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Abstract. Extreme learning machines (ELMs) have been confirmed to be effi-
cient and effective learning techniques for pattern recognition and regression.
However, ELMs primarily focus on the supervised, semi-supervised and unsu-
pervised learning problems in single domain and the generalization ability in
multiple domains based learning issues is hardly studied. This paper aims to
propose a unified framework of ELMs with domain adaptation and improve
their transfer learning capability in cross domains without loss of the computa-
tional efficiency of traditional ELMs. We integrate domain adaptation into
ELMs and two algorithms including source domain adaptation transfer ELM
(TELM-SDA) and target domain adaptation transfer ELM (TELM-TDA) are
proposed. For insight of the difference among ELM, TELM-SDA and TELM-
TDA, two remarks are provided. Experiments on the popular sensor drift big
data with multiple batches in machine olfaction, the results clearly demonstrate
the characteristics of the proposed domain adaptation transfer ELMs that they
can not only copy with sensor drift efficiently without cumbersome measures
comparable to state-of-the-art methods but also bring new perspectives for
ELM.

Keywords: Extreme learning machine, domain adaptation, transfer learning,
semi-supervised learning.

1 Introduction

Extreme learning machine (ELM), proposed for solving a single layer feed-forward
network (SLFN) by Huang et al [1, 2], has been proven to be effective and efficient
algorithms for pattern classification and regression in different fields. ELM can ana-
Iytically determine the output weights between the hidden layer and output layer
using Moore-Penrose generalized inverse by adopting the square loss of prediction
error, which then turns into solving a regularized least square problem efficiently in
closed form. The output of the hidden layer is activated by an infinitely differentiable
function with randomly selected input weights and biases of the hidden layer. Huang
[3] rigorously prove that the input weights and hidden layer biases can be randomly
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assigned if the activation function is infinitely differentiable, who also showed that
single SLFN with randomly generated additive or RBF nodes with such activation
functions can universally approximate any continuous function on any compact sub-
space of Euclidean space [4].

In recent years, ELM has witnessed a number of improved versions in models, al-
gorithms and real-world applications. ELM shows a comparable or even higher pre-
diction accuracy than that of SVMs which solves a quadratic programming problem.
In [3], their differences have been discussed. Some specific examples of improved
ELMs have been listed as follows. As the output weights are computed with prefixed
input weights and biases of hidden layer, a set of non-optimal input weights and hid-
den biases may exist. Additionally, ELM may require more hidden neurons than con-
ventional learning algorithms in some special applications. Therefore, Zhu et al [5]
proposed an evolutionary ELM for more compact networks that speed the response of
trained networks. In terms of the imbalanced number of classes, a weighted ELM was
proposed for binary/multiclass classification tasks with both balanced and imbalanced
data distribution [6]. Due to that the solution of ELM is dense which will require
longer time for training in large scale applications, Bai et al [7] proposed a sparse
ELM for reducing storage space and testing time. Besides, Li et al [8] also proposed a
fast sparse approximation of ELM for sparse classifiers training at a rather low com-
plexity without reducing the generalization performance. For all the versions of ELM
mentioned above, supervised learning framework was widely explored in application
which limits its ability due to the difficulty in obtaining the labeled data. Therefore,
Huang et al [9] proposed a semi-supervised ELM, in which a manifold regularization
with graph Laplacian was set, and under the formulation of semi-supervised ELM, an
unsupervised ELM was also explored.

In the past years, the contributions to ELM theories and applications have been
made substantially by researchers from various fields. However, with the rising of big
data, the data distribution obtained in different stages with different experimental
conditions may change, i.e. from different domains. It is also well know that collec-
tion of labeled instances is tedious and labor ineffective, while the classifiers trained
by a small number of labeled data are not robust and therefore lead to weak generali-
zation, especially for large-scale application. Though ELM performs better generali-
zation in a number of labeled data, the transferring capability of ELM may be reduced
with very little number of labeled training instances from different domains. Domain
adaptation methods have been proposed for classifiers learning with a few labeled
instances from target domains by leveraging a number of labeled samples from the
source domains [10-14]. Domain adaptation methods have also been employed for
object recognition and sensor drift compensation [15, 16]. It is worth noting that do-
main adaptation is different from semi-supervised learning which assumes that the
labeled and unlabeled data are from the same domain in classifier training.

In this paper, we extend ELMs to handle domain adaptation problems for improv-
ing the transferring capability of ELM between multiple domains with very few
labeled guide instances in target domain, and overcome the generalization disad-
vantages of ELM in multi-domains application. Inspired by domain adaptation theory,
two domain adaptation ELMs with similar structures but different knowledge
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adaptation characteristics are proposed for domain adaptation learning and knowledge
transfer. The proposed domain adaptation ELMs are named as source domain adapta-
tion transfer ELM (TELM-SDA) and target domain adaptation transfer ELM (TELM-
TDA), respectively. Specifically, TELM-TDA learns a classifier using the very few
labeled instances from target domain, while the remaining numerous unlabeled data
are also fully exploited by approximating the prediction of the base classifier which
can be trained in the source domain by regularized ELM or SVM. TELM-SDA is a
more instinct framework which learns a classifier by using the large number of la-
beled data from the source domain, and very few labeled instances from target do-
main as regularization. From the learning mechanism of both domain adaptation
ELMs, TELM-TDA has larger computation than TELM-SDA, due to the base classi-
fier training and the numerous unlabeled data from target domain considered in learn-
ing. It is worth noting that both TELM-TDA and TELM-SDA can be formed into a
unified ELM framework which refers to two stages including random feature map-
ping and output weights training.

The rest of this paper is organized as follows. In Section 2, a brief review of ELM
is presented. In Section 3, the proposed TELM-SDA is illustrated in principle and
algorithm. In Section 4, the proposed TELM-TDA is presented with its principle and
algorithm. In Section 5, we present the experiments and results on the popular sensor
drift data with multiple batches collected by electronic nose with 3 years for gas
recognition. The conclusion of this paper is given in Section 6.

2 Related Work: A Brief Review of ELM

Given N samples [X,,X,, -+,Xy] and their corresponding target[t,, t;, -+, ty], where
X; = [0, X0, Xin]T € R® and t; = [, ti1, -+, tim] T € R™ . The output of the
hidden layer is denoted as h(x;) € R*%, where L is the number of hidden nodes and
h(-) is the activation function (e.g. RBF function, sigmoid function). The output
weights between the hidden layer and the output layer being learned is denoted as
B € RY™ where O is the number of output nodes.

Regularized ELM aims to solve the output weights by minimizing the squared loss
summation of prediction errors and the norm of the output weights for over-fitting
control, which results in the following formulation

. 1 1
{mlnB[’ELM = ;”B”Z +C e ?’:1212

. ()
s.t. h(XL)B = ti — Ei,l = 1, ,N

where &; denotes the prediction error w.r.t. the i-th training pattern, and C is a penalty
constant on the training errors.

By substituting the constraint term in (1) into the objective function, an equivalent
unconstrained optimization problem can be obtained as follows

i 1 1
mingepixm Lgpy :;”BHZ +C‘;' IT — HBJI? 2

where H = [h(x,); h(X,); ..;R(xy)] € RV and T = [t t,, ..., ty]".
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The optimization problem (2) is a well known regularized least square problem.
The closed form solution of B can be easily solved by setting the gradient of the sub-
jective function (2) w.r.t. B to zero.

There are two cases when solving B, i.e. if the number N of training patterns is
larger than L, the gradient equation is over-determined, and the closed form solution
can be obtained as

= (we) e @

where I, denotes the identity matrix with size of L.
If the number N of training patterns is smaller than L, an under-determined least
square problem would be handled. In this case, the solution of (2) can be obtained as

B' =HT (HHT + ‘?’V)_1 T &)

where I denotes the identity matrix with size of N.

Therefore, in classifier training of ELM, the output weights can be computed by
using (3) or (4) which depends on the number of training instances and the number of
hidden nodes.

3 Proposed Domain Adaptation Transfer ELM

3.1 Source Domain Adaptation Transfer ELM (TELM-SDA)

Suppose that the source domain and target domain are represented Dg and Dy. In this
paper, we assume that all the samples in the source domain are labeled data. The pro-
posed TELM-SDA aims to learn a classifier S5 using a number of labeled instances
from the source domain, and set the very few labeled data from the target domain as
an appropriate regularizer for adapting to the source domain. The TELM-SDA can be
formulated as

. 1 1 N, i\2 1 N i\2
mlnﬁs,{é,ﬁég ”ﬁs”z + CS 52;51(5;‘) + CT 52151(5';‘) (5)

. {Hs"ﬁs =ti—¢&i=1.,N;
\Hips =t —&.,j=1,..,Np

where H! € R, &L e R™™, t! € RY™denote the output of hidden layer, the predic-
tion error and the label with respect to the i-th training instance x{ from the source
domain, H) € R¥L, &) € R™™™, ¢/ € R™™ denote the output of hidden layer, the
prediction error and the label with respect to the j-th guide samples x% from the target
domain, S5 € RE*™ is the output weights being solved, Ny and N; denote the number
of training instances and guide samples from the source domain and target domain,
respectively, Cs and Cr are the penalty coefficients on the prediction errors of the
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labeled training data from source domain and target domain, respectively. Note that we
call the very few labeled samples in target domain as “guide samples” in this paper.

From (5), we can find that the very few labeled guide samples from target domain
can assist the learning of fs and realize the knowledge transfer between source do-
main and target domain by introducing the third term as regularization with the se-
cond constraint, which makes the feature mapping of the guide samples from target
domain approximate the labels with the output weights S learned by the training
data from the source domain. The structure of the proposed TELM-SDA algorithm is
illustrated in Fig.1.

To solve the optimization (5), the Largange multiplier equation is formulated as

i e 1 1 i\2 1 i\ 2
L(Bs, &6, &1, as,ar) = |IBsl? + Cs5 X%, (85) " + Cr 5 BT, (87) (6)
—ag(Hifs — t& + &§)—ar (Hifr — t + &1)
By setting the partial derivation with respect to fs, &, E;, ag, 0 as zero, we have

= =0 fis = Hias + Hia
9Bs

aL

£=0 - as = Cgs
L
¥r
aL
—=0 2> Hfs—t;+¢=0

6&5

=0 - ar = Crér @)

a_LZO_)HTﬁS_tT+fT:0

6&7‘

where Hg and Hy are the output matrix of hidden layer with respect to the labeled data
from source domain and target domain, respectively.

To solve Bs, as and ar should be solve first. For the case that the number of
training samples N is smaller than L (Ns<L), we substitute the 1%, 2™, and 3" equa-
tions into the 4™ and 5™ equations in (7), there is

HTH_;T(ZS + (HTHE + CLT) dr = tT
(®)
HSH;F(ZT + (HsHér + )as = ts

1
Cs

Let HyHf = A, HyHF + = B,HsHF = C,HsHf + =D , then eq.(8) can be
T S

written as
Aa5+BaT = tT B_lAas‘l'aT =B_1tT
- ©)
Car +Dag =t Car + Dag = &5
Then as and a; can be solved as
{as = (CB™*A—- D)"Y (CB™ 'ty — ty) (10)
ar =Bty — BT'A(CB™*A— D) Y(CB Yty — t5)
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According to the 1* equation in (7), we can obtain the output weights as
Bs = Hias + Hiar
= HJ{(CBT'A—D) " (CB 'ty — t5) +
HI[B~'t; — BT*A(CB™*A— D) Y(CB 'ty — ty)] an

where A = HpH{,B = HrHT +—,C = HsHF,D = HgH +—, I is the identity ma-
T S

trix with size of Nj.

For the case that the number of training samples Nyis larger than L (Ng>L), we can
obtain from the 1% equation in (7) that as = (HsHE) " (Hsfs — HsHEar), which is
substituted into the 4™ and 5™ equations, then we calculate the output weights S as
follows

I T I or T
Hsfs + —ag =t Hg Hsfs + —Hg as = Hg tg
b d CS b d CS

I I
Hr s +C_0-’T =tir HrBs +C_0-’T =tr

T T

{Hsﬁs +é& =t
Hrfs+¢r =tr

H{ HsfBs + CLSH;F (HsH$)™"(HsBs — HsHrar) = Hg ts
ar = Cr(tr — Hrfs)
I I
|3 Hs + - HT s s s = = B3 (1o HD) Hiar = 1
ar = Cr(tr — Hrfs)

I Cr Cr
- (H;fHS +C—+—C H;FHT>ﬁs = HTtg +—C HIt,
S S S

- Bs = (I + CsH{ Hg + CrHF Hp) 7 (CsH ts + CrHEtr)
(12)

where [ is the identity matrix with size of L.

In fact, the optimization (5) can be reformulated an equivalent unconstrained opti-
mization problem in a matrix form by substituting the constraints into the objective
function as

. 1 1 1
ming, Lrgiy—spa(Bs) = > IBsI* + Css llts — HsBslI* + Crs ller — HeBsll*  (13)
By setting the gradient of Lrg;y_spa With respect to s as zero, there is

Virgim-spa = Bs — CsHg (ts — HgBs) — CoHT (tr — Hpfs) = 0 (14)

Then, we can easily solve the S as formulated in (12).
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For recognition of the numerous unlabeled data in target domain, we calculate the
final output using the following

y’;‘cu = H’;‘cu 'ﬁS!k =1,..,Npy (15)

where HY, denote the hidden layer output with respect to the k-th unlabeled vector in
target domain, and Ny, is the number of unlabeled vectors in target domain.

In terms of the above discussion, the TELM-SDA algorithm is summarized as
Algorithm 1.

Fig. 1. Structure of TELM-SDA algorithm with M target domains (M tasks). The solid arrow
denotes the training data from source domain Dg and the dashed arrow denotes the tiny labeled
guide data from target domain D! for classifier learning. The unlabeled data from D¥ are not
used.

Algorithm 1. TELM-SDA algorithm
Input:
Training samples {Xs, ts} = {x¢, ts"}?lzslof the source domain S;

Labeled guide samples {Xr, t7} = {x2, t7. §V=Tl of the target domain T;
The tradeoff parameter Cs and C for source and target domain 7.
Output:
The output weights fS;
The predicted output y7,, of unlabeled data in target domain.
Procedure:
1. Initialize the ELM network of L hidden neurons with random input
weights W and hidden bias B.
2. Calculate the output matrix Hg and Hy of hidden layer with source
and target domains as Hy = h(W - X + B) and Hr = h(W - X1 + B).
3. If Ng<L, compute the output weights fs using (11);
Else, compute the output weights S using (12).
4. Calculate the predicted output y,, using (15).
Return The output weights ¢ and predicted output yr,.
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3.2  Target Domain Adaptation Transfer ELM (TELM-TDA)

In the proposed TELM-SDA, the classifier S5 is learned on the source domain with
the very few labeled guide samples from the target domain as regularization. Study
demonstrates that unlabeled data can also improve the performance of classification
[17]. While the proposed TELM-TDA aims to learn a classifier S on the very few
labeled guide samples from the target domain, and fully explore the numerous unla-
beled data in the target domain with a base classifier S5 trained in source domain. As
illustrated, the proposed TELM-SDA is formulated as

. 1 1 1
n&;n Lrgim—rpa(Br) = 2 IB-II* + CTEHtT — HeBrll* + CTuE”HTuﬁS — He,Brll?
(16)

where Br denotes the learned classifier, Cr, Hy, t; are the same as that in TELM-
SDA, Cr,, Hy,, denote the regularization parameter and the output matrix of the hid-
den layer with respect to the unlabeled data X7 in target domain Dj;, where
Dr = X+ U Xpy,. The first term is to against the over-fitting, the second term is the
least square loss function, and the third term is the regularization which means the
domain adaptation between source domain and target domain. Note that Ss is a base
classifier trained in source domain. In this paper, regularized ELM is used to train a
base classifier ¢ by solving

. 1 1
ming, Lrgiy—rpa(Bs) = > lIBsII* + Cs;”ts — Hgfsl|? (17

where Cg, ts, Hs denote the same meaning as that in TELM-SDA.

The structure of the proposed TELM-SDA is described in Fig.2, from which we
can see that the unlabeled data in target domain have also been explored. To solve the
optimization (16), by setting the gradient of Ly g,rz.p With respect to S as zero, we
then have

VLTELM—TDA = ﬁT - CTH;F(tT - HTﬁT) - CTuH;Fu(HTuﬁS - HTuﬁT) =0 (18)
If the number of training samples N;>L, then we can have from (18)
ﬁT = (I + CTHEHT + CTquuHTu)_l(CTHgtT + CTquuHTuﬁS) (]9)

where I is the identity matrix with size of L.

If the number of training samples Ny<L, we would like to obtain fs of the pro-
posed TELM-TDA by a unified ELM framework. Let t;, = Hrp, s, the model (16)
can be re-written as

. 1 1 N i\2 1N/ \2
ming, i i S 1Brll* + Crs B (6F)" + Cru g 2375 (6r0) (20)

t{ Hipr =th—&Li=1,.., Ny
S. L . . . .
HL Br =tr, —&j=1,..,Npy
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The Lagrange multiplier equation of (20) can be written as

Nt Nty
o 1 1 ) 1 .2
L(ﬁT'f’;"f’;‘w aT'aTu) =3 ”ﬁT”Z +Cr= (5%)2 + Cruz (f%u)
2 24 - 2 4 .
1= j=
—ar(H:Br — th + &L —ar, (HyBr — thy + EL,) 1)

By setting the partial derivation with respect to ﬁT,Eé,E%u,aT,aTu as zero, we
have

JL

B 0 - pr=Hiar+Hfar,
T

JL

2% =0 - ar = Crér
oL

aéTu = 0 - aTu = CTufTu (22)

a_LZO = Hefr—tr+& =0

6&7‘

oL

Fy =0-> Hpyfr —try +ér =0
Tu

To solve Br, let Hry HE = O, Hp HEy, + % = P,H,HY, = Q, HyHT + CLT =R,
with similar calculation of (8), (9), and (10),we can get

{ ar = QP10 = R) QP try — tr)

2
Ay = Py, — PTTO(QP™'0 — R)™H(QP M tpy — tr) @)

Therefore, the output weights if Ny<L can be obtained as
Br = Hrar + Hr,ar,
= HF (QP™'0 = R) ' (QP "ty — ty)
+ Hfy [Pty — PTO(QP™70 — R) T (QP Mtry — t1)] (24)

1 1
where tr, = Hp,fs,0 = Hy HY, P = Hp HY, + a,Q = HyH},,R = HrH} + o I

is the identity matrix with size of Np.
For recognition of the numerous unlabeled data in target domain, we calculate the
final output using the following

y’;‘cu = H’;‘cu 'ﬁT!k =1,..,Npy, (25)

where HY, denote the hidden layer output with respect to the k-th unlabeled vector in
target domain, and Ny, is the number of unlabeled vectors in target domain.

In terms of the above discussion, the TELM-TDA algorithm is summarized as
Algorithm 2.
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Fig. 2. Structure of TELM-TDA algorithm with M target domains (M tasks). The solid arrow
connected with Dg denotes the training for base classifier s, the dashed line connected
with D¥ denotes the tentative test of base classifier using the unlabeled data from target do-
main, the solid arrow connected with D% denotes the terminal classifier learning of 87, and the
dashed arrow connected between s and i denotes the regularization for learning Sr.

Algorithm 2. TELM-TDA algorithm
Input:
Training samples {X, ts} = {x{, ts"}?lzslof the source domain S;
Labeled guide samples {Xr, t7} = {xZ, t;}?’;
Unlabeled samples {X;,,} = {x}‘u}l,gfl‘ of the target domain 7
The tradeoff parameters Cy, Cr and Crp,.
Output:
The output weights Sr;
The predicted output y,, of unlabeled data in target domain.
Procedure:

1. Initialize the ELM network of L hidden neurons with random input
weights W, and hidden bias B,.

2. Calculate the output matrix Hg of hidden layer with source domain as
Hy = h(W, - X5 + B)).

3. If Ng<L, compute the output weights S of the base classifier using (4);

Else, compute the output weights S of the base classifier using (3).

4. Initialize the ELM network of L hidden neurons with random input
weights W, and hidden bias B,.

5. Calculate the output matrix Hy and Hy, of hidden layer with labeled
and unlabeled data in target domains as Hr = h(W, - X7 + B,) and Hp, =
h(W, - X7, + B).

6. If N;<L, compute the output weights S using (24);

Else, compute the output weights S using (19).
7. Calculate the predicted output Y, using (25).
Return The output weights S and predicted output yr.,.

of the target domain 7;
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Remark 1: From the proposed source domain adaptation transfer ELM (TELM-
SDA) and target domain adaptation transfer ELM (TELM-TDA), we can observe that
two stages are included namely feature mapping with random selected weights and
biases and output weights learning which are the main parts in ELM. For ELM, the
only information in source domain is considered. However, for domain adaptation
transfer ELM, very few labeled samples from target domain are explored without
changing the unified ELM framework. The common differences of the ELMs lie in
the calculation of output weights. The unified framework for TELM-SDA and
TELM-TDA might draw some new perspectives for developing the ELMs.

Remark 2: We can observe that the TELM-SDA and TELM-TDA have similar
structure in model and algorithm, except for the base classifier learning in TELM-
TDA. However, the essential difference lies in that the numerous unlabeled data
which may be useful for improving generalization performance are also explored in
TELM-TDA. Specifically, TELM-SDA trains a classifier using the information of
source domain but draw some knowledge with labeled guide samples from the target
domain. In this way, the knowledge from target domain can be effectively transferred
to source domain through appropriate models. Instead, TELM-TDA aims to train a
classifier using the guide data from target domain but introduce a regularizer through
exploring the unlabeled data and a base classifier trained from source domain.

4 Experiments

In this section, we will employ the proposed TELM-SDA and TELM-TDA algo-
rithms on olfactory data collected by electronic nose for sensor drift compensation.
Electronic nose is an artificial olfaction system, which is developed for gas recogni-
tion [18, 19], tea quality assessment [20, 21], medical diagnosis [22], environmental
monitor and gas concentration estimation [23, 24], etc. by using pattern recognition
and gas sensor array with cross-sensitivity and broad spectrum characteristics. How-
ever, gas sensor drift will be caused due to the change of internal component and
aging, which would reduce the generalization performance of well trained classifier
[25]. Therefore, researchers have to retrain the classifier using a number of new sam-
ples in a period regularly. The tedious work for classifier retraining and acquisition of
new labeled samples regularly seems to be impossible, due to the complicated exper-
iments of electronic nose. Though researchers have paid more attention to sensor drift
and aim to find some effective ways for drift compensation through classifier ensem-
bles and drift prediction [16, 26-29], sensor drift is still a challenging issue in machine
olfaction community and sensory field. To our best knowledge, there are no very
effective methods for dealing with sensor drift. Therefore, we aim to enhance the
adaptive performance of classifiers to drifted data with very low complexity and little
work. It would be very meaningful and interesting to train a classifier using very few
labeled new samples (target domain) as guide samples without giving up the recog-
nized “useless” old data (source domain), and make the new trained classifier adapt to
the new patterns in target domain.
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4.1 Experimental Data

For verification of the proposed TELM-SDA and TELM-TDA algorithms, the long-
term sensor drift big data of three years which was released in UCI Machine Learning
Repository [31] by Vergara et al. [26, 30] has been explored in this paper.

This dataset contains 13,910 measurements (observation samples) from an elec-
tronic nose system with 16 gas sensors exposed to 6 kinds of pure gaseous substances
including acetone, acetaldehyde, ethanol, ethylene, ammonia, and toluene at different
concentration levels. The sensor drift big dataset was gathered during the period of
January 2008 to February 2011 with 36 months in a gas delivery platform. For each
sensor, 8 features were extracted, and results in a 128-dimensional feature vector (8
features x 16 sensors) for each measurement. We refer readers to [26] for specific
technical details on how to select the 8 features for single sensor. Totally, 10 batches
of data are included in the dataset which was divided according to months. The details
of the dataset have been presented in Table 1.

Table 1. Number of samples for each subject in the sensor drifted big data

BatchID  Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene Total

Batch 1 1,2 90 98 83 30 70 74 445

Batch 2 3-10 164 334 100 109 532 5 1244
Batch 3 11-13 365 490 216 240 275 0 1586
Batch 4 14, 15 64 43 12 30 12 0 161

Batch 5 16 28 40 20 46 63 0 197
Batch 6 17-20 514 574 110 29 606 467 2300
Batch 7 21 649 662 360 744 630 568 3613
Batch 8 22,23 30 30 40 33 143 18 294
Batch 9 24,30 61 55 100 75 78 101 470
Batch 10 36 600 600 600 600 600 600 3600

4.2  Experimental Setup

We follow the experimental setup in [26] to evaluate the proposed domain adaptation
transfer ELM models. The number of hidden neurons L is set as 1000. The features
are scaled appropriately to lie between -1 and +1. The RBF function is used as the
activation function in the hidden layer (i.e. feature mapping function) in which the
kernel width is set as 1. In TELM-SDA model, the penalty coefficients Cs and Cr are
set as 0.01 and 10 throughout the experiments, respectively. In TELM-TDA model,
the penalty coefficient Cs for base classifier is set as 0.001, Cr and Cy, are set as 0.001
and 100 throughout the experiments, respectively. For effective verification of the
proposed methods, two experimental settings according to [16] are given as follows:

Setting 1: Take batch 1 (source domain) as fixed training set and tested on other 9
batches (target domains);

Setting 2: The training set (source domain) is dynamically changed with batch K-1
and tested on batch K (target domain), K=2,...,10.
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For studying the relation between the number & of labeled samples in target domain
and the recognition accuracy, k is tried in the set of {5, 10, 15, 20, 25, 30, 35, 40, 45,
50}. In addition, for comparisons, we have compared with multi-class SVM with RBF
kernel (SVM-rbf), the geodesic flow kernel (SVM-gfk), and the combination kernel
(SVM-comgfk). Besides, we also compared with the semi-supervised methods such
as manifold regularization with RBF kernel (ML-rbf) and manifold regularization
with combination kernel (ML-comgfk), which have been presented in [16, 26] for the
same sensor drift data. Additionally, the regularized ELM with RBF function in hid-
den layer (ELM-rbf) from [29] is also compared in our experiments. In experiments,
we run the ELM-rbf, TELM-SDA and TELM-TDA 10 times, and the average value
for each item is provided.

4.3 Results

Under the consideration above, we employ the experiments on Setting 1 and Setting 2,
respectively. The comparisons under setting 1 with recognition accuracy of 9 batches
for different methods are presented in Table 2. We have shown two conditions of
TELM-SDA with 20 labeled guide samples and 30 labeled guide samples. For
TELM-TDA, 40 and 50 labeled samples from the target domain are used, respective-
ly, considering that TELM-TDA trains a classifier using the labeled samples from the
target domain, therefore, more labeled samples would be necessary which is slightly
different from TELM-SDA. From Table 2, it can be obviously seen that the proposed
TELM-SDA and TELM-TDA are much better than other existing methods including
SVM with different kernels, manifold regularization with different kernels. For
TELM-SDA and TELM-TDA, the testing accuracies on batch 2-10 with a training
classifier using the data in batch 1 can still be feasible without performance reduction.
This means that the sensor drift can be compensated very well with domain adaptation
knowledge transfer. For visually observing the change of performance with sensor
drift, we show the recognition accuracy on batches successively as Fig. 3. Through
the results of the regularized ELM, we can see that the generalization performance
and knowledge transfer capability have been well improved by the proposed TELM-
SDA and TELM-TDA with domain adaptation. Comparison between TELM-SDA
and TELM-TDA, the latter needs more labeled samples than the former. From the
computational complexity, due to that there is a base classifier in TELM-TDA,
TELM-SDA would be more appropriate in real-world applications which considers
the data in source domain and very few labeled guide samples from target domain for
classifier learning. The specific comparisons between TELM-SDA and TELM-TDA
will be employed later.
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Table 2. Comparisons of recognition accuracy (%) under the experimental Setting 1, i.e.
trained on batch 1 and tested on other successive 9 batches

Batch ID Batch2  Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch8  Batch9  Batch 10
SVM-rbf 74.36 61.03 50.93 18.27 28.26 28.81 20.07 34.26 34.47
SVM-gfk 72.75 70.08 60.75 75.08 73.82 54.53 55.44 69.62 41.78

SVM-comgfk  74.47 70.15 59.78 75.09 73.99 54.59 55.88 70.23 41.85
ML-rbf 4225 73.69 75.53 66.75 77.51 54.43 33.50 23.57 34.92

ML-comgfk 80.25 74.99 78.79 67.41 77.82 71.68 49.96 50.79 53.79
ELM-rbf 70.63 66.44 66.83 63.45 69.73 51.23 49.76 49.83 33.50

TELM-SDA(20) 87.57 96.53 82.61 81.47 84.97 71.89 78.10 87.02 57.42
TELM-SDA(30) 87.98 95.74 85.16 95.99 94.14 83.51 86.90 100.0 53.62
TELM-TDA(40) 83.52 96.34 88.20 99.49 78.43 80.93 87.42 100.0 56.25
TELM-TDA(50) 97.96 95.34 99.32 99.24 97.03 83.09 95.27 100.0 59.45

——— SVM-rbf

| —e— svM-gfk

—<}+— SVM-comgfk

—+— ML-rbf

—+— ML-comgfk

—O— ELM-rbf

—O— TELM-SDA(20)

—&— TELM-SDA(30)

—¥%— TELM-TDA(40)
TELM-TDA(50)

Recognition accuracy (%)

Batch number

Fig. 3. Comparisons of different methods in Setting 1

From the experimental results in Setting 1, the proposed methods perform better
results, and the sensor drift can be well compensated. We have also employed the
experiments by following Setting 2 i.e. trained on batch K-1 and tested on batch K, for
which the results are presented in Table 3. We can find that the proposed domain
adaptation transfer ELM performs much better than other baseline methods for sensor
drift big data. The visual insight of these methods in setting 2 has been described in
Fig.4 which shows the robust performance of the proposed methods in sensor drift
compensation and knowledge transfer.
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Table 3. Comparisons of recognition accuracy (%) under the experimental Setting 2. i.e.
trained on batch K-1, and tested on batch K (2<K<10).

Batch ID 1-2 23 3—4 45 5—6 6—7 7—8 8—9 9—10
SVM-rbf 74.36 87.83 90.06 56.35 42.52 83.53 91.84 62.98 22.64
SVM-gfk 72.75 74.02 77.83 63.91 70.31 77.59 78.57 86.23 15.76
SVM-comgfk 74.47 73.75 78.51 64.26 69.97 77.69 82.69 85.53 17.76
ML-rbf 42.25 58.51 75.78 29.10 53.22 69.17 55.10 37.94 12.44
ML-comgfk 80.25 98.55 84.89 89.85 75.53 91.17 61.22 95.53 39.56
ELM-rbf 70.63 40.44 64.16 64.37 72.70 80.75 88.20 67.00 22.00
TELM-SDA(20)  87.57 96.90 85.59 95.89 80.53 91.56 88.71 88.40 45.61
TELM-SDA(30)  87.98 96.58 89.75 99.04 84.43 91.75 89.83 100.0 58.44
TELM-TDA(40)  83.52 96.41 81.36 96.45 85.13 80.49 85.71 100.0 56.81
TELM-TDA(50)  97.96 95.62 99.63 98.17 97.13 83.10 94.90 100.0 59.88
SVM-rbf

Recognition accuracy (%)

—e— SVM-gfk
—<— SVM-comgfk
—+— ML-rbf
—#*— ML-comgfk
|| —0— ELM-rbf
—O— TELM-SDA(20)
—— TELM-SDA(30)
¥ —&— TELM-TDA(40)
TELM-TDA(50)

5 Conclusion

batch K

Fig. 4. Comparisons of different methods in Setting 2

In this paper, two ELM based algorithms, TELM-SDA and TELM-TDA have been
proposed to extend the ELMs for learning tasks with multi-domains, respectively.
Through the sensor drift big data analysis in machine olfaction, the proposed domain
adaptation transfer ELMs consistently outperform the existing methods such as
SVMs, semi-supervised manifold regularizations and ELMs for sensor drift compen-
sation. For dealing with large scale sensor drift data collected by an electronic nose,
the proposed methods have also the advantages of ELMs including high efficiency of
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classifier/predictor learning and straightforward implementation of multi-class classi-
fication. The adaptation of multi-domain sensor drift big data can be efficiently and
effectively implemented by using the proposed domain adaptation transfer ELMs.
More importantly, the proposed methods can also provide new perspectives for ex-
ploring ELM theory. Experimental results demonstrate that the proposed methods can
obvious improve the transfer capability of ELMs in real-world applications.
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