make more contribution

in representing it. In view of this, different training class is
distinguished with different weights according to the distance
between the test sample and each training class. Furthermore,
weights are introduced into each class by utilizing a locality
adaptor penalizing the training samples far away from the
test sample. In sum, we consider three principals, i.e., class-
wise sparseness, data locality, and class weighting. Class
information is utilized to seek the minimum number of
training classes in representing test sample. An 𝑙1 -normbased
loss function is utilized, bywhich the obtained representation
can less over-fit the outliers. With these principals, the
developed model can not only encourage class-wise sparse-
ness, but also boost locality sensibility within the selected
training classes. Thus, the obtained representation is more
discriminative with both the most relevant training classes
and samples highlighted, which is desired for classification.
Several contributions of the paper are listed as follows.(1) By taking the advantages of data locality and label
priors, the proposed CoLR model can learn discriminative
classification-oriented local representation uncovering the
underlying membership of test samples for classification.(2) An efficient optimization algorithm is developed to
solve CoLR model based on a variable splitting strategy and
the Augmented Lagrangian Multiplier (ALM) method.(3) The performance of CoLR is verified on various
benchmark face databases and deep CNN features, and
promising results have been achieved in comparison with
some state-of-the-art models.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some typical across-class representation-
based classification algorithms. The CoLRmodel is proposed
and described in Section 3. Experiments on benchmark
databases are presented to evaluate the proposed method in
comparison with other popularmethods in Section 4. Finally,
the conclusion is made in Section 5.

2. Related Works

In closed-universe image recognition scenario, the training
samples and their class labels are usually provided. Assume
there are 𝑛 training face samples from𝐶 distinguished classes
with 𝑛𝑖 training samples in class 𝑖, the training sample matrix
A = [A1,A2 . . .A𝐶] ∈ R𝑚×𝑛, A𝑖 = [𝑎𝑖,1, 𝑎𝑖,2 . . . 𝑎𝑖,𝑛𝑖] ∈
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R𝑚×𝑛𝑖(𝑖 = 1, 2 . . . 𝐶). Each column in A is an𝑚-dimensional
vector through column concatenation of the training sample.𝑛 = ∑𝐶𝑖=1 𝑛𝑖 is the total number of training samples.The task is
to assign the given test sample y ∈ R𝑚 with the correct class
label. In this section, we will review two typical works.

2.1. Sparse Representation for Classification. Sparse represen-
tation based classification (SRC) is based on the concept that
patterns from the same class lie on a linear subspace [54].
The method parsimoniously searches for the most similar
training sample in training set to represent the test sample.
If a new coming test sample y comes from the class 𝑖, it will
approximately lie on the linear span of the training samples
of this class as

y ≈ A𝑖𝑥𝑖 (1)

And the other samples in the training set cannot recon-
struct the test sample as faithful as the ones from the identical
class of the test sample. In practice, the test sample is
represented using all the samples of training set A.

y ≈ A𝑥 (2)

where 𝑥 = [0 . . . 0, 𝑥𝑖,1, 𝑥𝑖,2 . . . 𝑥𝑖,𝑛𝑖 , 0 . . . 0]T is a coefficient
vector whose entries are ideally zero except those associated
with 𝑖-th class. For a sparse and discriminative solution, SRC
aims to solve the 𝑙0-minimization problem as

𝑥∗ = argmin
𝑥

‖𝑥‖0
s.t. 󵄩󵄩󵄩󵄩y − A𝑥󵄩󵄩󵄩󵄩2 ≤ 𝜀

(3)

where 𝜀 is a given tolerance and ‖ ∙ ‖0 denotes the 𝑙0-
norm, which indicates the number of nonzero entries in
the representation vector. However, the minimization of the𝑙0-norm is an NP-hard problem. Donoho proved that “for
most large underdetermined systems of linear equations the
minimal 𝑙1-norm solution is also the sparsest solution” [55].
Thus, the solution of (3) is equivalent to the following 𝑙1 -norm
minimization problem:

𝑥∗ = argmin
𝑥

‖𝑥‖1
s.t. 󵄩󵄩󵄩󵄩y − A𝑥󵄩󵄩󵄩󵄩2 ≤ 𝜀

(4)

Once the coding vector is obtained, the identification of
the test sample is performed by checking which training class
leads to the minimal reconstruction residual as follows:

identity (y) = argmin
𝑖

{󵄩󵄩󵄩󵄩y − A𝑖𝑥𝑖󵄩󵄩󵄩󵄩2} (5)

where 𝑥𝑖 is the coding vector corresponding to training
class A𝑖. A sparse representation x of y over A is naturally
discriminative to indicate the identity of y.

2.2. Group LASSO for Classification. Using the 𝑙1-norm to
regularize the representation coefficient as in (4) may lead
to an unstable solution because the training samples exhibit

strong correlations. In the circumstance, SRC is known to
have stability problem. It might represent a test sample by
training data from distinct subjects, which is undesirable
for classification. As a remedy for this problem, structured
representation methods are proposed to take advantage of
label priors. The training samples with the same label are
defined as a group. An 𝑙2,1-norm regularization term is used
as the group sparsity constraint, which is also known as group
lasso [56]. The formulation of group lasso is defined as

𝑥∗ = argmin
𝑥

𝐶∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖󵄩󵄩󵄩󵄩2
s.t. 󵄩󵄩󵄩󵄩y − A𝑥󵄩󵄩󵄩󵄩2 ≤ 𝜀

(6)

where 𝑥𝑖 is the coding vector corresponding to training
class A𝑖. This constraint enforces nonzeros coefficients to
occur at a few specific groups, while those within the same
group can be dense once that group is selected. However,
the dense representation within the class may adversely affect
the correct class selection during the minimization process of
group lasso [30].

3. The Proposed Classification-Oriented
Local Representation Model

3.1. Model Formulation. Searching classes instead of individ-
ual samples can alleviate the problem of random selection of
highly correlated data in SRC. By taking both weighted class-
wise sparseness across classes and sample locality within each
class into consideration, the following optimization problem
is proposed.

min
𝑥

12 󵄩󵄩󵄩󵄩y − A𝑥󵄩󵄩󵄩󵄩1 + 𝜆
𝐶∑
𝑖=1

w𝑖z𝑖

s.t. z𝑖 = 󵄩󵄩󵄩󵄩󵄩𝑑𝑖⨀𝑥𝑖󵄩󵄩󵄩󵄩󵄩2
(7)

where 𝑥 ∈ R𝑛 is representation coefficient of test sample
y over training dataset A. The first term ‖y − Ax‖1 is the
representation residual of the test sample y measured by l1-
norm, and the second term indicates the weighted class-wise
sparseness regularization term. Specifically, the 𝑙2-norm of
locality sensitive coefficients within each class is weighted to
search for the minimal number of classes out of 𝐶 training
classes by introducing a new class indicator variable z =[z1, z2, . . . , zC]T. w𝑖 (𝑖 = 1, 2 . . . 𝐶) is the weight of samples
of class 𝑖 in representing test sample y. d𝑖 is a vector that
gives different freedom for each training sample associated
with class 𝑖. 𝜆 > 0 is a tradeoff parameter between the
representation residual and representation coefficient.

We aim to represent test sample y not only by its
neighbors but also by highly relevant training classes. As
illustrated in (7), unlike pursuing a group sparse repre-
sentation in R𝑛 like group lasso, we directly search for a
weighted class-wise sparse representation in RC by taking
the relation between test sample and each training class into
consideration. Afterwards, the dissimilar training samples
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Figure 2: An example for proposed method on 228 training samples of 38 subjects from Extended Yale B database [51]. (a) A test sample
from Class 1; (b) the weight on each training class; (c) the weight on each training sample; (d) the representation coefficients obtained by our
method.

are penalized by incorporating a locality adaptor. w𝑖s vary
from class to class to boost or inhibit the corresponding
training class in representing y, and a large w𝑖 would make
the corresponding z𝑖 shrink to be small. 𝑙1-norm is used to
measure the representation residual, which is proved to be
robust to handle outliers, and the obtained representation
of test sample would less over-fit the outliers. In model
(7), ⨀ denotes the element-wise multiplication, and d𝑖 =[d𝑖,1, d𝑖,2 . . . d𝑖,𝑛𝑖 ] (𝑖 = 1, 2 . . . 𝐶) performs as a locality adaptor
that gives different freedom for each training sample 𝑎𝑖𝑗 (the𝑗-th training sample of class 𝑖) proportional to its similarity
with test sample y.

d𝑖𝑗 = exp(dist (y, 𝑎𝑖𝑗)𝜎1 ) (8)

where dist(y,𝑎𝑖𝑗) is the Euclidean distance between test
sample y and training sample 𝑎𝑖,𝑗. 𝜎1 is used to adjust the
weight decay speed for the locality adaptor. A larger d𝑖𝑗
indicates a farther distance between y and𝑎𝑖𝑗. In (7), w𝑖 is used
to evaluate the distance between the test sample with training
class 𝑖. The linear regression model is utilized to measure the
distance between test sample and each training class.The test
sample is firstly represented as a linear combination of the
training samples in each class.

y ≈ A𝑖𝑥𝑖 (9)
The reconstructed test sample 𝑦̃𝑖 over class A𝑖 is

ỹ𝑖 = A𝑖 (AT
𝑖 A𝑖)−1AT

𝑖 y (10)

The following metric is utilized to measure the distance
between test sample y and training class 𝑖:

w𝑖 = exp(
󵄩󵄩󵄩󵄩y − ỹ𝑖󵄩󵄩󵄩󵄩2𝜎2 ) (11)

In (11), w𝑖 indicates the distance from y to the subspace
generated by A𝑖. A larger w𝑖 means class 𝑖 is further from
y and should make less contribution to represent it. 𝜎2 is
a bandwidth parameter and used for adjusting the weight
decay. Figure 2 intuitively illustrates the motivation. Fig-
ure 2(a) is a test sample from Class 1. Figure 2(b) shows the
normalized distance, i.e., w𝑖 (𝑖 = 1, 2 . . .C) in (7), between
test sample and each training class. Figure 2(c) shows the
normalized distance, i.e., d𝑖 (𝑖 = 1, 2 . . . 𝑛) in (7), between
test sample and each training sample. Figure 2(d) shows the
final representation of test sample (a) over the training set.
As the test sample is from Class 1, so the punishment on
the representation coefficient of training samples in Class 1
is relatively small. For other training samples and classes, the
punishment is bigger. With these constrains, the test sample
is guided be represented by the nearby training samples from
Class 1 as shown in Figure 2(d), which is quite discriminative
for classification.

3.2. Model Optimization. As presented above, the optimiza-
tion problem of developed model is expressed as follows:
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min
𝑥

12 󵄩󵄩󵄩󵄩y − A𝑥󵄩󵄩󵄩󵄩1 + 𝜆
𝐶∑
𝑖=1

w𝑖z𝑖

s.t z𝑖 = 󵄩󵄩󵄩󵄩󵄩d𝑖⨀ 𝑥𝑖󵄩󵄩󵄩󵄩󵄩2
(12)

The second term in (12) is the representation coefficient
regularization. ∑𝐶𝑖=1 w𝑖z𝑖 = w1z1 + . . . + w𝐶z𝐶. The term
can be written in the form of 𝑙1-norm with a new variable
𝑣. ‖𝑣‖1 = w1‖d1⨀𝑥1‖2 + . . . + w𝐶‖d𝐶⨀𝑥𝐶‖2 with V𝑖 =
w𝑖‖d𝑖⨀𝑥𝑖‖2 (𝑖 = 1, 2 . . .C). Model (12) can be rewritten as

min
𝑥

12 󵄩󵄩󵄩󵄩y − A𝑥󵄩󵄩󵄩󵄩1 + 𝜆 ‖𝑣‖1
s.t. V𝑖 = w𝑖 󵄩󵄩󵄩󵄩󵄩d𝑖⨀𝑥𝑖󵄩󵄩󵄩󵄩󵄩2

(13)

where 𝑣 = [V1,V2, . . . , V𝐶]T. We introduce a vector r𝑖 =[r𝑖1,r𝑖2,. . .,r𝑖𝑛𝑖]T (𝑖 = 1, 2 . . . 𝐶), r𝑖𝑗 = w𝑖d𝑖𝑗, 𝑗 = 1, 2 . . . , 𝑛𝑖,
and then we have

V𝑖 = 󵄩󵄩󵄩󵄩󵄩r𝑖⨀𝑥𝑖󵄩󵄩󵄩󵄩󵄩2 (14)

Furthermore,

V𝑖 = 󵄩󵄩󵄩󵄩R𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 (15)

where R𝑖 ∈ R𝑛𝑖×𝑛𝑖 is a diagonal matrix for the 𝑖-th class with
r𝑖 as its diagonal elements, and R is given by

R fl
[[[[
[

R1 ⋅ ⋅ ⋅... d
...

⋅ ⋅ ⋅ R𝐶
]]]]
]

(16)

Let 𝑒 = y − A𝑥. We obtain the following equivalent
optimization problem with the diagonal weight matrix R by
introducing auxiliary variable 𝑢 ∈ R𝐶:

min
𝑒,𝑥,𝑧,𝑢

12 ‖𝑒‖1 + 𝜆 ‖𝑣‖1
s.t. 𝑒 = y − A𝑥,
𝑢 = R𝑥,
V𝑖 = 󵄩󵄩󵄩󵄩𝑢𝑖󵄩󵄩󵄩󵄩2

(17)

where 𝑣 = [V1,V2, . . . , V𝐶]T. Denote 𝑢̃ = [‖𝑢1‖2,‖𝑢2‖2,
. . .,‖𝑢𝐶‖2]T ∈ R𝐶, and 𝑢𝑖 = R𝑖𝑥𝑖 ∈ R𝑛𝑖 is a subvector of
𝑢 with elements associated with class 𝑖. (17) is a constrained
optimization problem which could be solved by the Aug-
mented Lagrangian Multiplier (ALM) method [57, 58]. Its
corresponding ALM function is given as

𝐿𝜇 (𝑒,𝑥,𝑣,𝑢)
= 12 ‖𝑒‖1 + 𝜆 ‖𝑣‖1 + 𝛼T (y − A𝑥 − 𝑒)
+ 𝛽T (R𝑥 − 𝑢) + 𝛾T (𝑢̃ − 𝑣)
+ 𝜇2 (󵄩󵄩󵄩󵄩y − A𝑥 − 𝑒󵄩󵄩󵄩󵄩22 + ‖R𝑥 − 𝑢‖22 + ‖𝑢̃ − 𝑣‖22)

(18)

where 𝛼 ∈ R𝑚, 𝛽 ∈ R𝑛, 𝛾 ∈ R𝐶 are vectors of Lagrange
multipliers and 𝜇 > 0 is the penalty parameter. Instead
of optimizing all arguments simultaneously, as 𝑒,𝑥,𝑣,𝑢 are
separable, we solve them individually and iteratively. In the
(𝑘 + 1)-th iteration, the updating schemes are as follows.

Step 1 (update 𝑒). We update 𝑒 by solving the following
subproblem with 𝑥, 𝑧, and 𝑢 fixed:

𝑒𝑘+1 = argmin
𝑒

12 ‖𝑒‖1 + 𝛼T𝑘 (y − A𝑥𝑘 − 𝑒)
+ 𝜇𝑘2 󵄩󵄩󵄩󵄩y − A𝑥𝑘 − 𝑒󵄩󵄩󵄩󵄩22
= 𝑆1/(2𝜇𝑘) [y − A𝑥𝑘 + 𝛼𝑘𝜇𝑘 ]

(19)

where 𝑆𝜖(∙), 𝜖 > 0, is the soft-thresholding (shrinkage)
operator defined component-wise as

[𝑆𝜖 (𝜃)]𝑖 = sign (𝜃𝑖) ∙max {󵄨󵄨󵄨󵄨𝜃𝑖󵄨󵄨󵄨󵄨 − 𝜖, 0} (20)

Step 2 (update 𝑥). We update 𝑥 by solving the following
subproblem with 𝑒, 𝑣, and 𝑢 fixed:

𝑥𝑘+1

= argmin
𝑥

𝛼T𝑘 (y − A𝑥 − 𝑒𝑘+1) + 𝛽T𝑘 (R𝑥 − 𝑢𝑘)
+ 𝜇𝑘2 (󵄩󵄩󵄩󵄩y − A𝑥 − 𝑒𝑘+1󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩R𝑥 − 𝑢𝑘󵄩󵄩󵄩󵄩22)
= argmin
𝑥

𝜇𝑘2 𝑥T (ATA + RTR)𝑥
− 𝜇𝑘 ((y − 𝑒𝑘+1 + 𝛼𝑘𝜇𝑘 )

T
A + (𝑢𝑘 − 𝛽𝑘𝜇𝑘 )

T

R)𝑥

(21)

This is a convex quadratic problem. Hence the problem
reduces to solving the following linear system:

𝜇𝑘 (ATA + RTR)𝑥
= 𝜇𝑘 (AT (y − 𝑒𝑘+1 + 𝛼𝑘𝜇𝑘 ) + RT (𝑢𝑘 − 𝛽𝑘𝜇𝑘 ))

(22)

The close-form solution of 𝑥 is obtained as

𝑥𝑘+1 = (ATA + RTR)−1
⋅ (AT (y − 𝑒𝑘+1 + 𝛼𝑘𝜇𝑘 ) + RT (𝑢𝑘 − 𝛽𝑘𝜇𝑘 ))

(23)

Step 3 (update 𝑣). We update 𝑣 by solving the following
subproblem with 𝑥, 𝑒, and 𝑢 fixed:

𝑣𝑘+1 = argmin
𝑣

𝜆 ‖𝑣‖1 + 𝛾𝑇𝑘 (𝑢̃𝑘 − 𝑣) + 𝜇𝑘2 󵄩󵄩󵄩󵄩𝑢̃𝑘 − 𝑣󵄩󵄩󵄩󵄩22
= argmin
𝑣

𝜆𝜇𝑘 ‖𝑣‖1 +
12
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑣 − (𝑢̃𝑘 +

𝛾𝑘𝜇𝑘)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

2

(24)

which can also be solved via the soft-thresholding operator as
in (20).
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Input: training set A, test sample y, diagonal matrix R, parameter 𝜆.
1: Initialize: 𝑥0 = 0, 𝑧0 = 0, 𝑢0 = 0, 𝛼0 = 0, 𝛽0 = 0, 𝛾0 = 0,𝜇0 = 10−3, 𝜇𝑚𝑎𝑥 = 108, 𝜌 = 1.1, 𝜀 = 10−6.
2:While not converged do
3: Fix other variable and update e by solving problem (19).
4: Fix other variable and update x by solving problem (21).
5: Fix other variable and update k by solving problem (24).
6: Fix other variable and update u by solving problem (25).
7: Update the multipliers and parameters by (28)
8: Check the convergence conditions:󵄩󵄩󵄩󵄩𝑦 − A𝑥 − 𝑒󵄩󵄩󵄩󵄩∞ < 𝜀, ‖R𝑥 − 𝑢‖∞ < 𝜀, and ‖𝑣 − 𝑢̃‖∞ < 𝜀
9: EndWhile
Output: 𝑥, 𝑒

Algorithm 1: SolvingCoLR model based on ALM.

Step 4 (update 𝑢). We update 𝑢 by solving the following
subproblem with 𝑒, 𝑣, and 𝑥 fixed:

𝑢𝑘+1 = argmin
𝑢

𝛽𝑇𝑘 (R𝑥𝑘+1 − 𝑢) + 𝛾𝑇𝑘 (𝑢̃ − 𝑣𝑘+1)
+ 𝜇𝑘2 (󵄩󵄩󵄩󵄩R𝑥𝑘+1 − 𝑢󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑢̃ − 𝑣𝑘+1󵄩󵄩󵄩󵄩22)

(25)

With some manipulation, we have

𝑢𝑘+1 = argmin
𝑢

𝐶∑
𝑖=1

[(𝛾𝑘𝑖 − 𝜇𝑘𝑣(𝑘+1)𝑖) 󵄩󵄩󵄩󵄩𝑢𝑖󵄩󵄩󵄩󵄩2
+ 𝜇𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑖 −

(R𝑖𝑥(𝑘+1)𝑖 + 𝛽𝑘𝑖/𝜇𝑘)2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

2

]
(26)

which has a closed form solution by one-dimensional shrink-
age (or soft-thresholding) formula [59]

𝑢(𝑘+1)𝑖 = max(󵄩󵄩󵄩󵄩𝑞𝑘𝑖󵄩󵄩󵄩󵄩2 − (𝛾𝑘𝑖 − 𝜇𝑘𝑣(𝑘+1)𝑖)2𝜇𝑘 , 0) 𝑞𝑘𝑖󵄩󵄩󵄩󵄩𝑞𝑘𝑖󵄩󵄩󵄩󵄩2 .
𝑖 = 1, 2 . . . 𝐶.

(27)

where 𝑞𝑘𝑖 fl (R𝑖𝑥(𝑘+1)𝑖 + 𝛽𝑘𝑖/𝜇𝑘)/2
Step 5. Update the Lagrangian multipliers 𝛼, 𝛽, 𝛾 and the
parameter 𝜇 as follows:

𝛼𝑘+1 = 𝛼𝑘 + 𝜇𝑘 (y − A𝑥𝑘+1 − 𝑒𝑘+1)
𝛽𝑘+1 = 𝛽𝑘 + 𝜇𝑘 (R𝑥𝑘+1 − 𝑢𝑘+1)
𝛾𝑘+1 = 𝛾𝑘 + 𝜇𝑘 (𝑢̃𝑘+1 − 𝑣𝑘+1)
𝜇𝑘+1 = min (𝜌𝜇𝑘, 𝜇𝑚𝑎𝑥)

(28)

Note that the subproblems for 𝑒, 𝑥, 𝑢, 𝑣 are all convex
problems. They both have closed-form solutions. For the
competence of presentation, the detailed optimization pro-
cedure is outlined in Algorithm 1. The convergence property
of Algorithm 1 can be guaranteed by the existing ADM theory

[56]. From the experimental perspective, the developed opti-
mization algorithm exhibits good convergence property as
shown in Figure 3. In our experiments, the iteration number
is empirically less than 100 under the given settings. Once the
optimal solution 𝑥 is achieved, the label of test sample y can
be obtained as

𝑖∗ = argmin
𝑖

{󵄩󵄩󵄩󵄩y − A𝑖x𝑖󵄩󵄩󵄩󵄩1󵄩󵄩󵄩󵄩x𝑖󵄩󵄩󵄩󵄩1 } , 𝑖 = 1, 2 . . . 𝐶 (29)

where 𝑥𝑖 is the coding vector associated with training class
A𝑖.

4. Experiments

4.1. Parameter Setting. In this section, we will study the
key parameters in proposed CoLR model and give some
parameter setting suggestions to use it for classification tasks.
There are 3 parameters, i.e., 𝜆, 𝜎1, and 𝜎2 in proposed CoLR
model. Among them, 𝜆 is used to keep balance between
the reconstruction error and the level of weighted class-wise
sparseness of the representation coefficient. 𝜎1 and 𝜎2 are the
bandwidth parameters in sample and class distance metrics.
When 𝜆 is larger, fewer training samples would be selected.
Empirically speaking, a relatively small 𝜆 is preferred to keep
the balance between representation residual and the repre-
sentation coefficient. For CoLR, we search for the optimal𝜆 in the range of [10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10] to
obtain the best recognition accuracy. The optimal 𝜎1 and 𝜎2
are searched in the set of [1/32, 1/16, 1/8, 1/4, 1/2, 1, 10]. Fig-
ure 4 shows recognition accuracy versus different parameters
on CMU PIE database [52]. The parameters influence each
other. When the value of 𝜆 is assigned to be a small positive
value, our method could achieve promising performance.
Figure 4(a) shows that when the value of parameter 𝜆 varies
between 10−5 and 10−3, CoLR performs relatively well and
the curve of recognition rate tends to be smooth for different
values of 𝜎1 and 𝜎2. It can be seen that our method is
robust to the values of parameters. When 𝜆 is set as 10−4,
Figure 4(b) shows that the recognition rates are generally
high when the value of 𝜎2 is in the range of [1/4, 10]. When
the value of 𝜎1 is constant, the recognition rate tends to
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Figure 3: An illustration for the convergence property of Algorithm 1. (a) is the curve of objective function value versus iteration number.
(b)-(d) are the curves of 3 convergence conditions in optimization versus iteration number: (b) ‖𝑦 −𝐴𝑥 − 𝑒‖

∞
; (c) ‖𝑣 − 𝑢̃‖

∞
; (d) ‖𝑅𝑥 − 𝑢‖

∞
.
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Figure 4: Face recognition rates of CoLR under different parameter settings on CMU PIE dataset [52]. (a) 𝜆 versus 𝜎1 and 𝜎2; (b) 𝜎1 versus𝜎2 with 𝜆 = 0.0001.

increase as 𝜎2 increases. And when the value of 𝜎2 is constant,
the recognition rate tends to increase as 𝜎1 decreases. On
the basis of the analysis above, the optimal values of 𝜆,𝜎1, and 𝜎2 are suggested to be assigned from the range
of [10−5, 10−3], [1/32, 1/8], and [1/4, 10], respectively. With
these parameters, stable and satisfactory performance of
CoLR model can be expected.

4.2. Experimental Results on Face Recognition. In this section,
our approach is compared with several related state-of-
the-art approaches, including nearest neighbor (NN), linear
regression classification (LRC) [17], collaborative represen-
tation based classification (CRC) [22], sparse representa-
tion for classification (SRC) [16], locality constrained linear
coding for classification (LLC) [32], weighted group sparse
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Figure 5: Some facial images used in our experiments: (a) the ORL dataset; (b) the Extended Yale B dataset; (c) the CMU PIE dataset; (d)
the AR dataset.

representation classification (WGSRC) [40], class-wise sparse
representation (CSR) [31], and discriminative block-diagonal
low-rank representation (BDLRR) [50]. Some dictionary
learning-based classification methods are also compared,
including LC-KSVD [43], LCLE-DL [44], and dictionary
pair learning (DPL) [48]. LLC can be seen as an extended
version of SRC exploiting data locality instead of sparsity
constraint for improved representation coding and adopts a
reconstruction-based classification rule. WGSRC classify a
test sample byminimizing theweighted l2,1-norm regularized
reconstruction error with respect to training images. CSR
seeks an optimum representation of the query image by
minimizing the class-wise sparsity of the training data. The
parameter settings of other methods follow the references.
Experiments were conducted on 5 face datasets, including the
ORL [3], Extended Yale B [51], CMU PIE [52], and AR [53].
A description of the 4 datasets is shown in Table 2.

Table 2: Description of the datasets used in the experiments.

Database # Samples # Dimension # Classes
ORL [3] 400 1,024 40
Extended Yale B [51] 2,414 1,024 38
CMU PIE [52] 1,680 1,024 68
AR [53] 1,400 1,260 100

4.2.1. Experiments on the ORL Database. The ORL face
database consists of 400 face images from 40 individuals with
10 images per person. The images were taken at different
times, lighting variation, facial expressions (open/closed eyes,
smiling/not smiling), and facial details (glassed/no glassed)
against a dark homogeneous background. In the experiments,
each image in ORL database is manually cropped and resized
to 32×32. Figure 5(a) shows some sample images from one
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Table 3: Recognition rates on the ORL dataset with different number of training samples.

Methods # training samples per subject on ORL dataset
3 4 5 6

NN 0.758±0.031 0.819±0.024 0.863±0.014 0.875±0.020
LRC [17] 0.810±0.034 0.885±0.027 0.916±0.020 0.946±0.018
CRC [22] 0.851±0.025 0.916±0.015 0.936±0.011 0.942±0.025
SRC [16] 0.882±0.030 0.933±0.016 0.943±0.011 0.954±0.016
LLC [32] 0.847±0.027 0.893±0.024 0.899±0.020 0.909±0.021
WGSRC [40] 0.881±0.025 0.932±0.020 0.946±0.012 0.958±0.016
LC-KSVD2 [43] 0.857±0.026 0.902±0.015 0.913±0.015 0.932±0.010
LCLE-DL [44] 0.870±0.017 0.913±0.015 0.927±0.020 0.939±0.011
CSR [31] 0.859±0.024 0.924±0.020 0.942±0.011 0.955±0.019
DPL [48] 0.870±0.025 0.912±0.024 0.926±0.022 0.939±0.023
BDLRR [50] 0.879±0.017 0.921±0.021 0.932±0.021 0.949±0.016
CoLR 0.882±0.034 0.940±0.018 0.952±0.011 0.965±0.015

Table 4: Recognition rates on the ORL dataset under different feature dimensions.

Methods Feature dimensions (5 samples per subject)
30 60 90

NN 0.845±0.020 0.853±0.040 0.859±0.009
LRC [17] 0.901±0.018 0.911±0.027 0.927±0.018
CRC [22] 0.857±0.021 0.914±0.025 0.939±0.012
SRC [16] 0.898±0.019 0.932±0.018 0.949±0.015
LLC [32] 0.844±0.020 0.885±0.026 0.913±0.020
WGSRC [40] 0.894±0.016 0.932±0.029 0.943±0.015
LC-KSVD2 [43] 0.851±0.026 0.876±0.025 0.924±0.020
LCLE-DL [44] 0.858±0.029 0.876±0.032 0.926±0.020
CSR [31] 0.894±0.011 0.929±0.022 0.943±0.015
DPL [48] 0.896±0.033 0.908±0.041 0.926±0.029
BDLRR [50] 0.917±0.019 0.926±0.026 0.934±0.023
CoLR 0.923±0.015 0.937±0.019 0.956±0.016

subject. Two experimental settings are considered. Firstly, a
random subset with p (= 3, 4, 5, 6) images of each individual
is selected for training and the rest for testing. For each
experimental scenario, we first apply PCA as preprocessing
step to reduce the dimension of original data to 100. We run
the programs 10 times and calculate the recognition rates as
well as the standard deviations, which are reported in Table 3.
Besides, we evaluate the performance of different methods
with different feature dimensions, i.e., 30, 60, 90, and 120.The
experimental results are listed in Table 4. The best results are
highlighted in the italic face font.

4.2.2. Experiments on the Extended Yale B Database. Ex-
tended Yale B face database contains about 2414 frontal face
images of 38 persons and around 64 near frontal images
under different illuminations per person. In this experiment,
we simply use the cropped images and resize them to 32×32
pixels. Figure 5(b) shows some example images of one subject.
A random subset with p (=6, 8, 12, 16) images per individual is
taken with labels to form the training set, and the remaining

samples are used for testing. The experiment is repeated 10
times, and the comparison results are shown in Table 5. We
then evaluate the performance of different algorithms under
different feature dimensions with 16 samples per subject as
the training set. The FR recognition rates under different
dimensions are shown in Table 6, where the best results are
highlighted in the italic face font.

4.2.3. Experiments on the CMUPIE Database. TheCMU PIE
database contains over 40, 000 face images of 68 individuals.
Images of each individual were acquired across 13 different
poses, under 43 different illumination conditions, and with 4
different expressions. Here we use a near frontal pose subset,
namely, C07, for experiments, which contains 1629 images
of 68 individuals. Each individual has about 24 images. All
images are manually cropped and resized to 32×32 pixel
in our experiment. Several sample images from the dataset
are shown in Figure 5(c). A random subset with p (= 2,
4, 6, 8) images of each individual is selected as training
dataset, and the rest is used for testing. For each given p, we
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Table 5: Recognition rates on the Extended Yale B dataset with different number of training samples.

Methods # training samples per subject
6 8 12 16

NN 0.417±0.012 0.482±0.011 0.582±0.014 0.655±0.008
LRC [17] 0.686±0.015 0.774±0.011 0.858±0.006 0.901±0.007
CRC [22] 0.847±0.012 0.892±0.009 0.930±0.005 0.949±0.004
SRC [16] 0.811±0.011 0.863±0.010 0.915±0.009 0.943±0.006
LLC [32] 0.822±0.009 0.871±0.008 0.918±0.006 0.943±0.007
WGSRC [40] 0.820±0.009 0.871±0.010 0.921±0.005 0.946±0.007
LC-KSVD2 [43] 0.796±0.014 0.857±0.009 0.897±0.008 0.922±0.008
LCLE-DL [44] 0.802±0.015 0.855±0.009 0.897±0.010 0.921±0.007
CSR [31] 0.828±0.009 0.877±0.007 0.917±0.008 0.937±0.007
DPL [48] 0.810±0.012 0.857±0.006 0.909±0.008 0.930±0.004
BDLRR [50] 0.792±0.014 0.843±0.007 0.909±0.009 0.935±0.007
CoLR 0.860±0.008 0.906±0.009 0.942±0.005 0.957±0.005

Table 6: Recognition rates on the Extended Yale Bdataset under different feature dimensions.

Methods Feature dimensions (16 samples per subject)
50 100 150

NN 0.497±0.009 0.593±0.009 0.624±0.013
LRC [17] 0.866±0.007 0.885±0.009 0.898±0.007
CRC [22] 0.794±0.015 0.893±0.013 0.923±0.007
SRC [16] 0.860±0.008 0.907±0.011 0.923±0.007
LLC [32] 0.741±0.018 0.864±0.013 0.902±0.007
WGSRC [40] 0.822±0.009 0.896±0.013 0.920±0.006
LC-KSVD2 [43] 0.656±0.010 0.865±0.006 0.907±0.007
LCLE-DL [44] 0.671±0.010 0.873±0.006 0.909±0.008
CSR [31] 0.839±0.009 0.900±0.013 0.922±0.008
DPL [48] 0.832±0.015 0.901±0.009 0.921±0.005
BDLRR [50] 0.871±0.011 0.904±0.009 0.930±0.007
CoLR 0.847±0.007 0.908±0.012 0.929±0.006

independently run all the methods 10 times and report the
recognition rates as well as the standard deviations in Table 7.
Table 8 lists the recognition rates and corresponding standard
deviations of different comparing methods with different
dimensions of features. In the experiment scenarios, 6 images
were randomly chosen from each subject for training set, and
the remaining samples were used for testing. Similarly, PCA
is utilized to calculate a low dimensional subspace to reduce
the dimensionality of original face data, and the reduced
dimensionalities are set as 50, 100, 150, and 200.

4.2.4. Experiments on the AR Database. In this experiment,
a subset of AR database that contains 50 males and 50
females with 6 illumination and 8 expression variations in
two sessions is used. 7 images with only illumination and
expression changes from session 1 are used as training set,
and 7 images from session 2 are used as testing set. Figure 5(d)
shows some sample images fromone person.The recognition

rates of different methods on this recognition task are shown
in Table 9.

4.2.5. Experiments on the Deep CNN Features. Deep learning
with a convolutional neural network has been proved to
be very effective in feature extraction and representation
of images. In this experiment, we would like to test the
performance of different representation-based classifiers on
deepCNN features.The structures of CNN for training on the
ImageNet with 1000 categories are the same as the proposed
CNN in [60]. The basic structure of the adopted is illustrated
in Figure 6, which includes 5 convolutional layers and 3 fully
connected layers. For further details of the CNN training
architecture and features one can refer to [60, 61]. The CNN
outputs of the 6-th (𝑓6) and 7-th (𝑓7) fully connected layers
are used as inputs of different representation-based classifiers
for classification, respectively. We adopt the deep convolu-
tional activated features (DeCAF) from [61] for experiments.
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Table 7: Recognition rates on the CMU PIE dataset with different number of training samples.

Methods # training samples per subject
2 4 6 8

NN 0.363±0.015 0.550±0.013 0.678±0.013 0.759±0.014
LRC [17] 0.513±0.025 0.815±0.013 0.900±0.014 0.925±0.010
CRC [22] 0.810±0.018 0.916±0.007 0.933±0.005 0.939±0.005
SRC [16] 0.782±0.019 0.906±0.009 0.938±0.005 0.948±0.008
LLC [32] 0.789±0.021 0.912±0.008 0.935±0.006 0.945±0.006
WGSRC [40] 0.791±0.019 0.913±0.008 0.939±0.006 0.951±0.007
LC-KSVD2 [43] 0.764±0.022 0.892±0.009 0.921±0.007 0.936±0.007
LCLE-DL [44] 0.773±0.023 0.894±0.008 0.926±0.007 0.937±0.007
CSR [31] 0.806±0.019 0.915±0.008 0.938±0.006 0.946±0.007
DPL [48] 0.760±0.016 0.893±0.009 0.930±0.008 0.941±0.006
BDLRR [50] 0.737±0.015 0.885±0.010 0.932±0.005 0.947±0.008
CoLR 0.820±0.020 0.920±0.007 0.942±0.006 0.947±0.006

Table 8: Recognition rates on the CMU PIE dataset under different feature dimensions.

Methods Feature dimensions (6 samples per subject)
50 100 150 200

NN 0.604±0.019 0.649±0.018 0.669±0.016 0.681±0.018
LRC [17] 0.893±0.014 0.899±0.009 0.898±0.009 0.903±0.008
CRC [22] 0.868±0.014 0.925±0.006 0.930±0.007 0.937±0.004
SRC [16] 0.903±0.013 0.930±0.005 0.931±0.006 0.939±0.005
LLC [32] 0.838±0.015 0.917±0.009 0.929±0.006 0.938±0.005
WGSRC [40] 0.892±0.015 0.930±0.006 0.934±0.007 0.942±0.004
LC-KSVD2 [43] 0.828±0.011 0.918±0.010 0.930±0.005 0.934±0.007
LCLE-DL [44] 0.834±0.012 0.922±0.006 0.930±0.008 0.937±0.005
CSR [31] 0.891±0.014 0.916±0.008 0.920±0.008 0.929±0.005
DPL [48] 0.886±0.007 0.922±0.006 0.934±0.009 0.937±0.006
BDLRR [50] 0.907±0.007 0.928±0.005 0.933±0.011 0.941±0.009
CoLR 0.907±0.013 0.931±0.004 0.935±0.007 0.935±0.004

Table 9: Recognition rates on the AR dataset under different feature dimensions.

Methods Feature dimensions (7 samples per subject)
50 100 150 200

NN 0.651 0.689 0.694 0.694
LRC [17] 0.683 0.720 0.734 0.736
CRC [22] 0.789 0.876 0.904 0.930
SRC [16] 0.816 0.887 0.899 0.919
LLC [32] 0.784 0.869 0.889 0.906
WGSRC [40] 0.814 0.883 0.903 0.916
LC-KSVD2 [43] 0.669 0.793 0.829 0.846
LCLE-DL [44] 0.694 0.817 0.863 0.883
CSR [31] 0.824 0.884 0.897 0.917
DPL [48] 0.786 0.854 0.877 0.890
BDLRR [50] 0.831 0.881 0.886 0.915
CoLR 0.824 0.897 0.906 0.923
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Figure 6: Diagram of the training and testing protocol in the experiment.

Figure 7: Examples of object images from 4 sources: Amazon (1st row), DSLR (2nd row), Webcam (3rd row), and Caltech (4th row).

The well-trained network parameters shown in Figure 6 are
used for deep representation of the 4DA (domain adaptation)
dataset. The 4DA dataset includes four domains such as
Caltech 256 (C), Amazon (A), Webcam (W), and DSLR (D)
sampled from different sources, in which 10 object classes are
selected. Example images are shown in Figure 7.

Single-domain recognition task is considered in this
experiment. For each dataset with different CNN-layer fea-
tures, 20, 8, 8, and 8 samples per class are randomly selected
for training from Amazon, DSLR, Webcam, and Caltech
domains, respectively, and the remaining are used as test

samples for each domain. PCA is further applied to both
training and test sets to preserve 99% principle components
of data for computational efficiency. The average recognition
accuracy for each method is reported. Recognition rates of
each method on 4DA datasets using 𝑓6 and 𝑓7 CNN-layer
features are shown in Tables 10 and 11, respectively.

Based on the experimental results above, some conclu-
sions can be reached as follows.(1) In general, across-class representation-based methods
such as SRC and CRC perform better than within-class
representation-based methods, e.g., NN and LRC.The reason
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Table 10: Recognition rates of each method on 4DA datasets using 𝑓6 CNN-layer features.
Methods Datasets

Amazon DLSR Webcam Caltech
NN 0.923±0.012 0.979±0.021 0.972±0.020 0.817±0.014
LRC [17] 0.936±0.009 0.977±0.019 0.977±0.018 0.856±0.010
CRC [22] 0.896±0.021 0.978±0.018 0.976±0.016 0.810±0.038
SRC [16] 0.935±0.006 0.975±0.022 0.977±0.018 0.852±0.012
LLC [32] 0.936±0.007 0.975±0.022 0.978±0.018 0.853±0.013
WGSRC [40] 0.936±0.007 0.975±0.022 0.977±0.018 0.852±0.012
LC-KSVD2 [43] 0.933±0.007 0.975±0.022 0.974±0.013 0.848±0.012
LCLE-DL [44] 0.933±0.006 0.977±0.020 0.975±0.012 0.847±0.012
CSR [31] 0.924±0.006 0.975±0.021 0.972±0.013 0.659±0.012
DPL [48] 0.936±0.007 0.981±0.009 0.978±0.020 0.851±0.020
BDLRR [50] 0.936±0.006 0.973±0.011 0.972±0.023 0.859±0.017
CoLR 0.933±0.009 0.982±0.020 0.979±0.014 0.831±0.014

Table 11: Recognition rates of each method on 4DA datasets using 𝑓7 CNN-layer features.
Methods Datasets

Amazon DLSR Webcam Caltech
NN 0.928±0.011 0.971±0.017 0.964±0.010 0.828±0.012
LRC [17] 0.937±0.011 0.973±0.014 0.976±0.014 0.863±0.008
CRC [22] 0.914±0.011 0.958±0.018 0.972±0.016 0.825±0.011
SRC [16] 0.937±0.010 0.971±0.015 0.975±0.013 0.860±0.008
LLC [32] 0.936±0.010 0.971±0.015 0.974±0.013 0.861±0.009
WGSRC [40] 0.936±0.010 0.971±0.015 0.975±0.013 0.861±0.009
LC-KSVD2 [43] 0.935±0.009 0.978±0.013 0.975±0.014 0.854±0.008
LCLE-DL [44] 0.936±0.009 0.973±0.013 0.973±0.015 0.856±0.006
CSR [31] 0.933±0.009 0.971±0.016 0.974±0.011 0.817±0.013
DPL [48] 0.937±0.008 0.971±0.021 0.964±0.018 0.850±0.019
BDLRR [50] 0.933±0.005 0.969±0.020 0.963±0.017 0.858±0.014
CoLR 0.933±0.011 0.975±0.011 0.976±0.014 0.848±0.006

can be attributed to the collaborative representation char-
acteristic of the across-class representation-based methods.
This is due to the fact that face recognition is often an
undersampled classification problem. As a result, within-
class representation-based methods might be incapable of
providing enough representation ability for query sample
because of limited within-class samples, which will restrict
their performance.(2) As for across-class representation-based methods,
training samples compete with each other to win their share
in representation learning with sparseness constraint, which
will make the learned representation more discriminative
for classification. As a result, sparseness-based methods tend
to outperform nonsparse methods, such as CRC. CRC has
closed-form solution with lower computational cost. One
possible future research direction is to further improve its
discriminant ability for classification with computational
advantage inherited.(3) Supervised representation learning methods, such
as WGSRC, GSC, and CSR, utilize label information for

representation learning, which will make the obtained repre-
sentation more suitable and discriminative for classification
tasks. Comparatively speaking, the proposed CoLR model
outperforms comparing methods in most of the cases under
considered experimental scenarios. This is partly because
CoLR imposes bigger punishment on these training classes
and samples that are likely to be far away from the query
sample. The method actually adopts a coarse-to-fine strategy
to search for the most relevant training samples and classes
with query sample and implicitly excludes the nonneighbor
training classes and samples.With the strategy,more discrim-
inative classification-oriented and locality adaptive represen-
tation can be learnt, which tends to be more efficient and
adaptive for classification tasks as the experimental results
show.As a classificationmethod, CoLR canbe combinedwith
different kinds of feature for classification. The performance
of CoLR can be further enhanced using discriminative deep
CNN features.(4)The emphasis of this paper is on learning a discrim-
inative representation for classification on given dictionary.
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Thus, CoLR model directly adopts the original training
samples as the dictionary to learn classification-oriented
representation. Experimental results show that CoLR could
yield excellent performance in comparison with dictionary
learning methods, which show that the representation learn-
ing strategy of CoLR is efficient in exploring the inherent
discrimination information of training samples for classi-
fication. Many references have suggested that a dictionary
learnt from the original training data seems to be more
discriminative and compact than original training data.
The experimental results have shown the effectiveness and
efficiency of CoLR for image recognition. Future work will
consider the possible applications of CoLR by unifying
dictionary learning methods.

5. Conclusions

In this paper, we have proposed a novel CoLR model for
image recognition. Specifically, an informative and discrim-
inative classification-oriented local representation could be
learned in terms of 𝑙1-norm loss function by taking both
the weighted class-wise sparseness and data locality within
each class into consideration. The developed representation
strategy can encourage classification steered representation
and boost locality sensitivity within the selected training
classes highlighting the test sample’s most relevant training
classes and samples. Also, an efficient optimization algorithm
is devised to solve CoLR model based on a variable splitting
strategy and the ALM scheme. Experimental results on
several face databases and the deep CNN features show that
CoLR can yield promising performance by comparing with
many representative models.
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