Abstract—This paper addresses an important issue known as sensor drift, which exhibits a nonlinear dynamic property in electronic nose (E-nose), from the viewpoint of machine learning. Traditional methods for drift compensation are laborious and costly owing to the frequent acquisition and labeling process for gas samples’ recalibration. Extreme learning machines (ELMs) have been confirmed to be efficient and effective learning techniques for pattern recognition and regression. However, ELMs primarily focus on the supervised, semisupervised, and unsupervised learning problems in single domain (i.e., source domain). To our best knowledge, ELM with cross-domain learning capability has never been studied. This paper proposes a unified framework called domain adaptation extreme learning machine (DAELM), which learns a robust classifier by leveraging a limited number of labeled data from target domain for drift compensation as well as gas recognition in E-nose systems, without losing the computational efficiency and learning ability of traditional ELM. In the unified framework, two algorithms called source DAELM (DAELM-S) and target DAELM (DAELM-T) are proposed in this paper. In order to perceive the differences among ELM, DAELM-S, and DAELM-T, two remarks are provided. Experiments on the popular sensor drift data with multiple batches collected using E-nose system clearly demonstrate that the proposed DAELM significantly outperforms existing drift-compensation methods without cumbersome measures, and also bring new perspectives for ELM.

Index Terms—Domain adaptation (DA), drift compensation, electronic nose (E-nose), extreme learning machine (ELM), transfer learning.

I. INTRODUCTION

EXTREME learning machine (ELM), proposed for solving a single-layer feed-forward network (SLFN) in [1] and [2], has been proven to be effective and efficient algorithm for pattern classification and regression in different fields. ELM can analytically determine the output weights between the hidden layer and the output layer using Moore–Penrose generalized inverse by adopting the square loss of prediction error, which then involves in solving a regularized least square problem efficiently in closed form. The hidden layer output is activated by an infinitely differentiable function with randomly selected input weights and biases of the hidden layer. Huang et al. [3] rigorously proved that the input weights and hidden layer biases can be randomly assigned if the activation function is infinitely differentiable, and also showed that single SLFN with randomly generated additive or RBF nodes with such activation functions can universally approximate any continuous function on any compact subspace of Euclidean space [4].

In recent years, ELM has witnessed a number of improved versions in models, algorithms, and real-world applications. ELM shows a comparable or even higher prediction accuracy than SVMs, which solve a quadratic programming problem. Their differences have been discussed in [3]. Some specific examples of improved ELMs have been listed as follows.

- As the output weights are computed with predefined input weights and biases, a set of nonoptimal input weights and hidden biases may exist. Additionally, ELM may require more hidden neurons than conventional learning algorithms in some special applications. Therefore, Zhu et al. [5] proposed an evolutionary ELM for more compact networks that speed the response of trained networks. In terms of the imbalanced number of classes, a weighted ELM was proposed for binary/multiclass classification tasks with both balanced and imbalanced data distribution [6]. Because the solution of ELM is dense, which will require longer time for training in large-scale applications, Bai et al. [7] proposed a sparse ELM for reducing storage space and testing time. Besides, Li et al. [8] also proposed a fast sparse approximation of ELM for sparse classifier training at a rather low complexity without reducing the generalization performance. For all the versions of ELM mentioned earlier, supervised learning framework was widely explored in application which limits its ability due to the difficulty in obtaining the labeled data. Therefore, Huang et al. [9] proposed a semisupervised ELM for classification, in which a manifold regularization with graph Laplacian was set, and an unsupervised ELM was also explored for clustering.

In the past, the contributions to ELM theories and applications have been made substantially by researchers from various fields. However, with the rising of big data, the data distribution obtained in different stages with different experimental conditions may change, i.e., from different domains. It is also well known that electronic nose (E-nose) data collection and data labeling are tedious and labor ineffective, while the classifiers trained by a small number of labeled data are not
robust and therefore lead to weak generalization, in particular for large-scale applications. Although ELM provides better generalization when a number of labeled data from source domain is used in learning, the transferring capability of ELM is reduced with a limited number of labeled training instances from target domains. Domain-adaptation methods have been proposed for robust classifier learning by leveraging a few labeled instances from target domains [10]–[14] in machine learning community and computer vision [15]. It is worth noticing that domain adaptation is different from semisupervised learning, which assumes that the labeled and unlabeled data are from the same domain in classifier training.

In this paper, we extend ELMs to handle domain adaptation problems for improving the transferring capability of ELM between multiple domains with very few labeled guide instances in target domain, and overcome the generalization disadvantages of ELM in multidomain application. Specifically, we address the problem of sensor drift compensation in E-nose using the proposed cross-domain learning framework. Inspired by ELM and knowledge adaptation, a unified domain adaptation ELM (DAELM) framework is proposed for sensor drift compensation. The merits of this paper include the following.

1) To the best of our knowledge, there is no report that couples domain adaptation with ELM framework in machine learning community, whereas this paper provides several new perspectives for exploring ELM theory.

2) We integrate a new methodology, i.e., DAELM in E-nose, for sensor drift compensation and gas recognition. The proposed DAELM is a unified classifier learning framework with knowledge adaptability and it well addresses the problem of drift as well as gas recognition.

3) A method of DAELM, called source DAELM (DAELM-S), which learns a classifier using a number of labeled data from the source domain, and leveraging a limited number of labeled samples from target domain as regularization, is proposed intuitively.

4) Another method of DAELM, called target DAELM (DAELM-T) is also proposed. DAELM-T learns a classifier using a limited number of labeled instances from target domain, while the remaining numerous unlabeled data are also fully exploited by approximating the prediction of a prelearned base classifier trained in source domain to that of the learned classifier, into which many existing classifiers can be incorporated as the base classifier.

5) Both DAELM-S and DAELM-T can be formed into a unified ELM framework, in which two steps, random feature mapping and output weights training, are referred and our DAELM holds the merits of ELM. In both the methods, the final solution can be analytically determined, and the generalization performance is guaranteed in E-nose application.

The rest of this paper is organized as follows. In Section II, related work in sensor drift compensation and a brief review of ELM are presented. In Section III, the proposed DAELM framework, including two specific algorithms DAELM-S and DAELM-T, is presented. In Section IV, we present the experiments on the popular sensor drift data collected using E-nose for three years and the results of drift compensation and gas recognition. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

A. Sensor Drift Compensation in Electronic Nose

Electronic nose is an intelligent multisensor system or artificial olfaction system, which is developed as an instrument for gas recognition [18], [19], tea quality assessment [20], [21], medical diagnosis [22], environmental monitor and gas concentration estimation [23], [24], and so on, by coupling with pattern recognition and gas sensor array with cross-sensitivity and broad spectrum characteristics. An excellent overview of the E-nose and techniques for processing the sensor responses can be found in [32] and [33].

However, sensors are often operated over a long period in real-world applications and lead to aging, which seriously reduces the lifetime of sensors. This is so-called sensor drift caused by unknown dynamic processes such as poisoning, aging, or environmental variations [34]. Sensor drift has deteriorated the performance of classifiers [25] used for gas recognition of chemosensory systems or E-noses, and plagued the sensory community for many years. Therefore, researchers have to retrain the classifier using a number of new samples in a period regularly for recalibration. However, the tedious work of classifier retraining and regular acquisition of newly labeled samples seems to be impossible for recalibration, owing to the complicated gaseous experiments of E-nose and labor cost.

The drift problem can be formulated as follows. Suppose $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_K$ are gas sensor data sets collected by an E-nose with K batches ranked according to the time intervals, where $\mathcal{D}_i = \{x_j^{ij} \}_{j=1}^{N_i}$, $i = 1, \ldots, K, x_j^{ij}$ denotes a feature vector of the jth sample in batch i, and N_i is the number of samples in batch i. The sensor drift problem is that the feature distributions of $\mathcal{D}_2, \ldots, \mathcal{D}_K$ do not obey the distribution of \mathcal{D}_1. As a result, the classifier trained using the labeled data of \mathcal{D}_1 has degraded performance when tested on $\mathcal{D}_2, \ldots, \mathcal{D}_K$ due to the deteriorated generalization ability caused by drift. In general, the mismatch of distribution between \mathcal{D}_i and \mathcal{D}_1 becomes larger with increasing batch index i ($i > 1$) and aging. From the angle of domain adaptation, in this paper, \mathcal{D}_1 is called source domain/auxiliary domain (without drift) with labeled data, and $\mathcal{D}_2, \ldots, \mathcal{D}_K$ are referred to as target domain (drifted) in which only a limited number of labeled data are available.

Drift compensation has been studied for many years. Generally, drift-compensation methods can be divided into three categories: 1) component correction methods; 2) adaptive methods; and 3) machine learning methods. Specifically, multivariate component correction, such as Component Correction Principal Component Analysis (CCPCA) [35], which attempts to find the drift direction using principal component analysis (PCA) and remove the drift component, is recognized as a popular method in periodic calibration. However, CCPCA assumes that the data from all classes...
behave in the same way in the presence of drift, and that is
not always the case. Additionally, evolutionary algorithm that
optimizes a multiplicative correction factor for drift compen-
sation [36] was proposed as an adaptive method. However,
the generalization performance of the correction factor is limited
for online use due to the nonlinear dynamic behavior of
sensor drift. Classifier ensemble in machine learning was first
proposed in [26] for drift compensation, which has shown
improved gas recognition accuracy using the data with long-
term drift. An overview of the drift compensation is given in
[25]. Other recent methods used to cope with drift are given in
[27]–[29].

Although researchers have paid more attention to sensor
drift and aimed to find some measures for drift compensation,
sensor drift is still a challenging issue in machine olfaction
community and sensory field. To our best knowledge, the
existing methods are limited in dealing with sensor drift due
to their weak generalization to completely new data in the
presence of drift. Therefore, we aim to enhance the adaptive
performance of classifiers to new drifting/drifted data using
cross-domain learning with very low complexity. It would
be very meaningful and interesting to train a classifier using
very few labeled new samples (target domain) without giving
up the recognized useless old data (source domain), and
realize effective and efficient knowledge transfer (i.e., drift
compensation) from source domain to multiple target domains.

B. Principle of ELM

Given \(N \) samples \([x_1, x_2, \ldots, x_N] \) and their corresponding
ground truth \([t_1, t_2, \ldots, t_N] \), where \(x_i = [x_{i1}, x_{i2}, \ldots, x_{im}]^T \in \mathbb{R}^n \) and \(t_i = [t_{i1}, t_{i2}, \ldots, t_{im}]^T \in \mathbb{R}^m \), \(n \) and \(m \) denote the number of input and output neurons, respectively. The output of the hidden layer is denoted as \(\mathcal{H}(x_i) \in \mathbb{R}^{1 \times L} \), where \(L \) is the number of hidden nodes and \(\mathcal{H}(\cdot) \) is the activation function (e.g., RBF function and sigmoid function). The output weights between the hidden layer and the output layer being learned is denoted as \(\beta \in \mathbb{R}^{L \times m} \).

Regularized ELM aims to solve the output weights by minimizing the squared loss summation of prediction errors and the norm of the output weights for overfitting control, formulated as follows:

\[
\begin{align*}
\min_{\beta} \quad & \mathcal{L}_{\text{ELM}} = \frac{1}{2} \| \beta \|^2 + C \cdot \frac{1}{2} \cdot \sum_{i=1}^{N} \| \xi_i \|^2 \\
\text{s.t.} \quad & \mathcal{H}(x_i) \beta = t_i - \xi_i, \quad i = 1, \ldots, N
\end{align*}
\]

(1)

where \(\xi_i \) denotes the prediction error with respect to the \(i \)th training pattern, and \(C \) is a penalty constant on the training errors.

By substituting the constraint term in (1) into the objective function, an equivalent unconstrained optimization problem can be obtained as follows:

\[
\begin{align*}
\min_{\beta \in \mathbb{R}^{L \times m}} \quad & \mathcal{L}_{\text{ELM}} = \frac{1}{2} \| \beta \|^2 + C \cdot \frac{1}{2} \cdot \| T - H \beta \|^2
\end{align*}
\]

(2)

where \(H = [\mathcal{H}(x_1); \mathcal{H}(x_2); \ldots; \mathcal{H}(x_N)] \in \mathbb{R}^{N \times L} \) and \(T = [t_1, t_2, \ldots, t_N]^T \).

The optimization problem (2) is a well-known regularized least square problem. The closed-form solution of \(\beta \) can be easily solved by setting the gradient of the objective function (2) with respect to \(\beta \) to zero.

There are two cases when solving \(\beta \). First, if the number \(N \) of training patterns is larger than \(L \), the gradient equation is overdetermined, and the closed-form solution can be obtained as

\[
\beta^* = \left(H^T H + \frac{I_L}{C} \right)^{-1} H^T T
\]

(3)

where \(I_{L \times L} \) denotes the identity matrix.

Second, if the number \(N \) of training patterns is smaller than \(L \), an underdetermined least square problem would be handled. In this case, the solution of (2) can be obtained as

\[
\beta^* = H^T \left(H H^T + \frac{I_N}{C} \right)^{-1} T
\]

(4)

where \(I_{N \times N} \) denotes the identity matrix.

Therefore, in classifier training of ELM, the output weights can be computed using (3) or (4) depending on the number of training instances and the number of hidden nodes. We direct the interested readers to [1] for more details on ELM theory and the algorithms.

III. PROPOSED DAELM FRAMEWORK

In this section, we present the formulation of the proposed DAELM framework, in which two methods, DAELM-S and DAELM-T, are introduced with their learning algorithms.

A. Source DAELM

Suppose that the source domain and target domain are represented by \(S \) and \(T \), respectively. In this paper, we assume that all the samples in the source domain are labeled data.

The proposed DAELM-S aims to learn a classifier \(\beta_S \) using all labeled instances from the source domain by leveraging a limited number of labeled data from target domain. The DAELM-S can be formulated as

\[
\begin{align*}
\min_{\beta_S, \xi_S^1, \xi_S^2, \xi_T} & \quad \frac{1}{2} \| \beta_S \|^2 + C_S \frac{1}{2} \sum_{i=1}^{N_S} \| \xi_S^1_i \|^2 + C_T \frac{1}{2} \sum_{j=1}^{N_T} \| \xi_T^j \|^2 \\
\text{s.t.} & \quad H^T \beta_S = t_S^i - \xi_S^1_i, \quad i = 1, \ldots, N_S \\
& \quad H^T \beta_S = t_T^j - \xi_T^j, \quad j = 1, \ldots, N_T
\end{align*}
\]

(5)

where \(H_S^i \in \mathbb{R}^{1 \times L}, \xi_S^i \in \mathbb{R}^{1 \times m}, \) and \(t_S^i \in \mathbb{R}^{1 \times m} \) denote the output of hidden layer, the prediction error, and the label with respect to the \(i \)th training instance \(x_S^i \) from the source domain; \(H_T^j \in \mathbb{R}^{1 \times L}, \xi_T^j \in \mathbb{R}^{1 \times m}, \) and \(t_T^j \in \mathbb{R}^{1 \times m} \) denote the output of hidden layer, the prediction error, and the label vector with respect to the \(j \)th guide samples \(x_T^j \) from the target domain; \(\beta_S \in \mathbb{R}^{L \times m} \) is the output weights being solved; \(N_S \) and \(N_T \) denote the number of training instances and guide samples from the source domain and target domain, respectively; and \(C_S \) and \(C_T \) are the penalty coefficients on the prediction errors of the labeled training data from source domain and target domain, respectively. In this paper, \(t_S^i = 1, \) if pattern \(x_S^i \) belongs to the \(j \)th class, and \(-1 \) otherwise. For example, \(t_S^i = [1, -1, \ldots, -1]^T \) if \(x_S^i \) belongs to Class 1.
Fig. 1. Structure of DAEMLM-S algorithm with M target domains (M tasks). Solid arrow: training data from source domain \mathcal{D}_S for classifier learning. Dashed arrow: labeled data from target domain $\mathcal{D}_{T,t}$ for classifier learning. The unlabeled data from target domain $\mathcal{D}_{T,u}$ are not used in learning.

From (5), we find that the very few labeled guide samples from target domain can make the learning of β_S transferable and realize the knowledge transfer between source domain and target domain by introducing the third term as regularization coupling with the second constraint in (6), which makes the feature mapping of the guide samples from target domain approximate the labels recognized with the output weights β_S. The structure of the proposed DAEMLM-S algorithm to learn M classifiers is shown in Fig. 1.

To solve the optimization (5), the Lagrange multiplier equation is formulated as

$$L(\beta_S, \xi_S^T, \xi_T^T, \alpha_S, \alpha_T) = \frac{1}{2} \|\beta_S\|^2 + \frac{C_T}{2} \sum_{i=1}^{N_T} \|\xi_S^T\|^2 + \frac{C_T}{2} \sum_{j=1}^{N_T} \|\xi_T^T\|^2$$

$$- \alpha_S (H_S^T \beta_S - t_S^T + \xi_S^T) - \alpha_T (H_T^T \beta_T - t_T^T + \xi_T^T)$$

(7)

where α_S and α_T denote the multiplier vectors.

By setting the partial derivative with respect to $\beta_S, \xi_S^T, \alpha_S, \alpha_T$ as zero, we have

$$\begin{align*}
\frac{\partial L}{\partial \beta_S} &= 0 \Rightarrow \beta_S = H_S^T \alpha_S + H_T^T \alpha_T \\
\frac{\partial L}{\partial \xi_S^T} &= 0 \Rightarrow \alpha_S = C_S \xi_S^T \\
\frac{\partial L}{\partial \xi_T^T} &= 0 \Rightarrow \alpha_T = C_T \xi_T^T \\
\frac{\partial L}{\partial \alpha_S} &= 0 \Rightarrow H_S \beta_S - t_S + \xi_S = 0 \\
\frac{\partial L}{\partial \alpha_T} &= 0 \Rightarrow H_T \beta_T - t_T + \xi_T = 0
\end{align*}$$

(8)

where H_S and H_T are the output matrix of hidden layer with respect to the labeled data from source domain and target domain, respectively. To analytically determine β_S, the multiplier vectors α_S and α_T should be solved first.

For the case that the number of training samples N_S is smaller than L ($N_S < L$), H_S will have more columns than rows and be of full row rank, which leads to an underdetermined least square problem, and infinite number of solutions may be obtained. To handle this problem, we substitute (1), (2), and (3) into (4) and (5), considering that H_H^T is invertible, and then there is

$$\begin{align*}
H_T H_T^T \alpha_S + \left(H_T H_T^T + \frac{1}{C_T} \right) \alpha_T &= t_T \\
H_S H_S^T \alpha_T + \left(H_S H_S^T + \frac{1}{C_S} \right) \alpha_S &= t_S.
\end{align*}$$

(9)

Let $H_T H_S^T = A, H_T H_T^T + I/C_T = B, H_S H_S^T = C, H_S H_S^T + I/C_S = D$, then (9) can be written as

$$\begin{align*}
A \alpha_S + B \alpha_T &= t_T \\
C \alpha_T + D \alpha_S &= t_S.
\end{align*}$$

(10)

Then, α_S and α_T can be solved as

$$\begin{align*}
\alpha_S &= (C^T B^{-1} A - D)^{-1} (C^T B^{-1} t_T - t_S) \\
\alpha_T &= B^{-1} t_T - B^{-1} A (C^T B^{-1} A - D)^{-1} (C^T B^{-1} t_T - t_S).
\end{align*}$$

(11)

Considering (1) in (8), we obtain the output weights as

$$\begin{align*}
\beta_S &= H_S^T \alpha_S + H_T^T \alpha_T \\
&= H_S^T (C^T B^{-1} A - D)^{-1} (C^T B^{-1} t_T - t_S) \\
&\quad + H_T^T (B^{-1} t_T - B^{-1} A (C^T B^{-1} A - D)^{-1} (C^T B^{-1} t_T - t_S))
\end{align*}$$

(12)

where I is the identity matrix with size of N_S.

For the case that the number of training samples N_S is larger than L ($N_S > L$), H_S has more rows than columns and is of full column rank, which is an overdetermined least square problem. Then, we can obtain by substituting (1) in (8) that $\alpha_S = (H_S H_S^T)^{-1} (H_S \beta_S - H_T H_T^T \alpha_T)$, after which is substituted into (4) and (5), we can calculate the output weights β_S as follows:

$$\begin{align*}
\begin{bmatrix}
H_S \beta_S + \xi_S = t_S \\
H_T \beta_S + \xi_T = t_T
\end{bmatrix} &\Rightarrow \begin{bmatrix}
H_S^T H_S \beta_S + \frac{1}{C_S} H_S^T \alpha_S = H_S^T t_S \\
H_T^T H_T \beta_T + \frac{1}{C_T} H_T^T \alpha_T = t_T
\end{bmatrix} \\
&\Rightarrow \begin{bmatrix}
\beta_S = H_S^T t_S + C_T (t_T - H_T \beta_S) \\
\beta_T = C_T (t_T - H_T \beta_S)
\end{bmatrix}
\end{align*}$$

(13)

where I is the identity matrix with size L.

In fact, the optimization (5) can be reformulated as an equivalent unconstrained optimization problem in matrix form by substituting the constraints into the objective function

$$\min_{\beta_S} L_{DAEMLM-S} (\beta_S) = \frac{1}{2} \|\beta_S\|^2 + C_S \frac{1}{2} \|t_S - H_S \beta_S\|^2 + C_T \frac{1}{2} \|t_T - H_T \beta_S\|^2.$$

(14)

By setting the gradient of $L_{DAEMLM-S}$ with respect to β_S to be zero

$$\nabla L_{DAEMLM-S} = \beta_S - C_S H_S^T (t_S - H_S \beta_S) - C_T H_T^T (t_T - H_T \beta_S) = 0.$$

(15)
Then, we can easily solve (15) to obtain β_S formulated in (13).

For recognition of the numerous unlabeled data in target domain, we calculate the output of DAELM-S network as

$$y_{Tu}^k = H_{Tu}^k \beta_S, \quad k = 1, \ldots, N_{Tu}$$

where H_{Tu}^k denote the hidden layer output with respect to the kth unlabeled vector in target domain, and N_{Tu} is the number of unlabeled vectors in target domain. The index corresponding to the maximum value in y_{Tu}^k is the class of the kth sample.

For implementation, the DAELM-S algorithm is summarized in Algorithm 1.

Algorithm 1 DAELM-S

Input:
- Training samples $\{X_S, t_S\} = \{x_S^i, t_S^i\}_{i=1}^{N_S}$ of the source domain S;
- Labeled guide samples $\{X_T, t_T\} = \{x_T^j, t_T^j\}_{j=1}^{N_T}$ of the target domain T;
- The tradeoff parameter C_S and C_T for source and target domain.

Output:
- The output weights β_S;
- The predicted output y_{Tu} of unlabeled data in target domain.

Procedure:
1. Initialize the ELM network of L hidden neurons with random input weights W and hidden bias B.
2. Calculate the output matrix H_S and H_T of hidden layer with source and target domains as $H_S = \beta (W \cdot X_S + B)$ and $H_T = \beta (W \cdot X_T + B)$.
3. If $N_{NS} < L$, compute the output weights β_S using (12);
 Else, compute the output weights β_S using (13).
4. Calculate the predicted output y_{Tu} using (16).

Return The output weights β_S and predicted output y_{Tu}.

Fig. 2. Structure of DAELM-T algorithm with M target domains (M tasks). The solid arrow connected with D_S denotes the training for base classifier β_B, the dashed line connected with D^2_T denotes the tentative test of base classifier using the unlabeled data from target domain, the solid arrow connected with D^i_T denotes the terminal classifier learning of β_T, the dashed arrow connected between β_B, and β_T denotes the regularization for learning β_T.

is the least square loss function, and the third term is for the regularization, which means the domain adaptation between source domain and target domain. Note that β_B is a base classifier learned with source data. In this paper, regularized ELM is used to train a base classifier β_B by solving

$$\min_{\beta_B} L_{ELM}(\beta_B) = \frac{1}{2} \| \beta_B \|^2 + C_S \frac{1}{2} \| t_S - H_S \beta_B \|^2$$

(18)

where C_S, t_S, H_S denote the same meaning as that in DAELM-S.

The structure of the proposed DAELM-T is described in Fig. 2, from which we can see that the unlabeled data in target domain have also been exploited. To solve the optimization (17), by setting the gradient of $L_{DAELM-T}$ with respect to β_T to be zero, we then have

$$\nabla L_{DAELM-T} = \beta_T - C_T H_T^T (t_T - H_T \beta_T) - C_{Tu} H_{Tu}^T (t_{Tu} - H_{Tu} \beta_T) = 0.$$

(19)

If $N_T > L$, then we have from (19) that

$$\beta_T = (I + C_T H_T^T H_T + C_{Tu} H_{Tu}^T H_{Tu})^{-1} \times (C_T H_T^T t_T + C_{Tu} H_{Tu}^T t_{Tu} - H_{Tu} \beta_T)$$

(20)

where I is the identity matrix with size of L.

If $N_T < L$, we would like to obtain β_T of the proposed DAELM-T according to the solving manner in DAELM-S. Let $t_{Tu} = H_{Tu} \beta_B$, the model (17) can be rewritten as

$$\min_{\beta_T, \xi_T, \xi_{Tu}} \frac{1}{2} \| \beta_T \|^2 + C_T \frac{1}{2} \sum_{i=1}^{N_T} \| \xi_T^i \|^2 + C_{Tu} \frac{1}{2} \sum_{j=1}^{N_{Tu}} \| \xi_{Tu}^j \|^2$$

s.t. $H_T^i \beta_T = t_T^i - \xi_T^i$, $i = 1, \ldots, N_T$

$$H_{Tu}^j \beta_T = t_{Tu}^j - \xi_{Tu}^j$, $j = 1, \ldots, N_{Tu}$. (21)

The Lagrange multiplier equation of (21) can be written as

$$L(\beta_T, \xi_T, \xi_{Tu}, \alpha_T, \alpha_{Tu})$$

$$= \frac{1}{2} \| \beta_T \|^2 + C_T \frac{1}{2} \sum_{i=1}^{N_T} \| \xi_T^i \|^2 + C_{Tu} \frac{1}{2} \sum_{j=1}^{N_{Tu}} \| \xi_{Tu}^j \|^2$$

$$- \alpha_T (H_T^T \beta_T - t_T^i + \xi_T^i) - \alpha_{Tu} (H_{Tu}^j \beta_T - t_{Tu}^j + \xi_{Tu}^j).$$

(22)
By setting the partial derivation with respect to β_T, ξ_T, ξ_{Tu}, α_T, α_{Tu} to be zero, we have:

$$
\begin{align*}
\frac{\partial L}{\partial \beta_T} &= 0 \implies H_T^T \alpha_T + H_{Tu}^T \alpha_{Tu} = 0, \\
\frac{\partial L}{\partial \xi_T} &= 0 \implies C_T \xi_T = 0, \\
\frac{\partial L}{\partial \xi_{Tu}} &= 0 \implies C_{Tu} \xi_{Tu} = 0, \\
\frac{\partial L}{\partial \alpha_T} &= 0 \implies H_T \beta_T - t_T + \xi_T = 0, \\
\frac{\partial L}{\partial \alpha_{Tu}} &= 0 \implies H_{Tu} \beta_T - t_{Tu} + \xi_{Tu} = 0.
\end{align*}
$$

To solve β_T, let $H_{Tu} H_{Tu}^T = O$, $H_{Tu} H_{Tu}^T + I/C_{Tu} = P$, $H_T H_T^T = O$, and $H_T H_T^T + I/C_T = R$.

By calculating in the same way as (9)-(11), we get:

$$
\begin{align*}
\alpha_T &= (Q P^{-1} Q^{-1} - R^{-1})^{-1} (Q P^{-1} t_T - t_T), \\
\alpha_{Tu} &= P^{-1} t_{Tu} - P^{-1} Q P^{-1} (Q P^{-1} t_T - t_T).
\end{align*}
$$

Therefore, when $N_T < L$, the output weights can be obtained as:

$$
\beta_T = H_T^T \alpha_T + H_{Tu}^T \alpha_{Tu} = H_T^T (Q P^{-1} Q^{-1} - R^{-1})^{-1} (Q P^{-1} t_T - t_T) + H_{Tu}^T (P^{-1} t_{Tu} - P^{-1} Q P^{-1} (Q P^{-1} t_T - t_T))^{-1} (Q P^{-1} t_{Tu} - t_{Tu}).
$$

where $t_{Tu} = H_{Tu} \beta_B$ and I is the identity matrix with size of N_T.

For recognition of the numerous unlabeled data in target domain, we calculate the final output of DAELM-T as:

$$
y_{Tu}^k = H_{Tu}^k \beta_T, \quad k = 1, \ldots, N_{Tu}
$$

where H_{Tu}^k denotes the hidden layer output with respect to the kth unlabeled sample vector in target domain, and N_{Tu} is the number of unlabeled vectors in target domain.

For implementation in experiment, the DAELM-T algorithm is summarized in Algorithm 2.

Remark 1: From the algorithms of DAELM-S and DAELM-T, we observe that the same two stages as ELM are included: 1) feature mapping with randomly selected weights and biases and 2) output weights computation. For ELM, the algorithm is constructed and implemented in a single domain (source domain); as a result, the generalization performance is degraded in new domains. In the proposed DAELM framework, a limited number of labeled samples and numerous unlabeled data in target domain are exploited without changing the unified ELM framework, and the merits of ELM are inherited. The framework for DAELM might draw some new perspectives of domain adaptation for developing ELM theory.

Remark 2: We observe that the DAELM-S has similar structure in model and algorithm with DAELM-T. The essential difference lies in that numerous unlabeled data that may be useful for improving generalization performance are exploited in DAELM-T through a prelearned base classifier. Specifically, DAELM-S learns a classifier using the labeled training data in source domain, but draws some new knowledge by leveraging a limited number of labeled samples from target domain, such that the knowledge from target domain can be effectively transferred to source domain for generalization. DAELM-T attempts to train a classifier using a limited number of labeled data from target domain as main knowledge but introduces a regularizer that minimizes the error between outputs of DAELM-T classifier β_T and the base classifier β_B computed on the unlabeled input data.

IV. EXPERIMENTS

In this section, we will employ the sensor drift-compensation experiment on the E-nose olfactory data using the proposed DAELM-S and DAELM-T algorithms.

A. Description of Experimental Data

For verification of the proposed DAELM-S and DAELM-T algorithms, the long-term sensor drift big data of three years that was released in UCI Machine Learning Repository [31] in [26] and [30] is exploited and studied in this paper.

The sensor drift big data set was gathered during the period from January 2008 to February 2011 with 36 months in a gas delivery platform. Totally, this data set contains 13910 measurements (observations) from an E-nose system.
TABLE I
EXPERIMENTAL DATA OF SENSOR DRIFT IN E-NOSE

<table>
<thead>
<tr>
<th>Batch ID</th>
<th>Month</th>
<th>Acetone</th>
<th>Acetaldehyde</th>
<th>Ethanol</th>
<th>Ethylene</th>
<th>Ammonia</th>
<th>Toluene</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1</td>
<td>1, 2</td>
<td>90</td>
<td>98</td>
<td>83</td>
<td>30</td>
<td>70</td>
<td>74</td>
<td>445</td>
</tr>
<tr>
<td>Batch 2</td>
<td>3–10</td>
<td>164</td>
<td>334</td>
<td>100</td>
<td>109</td>
<td>532</td>
<td>6</td>
<td>1244</td>
</tr>
<tr>
<td>Batch 3</td>
<td>11, 12, 13</td>
<td>365</td>
<td>490</td>
<td>216</td>
<td>240</td>
<td>275</td>
<td>0</td>
<td>1586</td>
</tr>
<tr>
<td>Batch 4</td>
<td>14, 15</td>
<td>64</td>
<td>43</td>
<td>12</td>
<td>30</td>
<td>12</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Batch 5</td>
<td>16</td>
<td>24</td>
<td>40</td>
<td>20</td>
<td>46</td>
<td>63</td>
<td>0</td>
<td>197</td>
</tr>
<tr>
<td>Batch 6</td>
<td>17, 18, 19, 20</td>
<td>514</td>
<td>574</td>
<td>110</td>
<td>29</td>
<td>606</td>
<td>467</td>
<td>2300</td>
</tr>
<tr>
<td>Batch 7</td>
<td>21</td>
<td>649</td>
<td>662</td>
<td>360</td>
<td>744</td>
<td>630</td>
<td>568</td>
<td>3613</td>
</tr>
<tr>
<td>Batch 8</td>
<td>22, 23</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>33</td>
<td>143</td>
<td>18</td>
<td>294</td>
</tr>
<tr>
<td>Batch 9</td>
<td>24, 30</td>
<td>81</td>
<td>55</td>
<td>100</td>
<td>75</td>
<td>78</td>
<td>101</td>
<td>470</td>
</tr>
<tr>
<td>Batch 10</td>
<td>36</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>3600</td>
</tr>
</tbody>
</table>

Fig. 3. Response of 16 sensors before (batch 1) and after drifting (batches 2, 7, and 10) under acetone with various concentrations (i.e., 10, 50, 100, 150, 200, and 250 ppm). In total, 40 samples, including 6, 7, 6, 7, and 7 samples for each concentration, respectively, are illustrated for visual inspection of the drift behavior.

For visualization of the drift behavior existing in the data set, we first plot the sensor response before and after drifting. We view the data in batch 1 as nondrift, and select batch 2, batch 7, and batch 10 as drifted data, respectively, and the response is given in Fig. 3. It is known that sensor drift shows nonlinear behavior in a multidimensional sensor array, and it is impossible to intuitively and directly calibrate the sensor response using some linear or nonlinear transformation. Instead, we consider it as a space distribution adaptation using transfer learning and realize the drift compensation in decision level. Therefore, to observe the space distribution variation with drift, we apply PCA on the data set, and project the data into a 2-D subspace based on the first two PCs. The projected 2-D subspace for all data in each batch is shown in Fig. 4, from which we can observe the significant changes of data space distribution caused by drift over time.

It is worth noting that sensor responses after drift cannot be calibrated directly due to the nonlinear dynamic behavior or chaotic behavior [28] of sensor drift. Therefore, drift compensation in decision level by data distribution adaptation and machine learning is more appealing.

Considering that a small number of labeled samples (guide samples) should be first selected from the target domains in the proposed DAELM-S and DAELM-T algorithms, while the labeled target data play an important role in knowledge...
Algorithm 3 SSA Algorithm

Input:
The data X_T from target domain;
The predefined number k of labeled samples being selected.

Output:
The selected k labeled guide set $S_l = \{s_1, s_2, \ldots, s_k\}$.

Procedure:

While the number of selected labeled instances does not reach k
do

Step1: Calculate the Euclidean distance in pair-wise from each target domain, and select the farthest two patterns s_1^l and s_2^l as the labeled instances which is put into the guide set $S_l = \{s_1, s_2\}$;

Step2: To a pattern x_i, calculate the Euclidean distances $d(x_i, S_l)$, and the nearest distance in each pair for pattern x_i is put into the set $N_d(x_i)$;

Step3: The pattern with the farthest distance in set $N_d(x_i)$ is then selected as labeled sample s_1^l, and update selected labeled guide set $S_l = \{s_1, s_2, s_3\}$;

Step4: If the size of the guide set S_l reaches the number k, break;

Return $S_l = \{s_1, s_2, \ldots, s_k\}$

end while

Fig. 5. Visual description of SSA Algorithm 3.

In DAELM-S algorithm, the penalty coefficients C_S and C_T are empirically set as 0.01 and 10, respectively, throughout the experiments. In DAELM-T algorithm, the penalty coefficient C_S for base classifier is set as 0.001, and C_T and C_{Tu} are set as 0.001 and 100, respectively, throughout the experiments. For effective verification of the proposed methods, two experimental settings according to [16] are given as follows.

1) Setting-1: Take batch 1 (source domain) as fixed training set and tested on batch K, $K = 2, \ldots, 10$ (target domains).

2) Setting-2: The training set (source domain) is dynamically changed with batch $K - 1$ and tested on batch K (target domain), $K = 2, \ldots, 10$.

Following the two settings, we realize our proposed DAELM framework and compare it with multiclass SVM with RBF kernel, the geodesic flow kernel, and the combination kernel (SVM-comgfk). Besides, we also compare it with the semisupervised methods such as manifold regularization with RBF kernel and manifold regularization with combination kernel (ML-comgfk). The above machine-learning-based methods have been reported for drift compensation [16] using the same data set. The formulation of geodesic flow kernel as a domain adaptation method is given in [37]. Additionally, the regularized ELM with RBF function in hidden layer (ELM-rbf) from [29] is also compared as baseline in experiments. The popular CC-PCA method [35] and classifier ensemble [26] for drift compensation are also reported in Setting 1 and Setting 2.

Owing to the random selection of input weights between input layer and hidden layer, and bias in hidden layer under ELM framework, in experiments, we run the ELM, DAELM-S, and DAELM-T for 10 times, and the average values are reported. Note that ELM is trained using the same labeled source data and target data as the proposed DAELM.

C. Results and Comparisons

We conducted the experiments and discussion on Setting 1 and Setting 2, respectively. The recognition results of 9 batches for different methods under Experimental Setting 1 are reported in Table II. We consider two conditions of DAELM-S with 20 labeled target samples and 30 labeled target samples, respectively. For DAELM-T, 40 and 50 labeled samples from the target domain are used considering that DAELM-T trains a classifier only using a limited number of labeled samples from target domain. For visually observing the performance of all methods, we show the recognition accuracy on batches successively in Fig. 6. From Table II and Fig. 6, we have the following observations.

1) SVM with the combined kernel of geodesic flow kernels (SVM-comgfk) delivers better results than the popular CC-PCA method and other SVM-based methods in most batches, except the results of batch 4 and batch 8.
It demonstrates that machine learning methods show more usefulness in drift compensation than traditional calibration.

2) Manifold learning with combined kernel (ML-comgfk) obtains an average accuracy of 67.3% and outperforms all baseline methods. It demonstrates that manifold regularization and combined kernel are more effective in semisupervised learning with a limited number of samples.

3) The generalization performance and knowledge-transfer capability of regularized ELM have been well improved by the proposed DAELM. The results of our DAELM-S and DAELM-T have an average improvement of about 30% in recognition accuracy than in traditional ELM. The highest recognition accuracy of 91.86% under sensor drift is obtained using our proposed algorithm.

4) Both the proposed DAELM-S and DAELM-T significantly outperform all other existing methods, including traditional CC-PCAM, SVM, and manifold-regularization-based machine learning methods. In addition, DAELM-T(50) has an obvious improvement compared with DAELM-T(40) and DAELM-S, which shows that more labeled target data are expected for DAELM-T. DAELM-S can perform well comparatively also with fewer labeled target data. From the computations, we find that because base classifier is first trained in DAELM-T and more labeled target data are need, DAELM-S may be a better choice in realistic applications.

From the experimental results in experimental Setting 1, the proposed methods outperform all other methods in drift compensation. We then follow the experimental Setting 2, i.e., trained on batch $K-1$ and tested on batch K, and report the results in Table III. The performance variations of all methods are illustrated in Fig. 7. From Table III and Fig. 7, we have the following observations.

1) Manifold-regularization-based combined kernel (ML-comgfk) achieves an average accuracy of 79.6% and outperforms other SVM-based machine learning algorithms and single kernel methods, which demonstrates that manifold learning and combined kernel can improve the classification accuracy, but have limited capacity.

2) The classifier ensemble can improve the performance of the data set with drift noise (an average accuracy of 80%). However, many base classifiers should be trained using the source data for ensemble, and it has no domain adaptability when tested on the data from target domains, which has been well referred in the proposed DAELM.

3) The proposed DAELM methods perform much better (91.82%) than all other existing methods for different tasks in recognition tested on drifted data. The robustness of the proposed methods with

<table>
<thead>
<tr>
<th>Batch ID</th>
<th>Batch 2</th>
<th>Batch 3</th>
<th>Batch 4</th>
<th>Batch 5</th>
<th>Batch 6</th>
<th>Batch 7</th>
<th>Batch 8</th>
<th>Batch 9</th>
<th>Batch 10</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-PCA</td>
<td>67.00</td>
<td>48.50</td>
<td>41.00</td>
<td>35.50</td>
<td>55.00</td>
<td>31.00</td>
<td>56.50</td>
<td>46.50</td>
<td>30.50</td>
<td>45.72</td>
</tr>
<tr>
<td>SVM-rbf</td>
<td>74.36</td>
<td>61.03</td>
<td>50.93</td>
<td>18.27</td>
<td>28.26</td>
<td>28.81</td>
<td>20.07</td>
<td>34.26</td>
<td>34.47</td>
<td>38.94</td>
</tr>
<tr>
<td>SVM-gfk</td>
<td>72.75</td>
<td>70.08</td>
<td>60.75</td>
<td>75.08</td>
<td>73.82</td>
<td>54.53</td>
<td>55.44</td>
<td>69.62</td>
<td>41.78</td>
<td>62.76</td>
</tr>
<tr>
<td>SVM-comgfk</td>
<td>74.47</td>
<td>70.15</td>
<td>59.78</td>
<td>75.09</td>
<td>73.99</td>
<td>54.59</td>
<td>55.88</td>
<td>70.23</td>
<td>41.85</td>
<td>64.00</td>
</tr>
<tr>
<td>ML-rbf</td>
<td>42.25</td>
<td>73.69</td>
<td>75.53</td>
<td>66.75</td>
<td>77.51</td>
<td>54.43</td>
<td>33.50</td>
<td>23.57</td>
<td>34.92</td>
<td>53.57</td>
</tr>
<tr>
<td>ML-comgfk</td>
<td>80.25</td>
<td>74.99</td>
<td>78.79</td>
<td>67.41</td>
<td>77.82</td>
<td>71.68</td>
<td>49.96</td>
<td>50.79</td>
<td>53.79</td>
<td>67.28</td>
</tr>
<tr>
<td>ELM-rbf</td>
<td>70.63</td>
<td>66.44</td>
<td>66.85</td>
<td>63.45</td>
<td>69.73</td>
<td>51.23</td>
<td>49.76</td>
<td>49.83</td>
<td>33.50</td>
<td>57.93</td>
</tr>
<tr>
<td>Our DAELM-S(20)</td>
<td>87.57</td>
<td>96.33</td>
<td>82.61</td>
<td>81.47</td>
<td>84.97</td>
<td>71.89</td>
<td>78.10</td>
<td>87.02</td>
<td>57.42</td>
<td>80.84</td>
</tr>
<tr>
<td>Our DAELM-S(30)</td>
<td>87.98</td>
<td>95.74</td>
<td>85.16</td>
<td>95.99</td>
<td>94.14</td>
<td>83.51</td>
<td>86.90</td>
<td>100.00</td>
<td>53.62</td>
<td>87.00</td>
</tr>
<tr>
<td>Our DAELM-T(40)</td>
<td>83.52</td>
<td>96.34</td>
<td>88.20</td>
<td>99.49</td>
<td>78.43</td>
<td>80.93</td>
<td>87.42</td>
<td>100.00</td>
<td>56.25</td>
<td>85.62</td>
</tr>
<tr>
<td>Our DAELM-T(50)</td>
<td>97.96</td>
<td>95.34</td>
<td>99.52</td>
<td>99.24</td>
<td>97.03</td>
<td>83.09</td>
<td>95.27</td>
<td>100.00</td>
<td>59.45</td>
<td>91.86</td>
</tr>
</tbody>
</table>
domain adaptability is proved for drift compensation in E-nose.

For studying the variations of recognition accuracy with the number k of labeled samples in target domain, different number k from the set of $\{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$ is explored by Algorithm 3 (SSA) and the proposed DAELM framework. Specifically, we present comparisons with different number of labeled samples selected from target domains. For fair comparison with ELM, the labeled target samples are feed into ELM together with the source training samples. The results for experimental Setting 1 and Setting 2 are shown in Figs. 8 and 9, respectively, from which, we have the following:

1) The traditional ELM has little obvious improvement with the increase of the labeled samples from target domains, which clearly demonstrates that ELM has no the capability of knowledge adaptation.

2) Both DAELM-S and DAELM-T have significant enhancement in classification accuracy with increasing labeled data from target domain. Note that in batch 2 and batch 10 shown in Fig. 8, our DAELM is comparable to ELM. The possible reason may be that little drift exist in batch 2 that leads to the small difference in classification task. While the data in batch 10 may be seriously noised by drift, the E-nose system may lose recognition ability only using batch 1 (Setting 1) for training. The proposed DAELM is still much better than ELM when tested on the seriously noised batch 10 in Setting 2 (Fig. 9).

3) DAELM-S has superior performance to DAELM-T when the number k of labeled target samples used in knowledge adaptation is smaller, because DAELM-T does not consider the source data in classifier learning. Additionally, with the increase in the number k, DAELM-T has a comparative performance with DAELM-S, which maybe a better choice when only a small number of labeled samples in target domain are available.

Throughout this paper, the proposed DAELM framework is to cope with sensor drift in the perspective of machine learning in decision level, but not intuitively calibrate the single sensor response because the drift rules are difficult to be captured by some linear or nonlinear regression method owing to its nonlinear/chaotic dynamic behavior. This work is to

<table>
<thead>
<tr>
<th>Batch ID</th>
<th>1→2</th>
<th>2→3</th>
<th>3→4</th>
<th>4→5</th>
<th>5→6</th>
<th>6→7</th>
<th>7→8</th>
<th>8→9</th>
<th>9→10</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM-rbf</td>
<td>74.36</td>
<td>87.83</td>
<td>90.06</td>
<td>90.86</td>
<td>91.52</td>
<td>83.53</td>
<td>91.84</td>
<td>62.98</td>
<td>22.64</td>
<td>68.01</td>
</tr>
<tr>
<td>SVM-gfk</td>
<td>72.75</td>
<td>84.92</td>
<td>77.83</td>
<td>63.91</td>
<td>70.31</td>
<td>77.59</td>
<td>78.57</td>
<td>78.23</td>
<td>15.76</td>
<td>68.56</td>
</tr>
<tr>
<td>SVM-compgfk</td>
<td>74.47</td>
<td>75.75</td>
<td>81.51</td>
<td>64.26</td>
<td>69.97</td>
<td>77.99</td>
<td>82.69</td>
<td>85.33</td>
<td>17.76</td>
<td>69.40</td>
</tr>
<tr>
<td>ML-rbf</td>
<td>42.25</td>
<td>58.51</td>
<td>75.78</td>
<td>29.10</td>
<td>53.22</td>
<td>69.17</td>
<td>55.10</td>
<td>37.94</td>
<td>12.44</td>
<td>48.17</td>
</tr>
<tr>
<td>ML-compgfk</td>
<td>80.25</td>
<td>98.55</td>
<td>84.89</td>
<td>89.85</td>
<td>75.53</td>
<td>91.17</td>
<td>61.22</td>
<td>95.53</td>
<td>39.56</td>
<td>79.62</td>
</tr>
<tr>
<td>Ensemble</td>
<td>74.40</td>
<td>88.00</td>
<td>92.50</td>
<td>54.00</td>
<td>69.00</td>
<td>69.50</td>
<td>91.00</td>
<td>77.00</td>
<td>65.00</td>
<td>80.04</td>
</tr>
<tr>
<td>ELM-rbf</td>
<td>70.63</td>
<td>84.44</td>
<td>74.16</td>
<td>64.37</td>
<td>72.70</td>
<td>80.75</td>
<td>88.20</td>
<td>67.00</td>
<td>22.00</td>
<td>63.36</td>
</tr>
<tr>
<td>Our DAELM-S(20)</td>
<td>87.57</td>
<td>96.90</td>
<td>85.59</td>
<td>95.89</td>
<td>80.53</td>
<td>91.56</td>
<td>88.71</td>
<td>84.80</td>
<td>45.61</td>
<td>84.53</td>
</tr>
<tr>
<td>Our DAELM-S(30)</td>
<td>87.98</td>
<td>96.58</td>
<td>89.75</td>
<td>99.04</td>
<td>84.43</td>
<td>91.75</td>
<td>89.83</td>
<td>100.00</td>
<td>58.44</td>
<td>88.64</td>
</tr>
<tr>
<td>Our DAELM-T(40)</td>
<td>83.52</td>
<td>96.41</td>
<td>81.36</td>
<td>96.45</td>
<td>85.13</td>
<td>80.49</td>
<td>85.71</td>
<td>100.00</td>
<td>56.81</td>
<td>85.10</td>
</tr>
<tr>
<td>Our DAELM-T(50)</td>
<td>97.96</td>
<td>95.62</td>
<td>99.63</td>
<td>98.17</td>
<td>97.13</td>
<td>83.10</td>
<td>94.90</td>
<td>100.00</td>
<td>59.88</td>
<td>91.82</td>
</tr>
</tbody>
</table>

Fig. 8. Recognition accuracy under Setting 1 with respect to different size of guide set (labeled samples from target domain).
construct a learning framework with better knowledge adaptability and generalization capability to drift noise existing in data set.

V. Conclusion

In this paper, the sensor drift problem in E-nose is addressed by a new knowledge-adaptation-based machine learning approach. We have proposed a new framework called DAELM for fast knowledge transfer. Specifically, two algorithms, called DAELM-S and DAELM-T, are proposed for drift compensation. The former learns a robust classifier based on the source domain by leveraging a limited number of labeled samples from target domain. The latter learns a classifier based on a limited number of labeled data in target domain by leveraging a prelearned base classifier in source domain. From the angle of machine learning, the proposed methods provide new perspectives for exploring ELM theory, and also inherit the advantages of ELM, including the feature mapping with randomly generated input weights and bias, the analytically determined solutions, and good generalization. Another important contribution, the key of this paper, is an effective measure using domain adaptation and ELM framework to cope with sensor drift in E-nose. Experiment on a long-term sensor drift data set collected by E-nose clearly demonstrates the efficacy of our proposed framework. Additionally, the proposed framework can realize the recognition directly from the output (16) or (26) of algorithm without any cumbersome measure, which is completely different from SVM-based methods that multiclass problem should be divided into multiple binary classification using one against one or one against all strategy and obtain the predicted label by voting mechanism. It is worth noting that the training time and testing time of proposed algorithms costs about several seconds and microseconds, respectively, due to the analytically determined solutions intuitively without iterations in learning process.

In the future, we will investigate online domain adaptation for drift compensation in E-nose from the viewpoint of incremental learning. It would be of interest to explore the nonlinear dynamic behavior of drift by constructing online dynamic classifiers with knowledge adaptation.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Vergara from the University of California San Diego for his provided sensor drift data in electronic nose. They would also like to thank the anonymous reviewers for their insightful comments.

REFERENCES

