
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

DANoC: An Efficient Algorithm and Hardware
Codesign of Deep Neural Networks on Chip

Xichuan Zhou, Member, IEEE, Shengli Li, Fang Tang, Member, IEEE,
Shengdong Hu, Zhi Lin, and Lei Zhang, Member, IEEE

Abstract— Deep neural networks (NNs) are the state-of-the-
art models for understanding the content of images and videos.
However, implementing deep NNs in embedded systems is a
challenging task, e.g., a typical deep belief network could exhaust
gigabytes of memory and result in bandwidth and computational
bottlenecks. To address this challenge, this paper presents an
algorithm and hardware codesign for efficient deep neural com-
putation. A hardware-oriented deep learning algorithm, named
the deep adaptive network, is proposed to explore the sparsity
of neural connections. By adaptively removing the majority
of neural connections and robustly representing the reserved
connections using binary integers, the proposed algorithm could
save up to 99.9% memory utility and computational resources
without undermining classification accuracy. An efficient sparse-
mapping-memory-based hardware architecture is proposed to
fully take advantage of the algorithmic optimization. Different
from traditional Von Neumann architecture, the deep-adaptive
network on chip (DANoC) brings communication and computa-
tion in close proximity to avoid power-hungry parameter trans-
fers between on-board memory and on-chip computational units.
Experiments over different image classification benchmarks show
that the DANoC system achieves competitively high accuracy and
efficiency comparing with the state-of-the-art approaches.

Index Terms— Binary weights, deep belief network (DBN),
deep learning, embedded system, field-programmable gate
array (FPGA), sparse connections.

I. INTRODUCTION

THE deep neural networks (NNs) have demonstrated their
remarkable performance for feature extraction and pattern

recognition in the last a few years [1]–[4]. However, due to
the contradiction between limited hardware resources and the
requirement of high computational performance, it is still a
challenge to implement large-scale deep NNs for embedded

Manuscript received June 15, 2016; revised December 19, 2016 and
April 11, 2017; accepted June 14, 2017. This work was supported in part by
the National Natural Science Foundation of China under Contract 61471073,
Contract 61401048, Contract 61404016, and Contract 61471071, and in
part by the Fundamental Research Funds for the Central Universities under
Project 106112017CDJQJ168818 and Project 106112016CDJZR168803.
(Corresponding author: Xichuan Zhou.)

X. Zhou is with the Key Laboratory of Dependable Service Computing in
Cyber Physical Society of Ministry of Education, College of Communication
Engineering, Chongqing University, Chongqing 400044, China, and also
with the Chongqing Engineering Laboratory of High Performance Integrated
Circuits, College of Communication Engineering, Chongqing University,
Chongqing 400044, China (e-mail: zxc@cqu.edu.cn).

S. Li, F. Tang, S. Hu, Z. Lin, and L. Zhang are with the Chongqing
Engineering Laboratory of High Performance Integrated Circuits, College
of Communication Engineering, Chongqing University, Chongqing 400044,
China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2717442

Fig. 1. Typical deep NNs implemented for pattern recognition applications.
(a) DBN. (b) DAN. The neurons of the DBN are fully connected between
adjacent layers, whereas in a DAN, the majority of neural connections
(with zero weights) can be removed and the reserved connections can
be represented using single-bit integers, which is much more efficient for
hardware implementation.

real-time applications [5]. For example, research indicates
that the unsupervised deep belief network (DBN) shows the
state-of-the-art accuracy for classifying hyperspectral remote
sensing images [3]. However, it is technically impractical to
deploy the DBN to process remote sensing images in real
time, because the embedded systems carried by satellites or
unmanned aerial vehicles are generally limited in memory
space, computational resources, and power budget.

The fundamental computations of a feedforward DBN
involve a large number of high-precision multiplications
between the connection weights and the input data, which
can be implemented using clusters of central process-
ing units (CPUs) or general-purpose graphics processing
units (GPUs) in powerful computers [6]. However, when
memory and computational resources are limited in hardware,
a more efficient algorithm would be ideal, one that is designed
for efficient hardware computing, and only requires simple fix-
point computation and much fewer parameters, allowing larger
networks to be implemented using system on chips (SoCs) for
real-time pattern recognition.

This paper presents an algorithm-and-hardware codesign
of the widely applied DBN for embedded real-time image
classification. For efficient hardware implementation, one
important algorithmic consideration is the number of neural
connections. The classic DBN has fully connected neurons
between adjacent layers (Fig. 1), resulting in high memory
and computational complexity [7]. The second algorithmic
consideration is data representation, which is an essential
tradeoff between accuracy and cost. Studies indicate that the
DBNs trained with parameters of limited precision suffer
from significant loss of accuracy [8]–[10]. To address these
challenges, an efficient training algorithm, named the DAN,

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Connection weights of the DBN and the DAN trained with the
MNIST data set. The DAN weights are sparse and separated as three groups,
i.e., the zero weights, the positive weights, and the negative weights, leading
to robust thresholding results and single-bit representation (±1).

is proposed to explore the sparsity of neural connections. The
DAN adaptively reduces the values of connection weights
associated with negligible neurons to zeros (Fig. 2) and
robustly quantizes the small proportion of reserved con-
nections using single-bit integers. A novel sparse-mapping-
memory (SMM)-based architecture is designed to integrate the
DAN on chip (DANoC). The characteristics of the DANoC
coprocessor are summarized as follows.

1) Memory Efficient: The majority of the neural connec-
tions are removed by the DAN algorithm. Experiments
show that over 80% of neural connections can be
removed without degrading the classification accuracy.
The reserved connection weights can be robustly quan-
tized and represented using single-bit integers. Com-
pared with the single-precision DBN, the proposed
method could reduce the memory and computational
resources by up to 99.9%.

2) Power Efficient: High memory efficiency enables the
DANoC to reserve all the parameters on chip and
reduces the power-hungry transfer operations between
on-board memory and the DANoC coprocessor. Further-
more, the DANoC adopts an event-driven architecture,
where the computation core is active only if the incom-
ing visible unit is one.

3) Computationally Efficient: The single-bit representation
allows the DANoC to replace the complicated high-
precision multipliers with fast area-efficient accumula-
tors, which further relieves the computational bottleneck.

4) Scalable and Pipelined: The DANoC hardware is flex-
ible and scalable in three ways. First, multiple layers
of sparse neural cores (SNCs) can be concatenated as a
pipeline to form a multilayer deep NN. Second, multiple
pipelines are integrated in a chip for parallel accelera-
tion. Third, the hardware implementation of the SNC is
optimized and designed as a four-stage subpipeline for
high-throughput applications.

With algorithm and hardware optimization, the DANoC
could achieve the state-of-the-art performance of over 2000
effective giga-operations per second with less than 2 W of
power consumption. The rest of this paper gives more detailed
information of the proposed approach and is organized as
follows. Section II introduces the related work. Section III
presents the proposed algorithm. Section IV describes the
hardware design of the DANoC prototype. Section V presents
the experiments. We conclude this paper in Section VI.

II. RELATED WORK

Our method explores the sparsity of neural connections via
a mixed norm-based regularization approach. It is a standard
approach to achieve sparsity via L1 norm-based regularization.
One famous example is the group lasso approach proposed by
Yuan and Lin [11]. Our method can be seen as an extension of
the group lasso for deep NNs. Different from the group lasso,
this paper compresses the weight parameters using a mixed
norm regularization, which allows us to control the tradeoff
between rowwise and columnwise sparsity in order to achieve
the highest compression rate.

Other attempts have been made to introduce sparsity
into deep NNs. Ranzato et al. [13] proposed a deep
encoder–decoder architecture to learn sparse representations.
Lee et al. [14] developed a variant of the DBN to learn the
sparse representations of the input images and found that
the selected sparse features had some properties similar to
visual area V2. Ji et al. [15] proposed a sparse-response
DBN based on the rate-distortion theory, which attempted
to encode the original data using as few bits as possible.
Generally speaking, these studies focused on the sparsity of
output activations; however, motivated by learning efficient
architectures for hardware implementation, this paper focused
on exploring the sparsity of neural connections.

Previous studies have been attempted to incorporate ternary
neural connections in traditional NNs [16], [17]. Very recently,
there has been a growth of interest to compress the deep
NNs at algorithmic level for embedded applications. For
example, Han et al. [18] proposed a two-step training pro-
cedure to remove the small connection weights in the NNs.
Chen et al. [19] used a hash function to group neural con-
nections into different hash buckets according to different
weight values. Han et al. [20] proposed a three-step method
to prune, quantize and code the connection weights during
the training process of the deep NNs. Courbariaux et al. [21]
proposed a training process to learn the deep NNs with weights
and activations constrained to +1 or −1. Rastegari et al. [22]
proposed a binary deep NN, which quantized the weight
parameters in each iteration of the training process. Generally
speaking, these algorithms attempted to reduce the number
of bits needed to represent the parameters, which yielded
1.2–49 fold of improvement in memory efficiency at the cost
of degrading classification accuracy.

As a more efficient strategy, the DAN algorithm also allows
the connections and the activations to be represented using
single-bit integers. Moreover, the DAN learns the optimal
architecture of a sparse NN where the majority of neural con-
nections are removed. Similar ideas have been recently demon-
strated by Alvarez and Salzmann [23] and Pan et al. [24],
who proposed different regularization approaches to reduce the
number of neuron connections in a deep network by up to 80%
during training. Wen et al. [25] proposed a structured sparsity
learning method, which learned a compact structure from a
bigger deep NN and reduced computational cost by 5.1-fold.
As the result of our two-step (regularize-and-quantize) strat-
egy, the DAN hardware could achieve 160-to-640 fold com-
pression rate while still achieving competitively high accuracy
comparing with the state-of-the-art approaches.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: DANoC: EFFICIENT ALGORITHM AND HARDWARE CODESIGN OF DEEP NNs ON CHIP 3

Thanks to the fast development of the deep learning
approaches, the research of implementing dedicated hardware
to accelerate NN computation is booming. Himavathi and Ahn
presented respective digital implementations using reconfig-
urable field-programmable gate arrays (FPGAs) [7], [26].
Sanni et al. [27] presented an FPGA-based DBN using sto-
chastic computation. Zhang et al. [28] quantitatively analyzed
the convolutional NN (CNN) and implemented the quantized
CNN using the FPGA device. Recently, Gokhale et al. [29]
implemented an FPGA-based coprocessor to accelerate the
deep NNs for mobile applications. Performed independently
of the algorithmic researches, these hardware designs gener-
ally adopted different quantization approaches for embedded
implementation, which saved memory footprint but resulted
in notable loss of classification accuracy. On the other hand,
the proposed DANoC system was optimized from algorithm
to hardware, which led to over three orders of magnitude
of improvement in hardware efficiency without degrading
classification accuracy.

III. METHODS

This section presents the proposed hardware-oriented unsu-
pervised deep learning algorithm. As the background knowl-
edge, we first introduce the training algorithm of the
famous DBN.

A. Deep Belief Network and Restricted Boltzmann Machine

A DBN is constructed by stacking multiple layers of
restricted Boltzmann machines (RBMs) and using the output
of the previous-layer RBM as the input of the next-layer
RBM (Fig. 1). It is found that the higher layer RBM tends
to encode informative abstraction for classification. A standard
RBM consists of two layers of units: first, a matrix W ∈ R

n×d

is defined as the connection weights, where wi j represents the
connection between the visible unit vi and the hidden unit h j .
Second, the parameters b j and ci are the biases for the hidden
and visible units, respectively. Given the vector forms of the
hidden units h, the visible units v, and the biases b and c, the
energy of a configuration (vandh) can be written as

E(v, h) = −bTh − cTv − vTWh. (1)

As in general Boltzmann machines, the probability distrib-
utions over the hidden and visible vectors are defined as

p(v, h) = 1

Z
e−E(v,h), Z =

∑

v,h

e−E(v,h). (2)

Given (2), the marginal probability of the visible vector is

p(v) = 1

Z

∑

h

e−E(v,h). (3)

Since there are no direct connections between two hidden
units at the same layer, the hidden units conditioned on v
are independent of each other. Similarly, the visible units
conditioned on h are also independent of each other. The units
of a binary hidden layer, conditioned on the visible layer, are

independent Bernoulli random variables. The binary state h j

of the j th hidden unit is set to 1 with probability

p(h j = 1|v) = δ

(
∑

i

wi j vi + b j

)
(4)

where δ(x) = 1/(1 + exp(−x)) is the sigmoid activation
function. Similarly, if the visible units are binary, the visible
units, conditioned on the hidden layer, are also independent
Bernoulli random variables. In this case, the binary state vi of
the i th visible unit is set to 1 with probability

p(vi = 1|h) = δ

⎛

⎝
∑

j

wi j h j + ci

⎞

⎠ . (5)

On the other hand, if the visible units have real values,
then the visible units, conditioned on the hidden layer, are
independent Gaussian random variables defined as

p(vi |h) = G
⎛

⎝
∑

j

wi j h j + ci , 1

⎞

⎠ (6)

where G(·) represents the Gaussian distribution. Suppose
θ = {W, b, c} is the parameter set of the RBM. Since the
RBM is a generative model, the parameters can be calculated
by performing stochastic gradient descent on the log likelihood
of the training samples [30]. The probability that the network
assigns to a sample v(k)(k = 1, . . . , K) is given by summing
over all possible hidden vectors as

arg min
θ

−
∑

k

log

(
∑

h

e−E(v(k), h(k))

)
. (7)

By solving (7), one could calculate the parameters offline
and use them to configure the RBM. After training the RBM,
the DBN can be built by stacking multiple layers of RBMs
trained in a layer-by-layer manner.

B. Adaptive Restricted Boltzmann Machine

For efficient hardware implementation, we propose a
sparsely weighted variant of the RBM, named the Adaptive
RBM (AdaRBM), which adds an extra regularization term
in (7) to shrink the weights adaptively. The regularization term
is based on a mixed matrix norm defined as

‖W‖M =
∑

i

⎛

⎝
∑

j

|wi j |2
⎞

⎠
1/2

(8)

where the two indices i and j are treated differently. It is easy
to prove that the mixed norm is a legitimate matrix norm,
and it is different from the standard L1 and L2 matrix norms,
i.e., ‖W‖L1 = ∑

i
∑

j |wi j | and ‖W‖L2 = (
∑

i
∑

j w2
i j)

1/2.
The mixed matrix norm defined in (8) adds the vector norms

of all rows in a matrix; therefore, minimizing the mixed norm
reduces the lengths of the matrix’s rows. It is worth noting
that the shrinking process does not apply evenly to all rows.
Shorter rows shrink faster than the rows with larger weights in
the stochastic gradient descent process. As a result, the weights
in short rows tend to shrink to zero after finite iterations

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Similarly, minimizing the mixed norm of a transposed matrix
WT could reduce the weights in shorter columns to zero.
To achieve the maximum compression rate, the AdaRBM
attempts to shrink the weight parameters in shorter rows and
columns simultaneously by minimizing

Rs(W) = λ(γ ‖W‖M + (1 − γ)‖WT ‖M) (9)

where λ controls the sparsity of the weight parameters, and γ
controls the balance between row sparsity and column sparsity.
Formally, the AdaRBM training algorithm attempts to shrink
the regularization term by incorporating it in the standard
RBM of (7) as

arg min
θ

−
∑

k

log

(
∑

h

e−E(v(k), h(k))

)

+ λ(γ ‖W‖M + (1 − γ)‖WT ‖M) (10)

C. Training Algorithm

The objective function of (10) is the sum of a log-likelihood
term and a regularization term. The derivatives of the log
probability and the regularization term with respect to the
parameters can be expressed as

∂ log p(v)

∂wi j
= 〈vi h j 〉data − 〈vi h j 〉model + ∂Rs(W)

∂wi j
(11)

∂ log p(v)

∂b j
= 〈h j 〉data − 〈h j 〉model (12)

∂ log p(v)

∂ci
= 〈vi 〉data − 〈vi 〉model (13)

∂Rs(W)

∂wi j
= λ

⎛

⎝γ
wi j√∑

i w2
i j

+ (1 − γ)
wi j√∑

j w2
i j

⎞

⎠ (14)

where 〈·〉p indicates the expectation of the distribution p.
Unfortunately, similar to the RBM training process, (11)–(14)
are not tractable, because the computation of the expectations
is very difficult; however, one could use the contrastive diver-
gence (CD) with Gibbs sampling to approximate the optimal
parameters in an iterative way [30]. On each iteration, we
apply the CD update rule, followed by one step of gradient
descent of the regularization term as in Algorithm 1. Accord-
ing to 14, the shrinking process of the weight parameters is
uneven. After a few hundred times of iterations, the weights
in short rows and columns can be reduced to near zero,
leading to sparse weight parameters. It is worth noting that,
the mix-norm regularization is not differentiable at point zero.
In practice, a small constant, e.g., α = 0.01, can be added
in the denominator to improve the robustness of the training
algorithm.

Similar to the DBN, multiple layers of AdaRBMs can be
stacked to compose a DAN, and the DAN can also be trained in
a layer-by-layer style. Specifically, one could train the bottom
AdaRBM with CD on the training data. With the parameters
frozen and the hidden unit values inferred, these inferred
values can be used as the input data to train the next layer
of the network.

The DAN, built with stacked AdaRBMs, is designed for effi-
cient hardware implementation. Technically, the parameters of

Algorithm 1 Training Algorithm of the Adaptive RBM
1: Given 〈vi h j 〉model represents the distribution defined by

running a Gibbs chain, the parameters can be updated using
the contrastive divergence rule as

wi j ⇐ wi j + ε(〈vi h j 〉data − 〈vi h j 〉model)

b j ⇐ b j + ε(〈h j 〉data − 〈h j 〉model)

ci ⇐ ci + ε(〈vi 〉data − 〈vi 〉model)

where ε is a learning rate, and 〈·〉model is the expectation
over the reconstruction data;

2: Update wi j using the gradient of Rs(W) as

wi j ⇐ wi j − λ(γ
wi j

α +
√∑

i w2
i j

+ (1 − γ)
wi j

α +
√∑

j w2
i j

)

where α is a small constant to avoid zero denominator.
3: Check the constraint and repeat the update process until it

achieves convergence.

an AdaRBM are calculated offline with a four-step procedure
and used to configure the DANoC hardware prototype: 1) the
single-precision sparse parameters are calculated according to
Algorithm 1; 2) the weight parameters are thresholded using
a small positive value u, and the weights with small absolute
values are removed; 3) the reserved positive and negative
weights are represented as +1 and −1 respectively; and
4) the activations are binarized using zero and one.

D. Properties of the Deep Adaptive Network

The DAN learns an efficient hardware-oriented network
architecture featuring two properties.

1) The neural connections of the DAN are sparse. The DAN
adaptively reduces the connection weights associated
with negligible visible units to zero, which can be
removed for efficient hardware implementation.

2) The activations of the DAN hidden units are sparse.
Specifically, during the training phase, the AdaRBM
uses p(h j = 1|v) as the j th output activation to
the next layer. Since the short columns of the weight
matrix are reduced to zero vectors, the output activations
associated with zero columns become close to a constant
δ(b j) independent of the visible units. This property
potentially makes the connection weights of the next-
layer AdaRBM to be sparser.

Fig. 3 shows these two properties. Two deep NNs of
the same configuration (784-800-800) are built to select the
features from the MNIST data set. It seems that most DAN
weights are close to zero, which are much sparser than
the DBN weights. Meanwhile, by subtracting the constant
vector δ(b), the output activations of the AdaRBMs become
notably sparser than the standard RBM [Fig. 3(c) and (d)]. It is
worth noting that, as shown in Fig. 3(b), the weight parameters
become sparser in the second layer than the first layer. It seems
that the sparse activations of the first-layer make the second-
layer connection weights sparser.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: DANoC: EFFICIENT ALGORITHM AND HARDWARE CODESIGN OF DEEP NNs ON CHIP 5

Fig. 3. Empirical distributions of the connection weights and the activations
of a two-layer DAN. (a) Distribution of wi j (layer 1). (b) Distribution of wi j
(layer 2). (c) Distribution of p(h j = 1|v) − δb j (layer 1). (d) Distribution
of p(h j = 1|v) − δb j (layer 2). It is worth noting that, for the DAN, the
second-layer weights and activations seem sparser than the first layer.

Fig. 4. SMM in the SNC. Each SMM consists of two tables to maintain the
group addresses and the nonzero weight groups.

IV. HARDWARE PROTOTYPE

The DANoC system is an efficient, high-throughput and
scalable hardware prototype of the DAN built using off-the-
shelf FPGA devices. The basic building block of the hardware
is an SNC featuring an efficient SMM-based architecture.
Fig. 4 shows an example of the cross-bar SMM designed to
implement a sparsely connected AdaRBM with nine visible
units and nine hidden units. Each cross point in the SMM
represents a connection weight wi j between the i th visible
unit (left) and the j th hidden unit (down). In a functional
point of view, the input data of each core are processed as
coded address events. The address event i is active when the
i th visible unit is one, which triggers a lookup operation;
otherwise, the address event i is inactive and the core will
check the next visible unit for an active address event. No
lookup operation will be fired until a nonzero visible unit is

Fig. 5. Block diagram of the DANoC which consists of two host processors,
a coprocessor, and an external memory controller. The coprocessor consists
of an array of pipelined deep NNs, and each pipeline is composed of multiple
SNCs. Each core can be configured as an AdaRBM or an NN classifier.

found. The zeros in the input data stream are omitted and only
the spikes of ones could activate the core.

The lookup operation of the i th address event has three
steps. First, the incoming event activates the address mapping
table, which reads out the starting address i and the length of
the weight group. If the i th visible unit is connected to zero
hidden units, the core goes on to check the next visible unit.
Second, the binary weights of all hidden units connected with
the visible unit i are read out from the weight table. Then,
each hidden unit updates the state value s j in the neural state
table by wi j . When the neural state exceeds its threshold b j ,
the neuron produces a spike and its neural state is reset to 0;
this spike is then encoded and sent off as an address event to
the next SNC. The binary representation allows the DANoC
to use power-efficient threshold operations to implement the
sigmoid activation function.

The weight-decay optimization of the AdaRBM leads to
rowwise and columnwise sparse weight matrix. The hardware
design of the SNC takes advantage of the 3-D sparsity to
improve hardware efficiency. Since the SNC only activates
lookup operations when connections associated with a given
visible unit exist, the rowwise sparsity allows the DANoC
to save time and power by overlooking the majority of the
visible units whose associated connections are all removed.
On the other hand, the columnwise sparsity makes the nonzero
weights in a row to group together; Therefore, the weight
table of the SMM could reduce memory consumption and
computational time by preserving and reading weights in
groups.

A block diagram of the DANoC coprocessor is shown
in Fig. 5. The SoC has three main components: two host
ARM Cortex A9 processors, a coprocessor, and an external
memory controller. The coprocessor comprises an array of
pipelined SNCs and a control module. Multiple pipelines of
deep NNs can be implemented in parallel in the DANoC.
Each pipeline contains multiple cascaded SNCs, and each
core can be configured as an AdaRBM layer or a classifier
layer. The DANoC uses respective on-chip block RAMs to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. DANoC hardware prototype applied for classifying images of
handwritten digits. The classification of each image contains 1.28 million
operations, and the DANoC can process one image in less than 0.24 ms,
and the low-price Zynq7Z020-based DANoC achieves effective 319 GOPS
at 495 mW.

implement the address mapping table, the weight table, the
neural state table, and the threshold table. The accesses of
these block RAMs are coordinated as a four-stage subpipeline
to maximize the throughput.

The memory complexity of the DANoC chip is mainly
determined by the size of the weight table, which is pro-
portional to n ∗ d ∗ σ ∗ log(s)/s, where n ∗ d is the size
of the weight matrix, σ is the ratio of reserved connections,
and s is the average size a weight group. In practice, the
DANoC could save 99.3%–99.9% weight memory compared
with the standard single-precision DBN. The binary represen-
tation achieved by the DAN algorithm enables the DANoC
to substitute the complicated floating-point multipliers for
power-efficient accumulators. Moreover, since the latency of a
binary accumulator is significantly lower than a floating-point
multiplier, the DANoC can process the input remote sensing
and video images in real time without jamming the pipeline.

The DANoC prototype is implemented using the Xilinx
Zynq FPGA device, which is a programmable SoC (Fig. 6).
The ARM host processors work at 800 MHz and the coproces-
sor works at 100 MHz in the SoC. The Zynq7Z020 FPGA has
4.9-Mb on-chip block RAM. The hardware prototype contains
1-GB 533-MHz DDR3 on-board memory and 3.8-GB/s full-
duplex memory bandwidth. The peak power consumption of
the entire board is 8 W, and the power consumption is less
than 2 W for the FPGA device. The Zynq platform is chosen,
because its performance increases linearly as the number of
pipelines increases. To evaluate the scalability of the DANoC,
a high-end version of the DANoC coprocessor is implemented
using the Xilinx Zynq7100 FPGA, which contains 26.5-Mb
on-chip block RAM, and allows us to fit up to 30 pipelines in
a single chip.

The host ARM processors are responsible for parsing a deep
network and controlling the transfer of input and configuration
data to the coprocessor. The coprocessor is implemented on
programmable logic and interfaces with the host processors
via the AXI bus. Input data are encoded as address events
and streamed into the coprocessor, one data word per clock
cycle. Data words are organized as an array, with data words
streamed in one row at a time. These data words can be pixels
in case of images or videos. The DDR memory controller
interfaces the pipelines with the external memory. Its purpose

is to route independent data streams and feed data to the
DANoC pipelines. The router is implemented as a crossbar
switch, allowing the coprocessor to access multiple memory
buffers at once with full-duplex data transactions.

V. EXPERIMENTS

In this section, we evaluate the DAN algorithm and the
DANoC hardware prototype using three different applications,
i.e., recognizing images of handwritten digits, classifying
hyperspectral remote sensing images and an application of
video-based self-driving toy robot car.

A. Experiment Setting and Measurements

We implement the sparsely connected DAN with binary
connections and activations in four steps. In each step, the
feedforward NN becomes more efficient. To distinguish these
networks, we list the DANs with different precisions as
follows.

1) DAN: Single-precision DAN.
2) DANt : Single-precision DAN whose majority of connec-

tions associated with zero weights are removed.
3) DANb: Fix-point DAN with binary connection weights.
4) DANB: Fix-point DAN with binary connection weights

and binary activations.

To evaluate the sparsity of neural connections, we use the
ratio of reserved weights σ as the sparsity measurement, which
is controlled by the threshold value u as

σ = 1 − N (u)

total number of weights
× 100% (15)

where N (u) indicates the number of weights whose absolute
values are smaller than u. Specifically, the sparsity mea-
surement σ ∈ [0, 1] reaches 0 if u = maxi j |wi j |. The σ
measurement is an important tradeoff between efficiency and
classification accuracy, and a typical range of σ is between
5% and 25% for the examined data sets.

B. MNIST Handwritten Images

MNIST is a benchmark image classification data set [31].
It consists of a training set of 60 000 and a test set of 10 000
28×28 grayscale images representing digits ranging from
0 to 9 (Fig. 7). Two networks, i.e., a DAN (784-800-800-10)
and a DBN (784-800-800-10), are built to extract features from
the images in the MNIST data set. We use the training set of
60 000 images to fit the DAN and DBN simultaneously. The
parameters of the DAN are then thresholded and binarized.
Respective NN classifiers are connected with the DAN and
the DBN. Experiment shows that DANt with only 25% con-
nections reserved has almost the same classification accuracy
(98.83%) as the original DBN (98.84%) with full connections.

Fig. 7 shows DANb with binary connection weights. The
weight parameters are shown in Fig. 7(b). The inferred values
are shown in Fig. 7(a). As a result of the mixed-norm
weight-decay and threshold process, the weight matrices of
the first-layer and the second-layer AdaRBMs become very
sparse, and the nonzero weights tend to cluster into different
groups.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: DANoC: EFFICIENT ALGORITHM AND HARDWARE CODESIGN OF DEEP NNs ON CHIP 7

Fig. 7. Sparsely connected binary-weighted DAN (DANb) learned from the MNIST data set. An NN classifier is connected to the DAN for recognizing the
label (0–9) of a given image. (a) The input image and the associated sparse features extracted using the DAN. (b) The sparse weight parameters learned by
the DAN.

Fig. 8. Classification accuracies of the DBNs and the DAN change as λ
changes from 10−1 to 10−8 (γ = 0.5). DBN1 and DBN2 are single-precision
DBNs with L1 and L2 norm weight decay, respectively.

We change the parameter λ from 10−1 to 10−8 to eval-
uate its relation to classification accuracy. Our experiment
randomly selects 10 000 images for training and tests the DAN,
the DBN, the DBN with L1-norm weight-decay (DBN1), and
the DBN with L2-norm weight-decay (DBN2) over the rest
images. The experiment is carried out ten times and the
average accuracies are shown in Fig. 8. It seems that the DAN,
the DBN, and DBN2 have a similar classification accuracy
when λ is smaller than 10−4; however, DBN1 has noticeably
lower accuracy.

Since the parameter λ controls the sparsity of the weight
parameters in a DAN, it could affect the efficiency of hardware
implementation. Fig. 9 shows the relation between the ratio of
reserved weights (σ) and the value of λ. A typical threshold
value u = 0.1 and γ = 0.5 is set. Results show that the ratio
of reserved weights drops significantly from about 50% to less
than 5% when λ changes from 10−8 to 10−1. Experiment also
shows that the second layer of the DAN is over 15% sparser
than the first layer.

An experiment is performed to illustrate how the para-
meter γ controls the tradeoff between rowwise sparsity and
columnwise sparsity of the weight matrix. The weights of
DANt with different values of γ are examined. We compare
the rowwise matrix norm ‖W‖M and the columnwise matrix
norm ‖WT ‖M , and have two observations. First, ‖WT ‖M

Fig. 9. Ratio of reserved weights (σ%) of each layer in the DAN is controlled
by the parameter λ(u = 0.1, γ = 0.5).

Fig. 10. Classification accuracy of the DANs and the DBNs with different
weight decay approaches. The connection weights are thresholded with the
σ% significant weights reserved and represented using single-bit integers.

increases as γ increases, whereas ‖W‖M drops as γ increases.
This observation is coherent with the optimization formula-
tion of (10). Second, the weight matrix of the second-layer
AdaRBM has about 20% smaller mixed norm than the first-
layer AdaRBM. This observation indicates that the second-
layer weights may be sparser than the first-layer weights,
which is coherent with the results of Fig. 9.

Fig. 10 compares the accuracy of the classic NN classifiers
proceeded by the DBN and the DANs of different precisions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 11. Memory required for weight parameters of the DBN and the DAN.

To compare the influence of quantization on the examined
approaches, the weights of the DBNs are thresholded and
quantized with the same setting as the DAN. Experiment
shows that, generally speaking, the DAN is sparse and robust
with the binary quantization operation. When the ratio of
reserved weights σ changes from 0% to 5%, the classification
accuracy of DANb quickly climbs to over 90%. However, the
classification accuracies of the DBN (54.2%), DBN1 (19.2%),
and DBN2 (67.4%) show much worse results with 5% con-
nections reserved. It seems that DANb shows almost no drop
in classification accuracy when more than 10% connections
are reserved. Moreover, the deviation results indicate that
DBN1, DBN2, and the DAN are all relatively stabler than the
original DBN when the ratio of reserved weights decreases.
The deviation of the DAN quickly shrinks when more
than 15% weights are reserved.

To achieve higher hardware efficiency, the DAN could use
binary activations as well as binary weights. Fig. 10 also shows
the influence of adopting binary activation on classification
accuracy. The activations of DANB are thresholded and bina-
rized using a constant 0.5. As shown in Fig. 10, the accuracy of
the NN classifier proceeded by DANB is significantly higher
than the DBN. By adopting binary weights and activations, the
DANoC coprocessor could replace the complex floating-point
multipliers with simple fix-point accumulators and imple-
ments the sigmoid activation function using simple threshold
operations.

By adopting the sparse binary connections, the DAN
becomes 99.3% (σ = 20%) to 99.9% (σ = 5%) more memory
efficient than the single-precision DBN. Fig. 11 shows the
theoretical results of the memory used by the DAN and the
original DBN. The memory complexity of the deep NNs
increases as the number of neurons increases. The present
DBNs are usually implemented using 32-b representation;
however, with sparse and binary weights, DANb could improve
the memory efficiency by two to three orders of magnitude.

C. Hyperspectral Remote Sensing Images

The second experiment applies the DAN algorithm and
the DANoC system to the hyperspectral remote sens-
ing application. Different from visible-light images, the
hyperspectral images contain information from across the
electromagnetic spectrum. Fig. 12 shows the Pavia Center
data set, which contains 1.2 million samples. Each pixel in

Fig. 12. Pavia Center image and the ground-truth labels for each pixel.
The Pavia Center set has 1.2 million samples. The DBN-based classification
of each sample contains 10.9 million operations, and the Zynq7100-based
DANoC achieves 2036 effective GOPS at 1.9-W power consumption.

TABLE I

EXAMINED HYPERSPECTRAL DATA SETS

the image is recorded with 102 spectral bands covering the
wavelengths from 401 to 889 nm. The goal of classification
is to determine nine labels associated with each pixel.

Our experiments examine four well-known data sets of
hyperspectral images (Table I). All the examined data sets are
downloaded from the hyperspectral website [32]. The scene
of the India Pines is gathered by the AVIRIS sensor and
consists of 21 025 samples with 224 spectral reflectance bands
in the wavelength ranging from 0.4 × 10−6 to 2.5 × 10−6 m.
The label of each pixel falls into 16 classes. The Salinas
data set is collected by the 224-band AVIRIS sensor over the
Salinas Valley, CA, USA, and is characterized by high spatial
resolution (3.7-m pixels). The area covered comprises 11 110
thousand samples of 16 classes. Similar to the Pavia Center
data set, the Pavia University set has nine classes and 0.37
million samples recorded with 103 spectral bands.

Different from traditional technologies, the hyperspectral
imaging can get the spatial and spectral data simultaneously,
resulting in high-dimensional samples. For practical remote
sensing applications, the number of labeled training samples
for each class is usually less than a few hundreds. The
scarcity of labeled training samples could cause a significant
drop in classification accuracy for supervised approaches,
which is known as the Hughes phenomenon. Therefore, an
unsupervised feature extraction process is usually applied
before hyperspectral classification. Recently, there has been
a lot interest in the remote sensing area to apply the deep
learning algorithms for hyperspectral classification. And the
DBN has been reported as the state-of-the-art for extracting
features from hyperspectral images [3]. However, it is usually
a challenge to deploy the DBN to process remote sensing
images in real time, because the embedded systems carried
by satellites or unmanned aerial vehicles are generally limited
in hardware resources. In this experiment, we show that the
efficient DAN algorithm and the DANoC system could provide
competitive results with the state-of-the-art approaches for
classifying hyperspectral images (Table II).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: DANoC: EFFICIENT ALGORITHM AND HARDWARE CODESIGN OF DEEP NNs ON CHIP 9

Fig. 13. Spatial–spectral classification of the hyperspectral data using the proposed DAN. Each pixel in the hyperspectral data is recorded with 102 spectral
bands covering the wavelengths from 401 to 889 nm.

TABLE II

LATEST STUDIES OF HYPERSPECTRAL IMAGE CLASSIFICATION

Fig. 13 shows our DAN-based classification process of
the spatial–spectral samples, which consists of four steps:
1) normalization and whitening are applied to reduce the
correlation between features; 2) the neighbor region of the
target pixel is selected (red square), and the spatial–spectral
sample is flattened and arranged as a vector; 3) a DAN
is trained and built to extract the features from the high
dimensional vector; and 4) the extracted features are classified
using an NN classifier.

Given a target pixel, a neighbor region of nine pixels is con-
structed to form a high-dimensional spatial–spectral sample.
Different deep NNs are trained over the Indian Pines data
set (1800-2000-2000), the Salinas data set (1836-2000-2000),
the Pavia Center data set (918-1000-1000), and the Pavia
University data set (927-1000-1000) for feature selection. Our
experiment compares the proposed method with the DBN,
the principal component analysis (PCA), and the independent
component analysis (ICA), all of which have been proven to
be effective for processing the hyperspectral data. Different
classifiers, including the NN classifier, the logistic regression
classifier, the support vector machine, the naive Bayes, and the
decision tree, are examined. All the compared classifiers are
implemented using the WEKA software [45]. To calculate the
classification accuracy, we randomly select 50% of unlabeled
hyperspectral samples for training the unsupervised DAN,
the PCA, and the ICA, and the rest samples are used for
testing. The classifiers are trained with 25% labels randomly

TABLE III

STANDARD HYPERSPECTRAL CLASSIFICATION APPROACHES

selected from the training set. The experiment is repeated ten
times, and the average classification accuracy and derivation
are calculated. Experiment results in Table III show that the
DAN algorithm achieves the highest classification accuracy
among all compared approaches over three of the examined
data sets (90.90%–99.59%).

Table II compares the binary DAN implemented in the
DANoC system with the optimal results reported by the
latest hyperspectral studies [33]–[40]. All these studies use
the same spatial–spectral samples and similar experiment
settings. It seems that the DANoC system could achieve com-
petitive results with the-state-of-the-art approaches by taking
advantage of the large-volume unlabeled samples. It is worth
noting that the DAN even outperforms some deep learning-
based approaches, including the CNN. Since the labeled
training samples are limited and expensive for remote sensing
applications, the lack of labeled training data degrades the
performance of supervised approaches.

With algorithm-level and hardware-level optimization, the
DANoC coprocessor achieves competitive performance with
the state-of-the-art hardware implementations [27]–[29], [46].
In our hardware experiments, the performance of the DANoC
system is estimated using the number of multiplications
required in a standard DBN. Two versions of DANoC systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV

PERFORMANCE OF THE DANOC HARDWARE PROTOTYPE

Fig. 14. Self-driving robot car equipped with a DANoC hardware prototype.
The robot car has two cameras, one is used to track the road (left) and
the other is used to recognize the traffic signs (right). Two types of deep
NNs are integrated in the DANoC, which achieve 98.2% correct rate for
recognizing 12 traffic signs, and 98.9% correct rate for recognizing the road.
The Zynq7100-based DANoC coprocessor achieves the state-of-the-art peak
performance of 1593 GOPS and is able to process 67 frames of 640–480
video in real time.

are implemented using the Zynq7Z020 and the Zynq7100
FPGA devices, respectively. As shown in Table IV, the
low-cost Zynq7Z020 DANoC achieves high performance
of 615–841 giga-operations per second per watt, which allows
the DANoC chip to process 31.2–53.9 thousand hyperspectral
samples per second. The peak performance achieved by the
Zynq7100 DANoC chip is 2077 effective giga-operations
per second, which is the state-of-the-art among the latest
FPGA-based hardware implementations (Table V). The high
performance is achieved at less than 2 W of chip-level power
consumption, which is orders of magnitude more efficient than
CPU- and GPU-based solutions.

D. Real-Time Analysis of Video Images

Besides the remote sensing applications, which are our
primary motivation, we also evaluate the DANoC hardware
for real-time video processing. In this experiment, a DANoC
hardware prototype is mounted on a toy robot car for automatic
driving (Fig. 14). The robot car has two 640–480 video
cameras connected with the hardware board via respective
USB ports. One camera is used to track the road and the
other is used to recognize 12 traffic signs. The video streams
are captured and thresholded as binary frames using software
running on the ARM host processors. Then, the image frames
are split as 16–16 (road) and 32–32 (traffic sign) windows with

TABLE V

PEAK PERFORMANCE OF THE LATEST HARDWARE

DEEP NN ACCELERATORS

8-pixel step size, and the images are arranged as binary streams
and routed to the DANoC coprocessor for feature extraction
and classification. The classification results are then sent back
to the host processor to control the toy robot car automatically.

Two types of DAN pipelines are implemented in the
DANoC coprocessor for recognizing the traffic signs and the
road, respectively. Each pipeline uses two SNCs to implement
a stacked DAN and one core to implement the NN classifier.
Eight video clips recoded with different light conditions and
camera angles are used to train and test the DAN algorithm
offline. Experiment shows the DANoC coprocessor achieves
98.2% correct rate for recognizing 12 traffic signs, and 98.9%
correct rate for recognizing the road. The performance of the
DANoC system is estimated using the number of multipli-
cations required in a standard DBN of the same configu-
ration. The Zynq7Z020 DANoC with six pipelines of deep
NNs achieves 319 giga-operations per second with 478-mW
power consumption. The high-performance Zynq 7100-based
DANoC could integrate up to 30 pipelines in single FPGA
chip, which enables it to process 67 frames in real time with
the peak performance of 1593 effective giga-operations per
second.

VI. CONCLUSION AND DISCUSSION

This paper proposes an algorithm and hardware codesign
of the famous DBN for embedded applications. The pro-
posed DAN algorithm is optimized to learn deep NNs with
sparse connections, which can be robustly represented using
single-bit integers. The proposed efficient learning algorithm
could reduce up to 99.9% memory consumption and replace

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: DANoC: EFFICIENT ALGORITHM AND HARDWARE CODESIGN OF DEEP NNs ON CHIP 11

the complex floating-point multipliers with efficient fix-point
accumulators, which enables the DANoC hardware to preserve
all the parameters on chip and achieve the state-of-the-art per-
formance for embedded remote sensing and computer vision
applications.

Motivated by accelerating unsupervised deep NNs for
embedded pattern recognition applications, this paper mainly
focuses on the algorithm and hardware optimization of the
famous DBN. However, the sparse weight decay approach can
also be applied to other deep learning methods. For example,
we find that the connection weights in the CNN can also
be reduced by the mixed norm regularization approach, and
the CNN could be robustly thresholded and represented using
binary integers. In the future, we plan to implement and
optimize the hardware design for CNN with sparse binary
connections and activations.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments on this paper. They would
also like to thank L. Yu and K. Li for their contribution in
developing and evaluating the hardware prototype.

REFERENCES

[1] G. E. Hinton et al., “Deep neural networks for acoustic modeling
in speech recognition,” IEEE Signal Process. Mag., vol. 29, no. 6,
pp. 82–97, Oct. 2012.

[2] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2015.

[3] Y. Chen, X. Zhao, and X. Jia, “Spectral-spatial classification of hyper-
spectral data based on deep belief network,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8, no. 6, pp. 1–12, Jan. 2015.

[4] O. Vinyals and S. V. Ravuri, “Comparing multilayer perceptron to deep
belief network tandem features for robust ASR,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., Prague, Czech Republic, May 2011,
pp. 4596–4599.

[5] L. P. Maguire et al., “Challenges for large-scale implementations
of spiking neural networks on FPGAs,” Neurocomputing, vol. 71,
nos. 1–3, pp. 13–29, Dec. 2007.

[6] N. Lopes and B. Ribeiro, “An evaluation of multiple feed-forward
networks on GPUs,” Int. J. Neural Syst., vol. 21, no. 1, pp. 31–47,
Feb. 2011.

[7] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward
neural network implementation in FPGA using layer multiplexing for
effective resource utilization,” IEEE Trans. Neural Netw., vol. 18, no. 3,
pp. 880–888, May 2007.

[8] S. Draghici, “On the capabilities of neural networks using limited
precision weights,” Neural Netw. J. Int. Neural Netw. Soc., vol. 15, no. 3,
pp. 395–414, Apr. 2002.

[9] J. L. Holi and J.-N. Hwang, “Finite precision error analysis of neural
network hardware implementations,” IEEE Trans. Comput., vol. 42,
no. 3, pp. 281–290, Mar. 1993.

[10] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Proc. 32nd Int.
Conf. Mach. Learn., pp. 1737–1746, 2015.

[11] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Roy. Statist. Soc., B (Statist. Methodol.), vol. 68,
no. 1, pp. 49–67, 2006.

[12] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso
and a sparse group lasso,” Statistics, Jan. 2010.

[13] M. Ranzato, Y.-L. Boureau, and Y. LeCun, “Sparse feature learning for
deep belief networks,” in Advances in Neural Information Processing
Systems, vol. 20. Red Hook, NY, USA: Curran Associates, 2007,
pp. 1185–1192.

[14] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for
visual area V2,” in Proc. Adv. Neural Inf. Process. Syst., vol. 20. 2008,
pp. 873–880.

[15] N.-N. Ji, J.-S. Zhang, and C.-X. Zhang, “A sparse-response deep belief
network based on rate distortion theory,” Pattern Recognit., vol. 47,
no. 9, pp. 3179–3191, 2014.

[16] S. Abramson, D. Saad, and E. Marom, “Training a network with ternary
weights using the CHIR algorithm,” IEEE Trans. Neural Netw., vol. 4,
no. 6, pp. 997–1000, Nov. 1993.

[17] F. Aviolat and E. Mayoraz, “A constructive training algorithm for
feedforward neural networks with ternary weights,” in Proc. Eur. Symp.
Artif. Neural Netw., Brussels, Belgium, Apr. 1994, pp. 20–22.

[18] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[19] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberge, and Y. Chen,
“Compressing neural networks with the hashing trick,” in Proc. Int.
Conf. Mach. Learn., 2015, pp. 2285–2294.

[20] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” Fiber, vol. 56, no. 4, pp. 3–7, 2016.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks,” Neural Inf. Process. Systems,
pp. 4107–4115, 2016.

[22] M. Rastegari et al., “XNOR-Net: ImageNet classification using binary
convolutional neural networks,” in Proc. Eur Conf Comput. Vis.,
Sep. 2016, pp. 525–542.

[23] J. M. Alvarez and M. Salzmann, “Learning the number of neurons
in deep networks,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 2262–2270.

[24] W. Pan, H. Dong, Y. Guo. (Jun. 2016). “DropNeuron: Simplify-
ing the structure of deep neural networks.” [Online]. Available:
https://arxiv.org/abs/1606.07326

[25] W. Wen et al., “Learning structured sparsity in deep neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 2074–2082.

[26] B. Ahn, “Computation of deep belief networks using special-purpose
hardware architecture,” in Proc. IEEE Int. Conf. Neural Netw., Beijing,
China, Jul. 2014, pp. 141–148.

[27] K. Sanni et al., “FPGA implementation of a deep belief network
architecture for character recognition using stochastic computation,” in
Proc. 49th Conf. Inf. Sci. Syst., Mar. 2015, pp. 1–5.

[28] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based accelerator design for deep convolutional neural net-
works,” in Proc. Acm/sigda Int. Symp., Monterey, CA, USA, Feb. 2015,
pp. 161–170.

[29] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240
G-ops/s mobile coprocessor for deep neural networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops, Columbus, OH, USA,
Jun. 2014, pp. 696–701.

[30] G. E. Hinton, “A practical guide to training restricted Boltzmann
machines,” Momentum, vol. 9, no. 1, pp. 599–619, 2010.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[32] ECU Hyperspectral Website, Hyperspectral Remote Sensing
Datasets, accessed on Jun. 13, 2016. [Online]. Available:
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes#Pavia_Centre_scene

[33] J. Yue, W. Zhao, S. Mao, and H. Liu, “Spectral–spatial classification of
hyperspectral images using deep convolutional neural networks,” Remote
Sens. Lett., vol. 6, no. 6, pp. 468–477, May 2015.

[34] Y. Yuan, G. Zhu, and Q. Wang, “Hyperspectral band selection by
multitask sparsity pursuit,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 2, pp. 631–644, Feb. 2015.

[35] Z. Wang, N. M. Nasrabadi, and T. S. Huang, “Semisupervised
hyperspectral classification using task-driven dictionary learning with
Laplacian regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 3, pp. 1161–1173, Mar. 2015.

[36] B. C. Kuo, H. H. Ho, C. H. Li, C. C. Hung, and J. S. Taur, “A kernel-
based feature selection method for SVM with RBF kernel for hyper-
spectral image classification,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 7, no. 1, pp. 317–326, Jan. 2014.

[37] P. Ramzi, F. Samadzadegan, and P. Reinartz, “Classification of hyper-
spectral data using an AdaBoostSVM technique applied on band clus-
ters,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 6, pp. 2066–2079, Jun. 2014.

[38] W. Li, S. Prasad, and J. E. Fowler, “Hyperspectral image classification
using Gaussian mixture models and Markov random fields,” IEEE
Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 153–157, Jan. 2014.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[39] M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-Dias,
“A subspace-based multinomial logistic regression for hyperspectral
image classification,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 12,
pp. 2105–2109, Dec. 2014.

[40] W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, “Locality-
preserving dimensionality reduction and classification for hyperspectral
image analysis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4,
pp. 1185–1198, Apr. 2012.

[41] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2094–2107, Jun. 2014.

[42] Y. Liu, G. Cao, Q. Shen, and M. Siegel, “Hyperspectral classification
via deep networks and superpixel segmentation,” Int. J. Remote Sens.,
vol. 36, no. 13, pp. 3459–3482, Jul. 2015.

[43] W. Zhao, and S. Du, “Spectral–spatial feature extraction for hyper-
spectral image classification: A dimension reduction and deep learn-
ing approach,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8,
pp. 4544–4554, Aug. 2016.

[44] K. Huang, S. Li, X. Kang, and L. Fang, “Spectral–spatial hyperspectral
image classification based on KNN,” Sens. Imag., vol. 17, no. 1,
pp. 1–13, Dec. 2016.

[45] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,” ACM
SIGKDD Explor. Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[46] N. Li, S. Takaki, Y. Tomiokay, and H. Kitazawa, “A multistage dataflow
implementation of a deep convolutional neural network based on FPGA
for high-speed object recognition,” in Proc. IEEE Southwest Symp.
Image Anal. Interpretation, Mar. 2016, pp. 165–168.

[47] Z. Du et al., “Shidiannao: Shifting vision processing closer to the
sensor,” Acm Sigarch Comput. Archit. News, vol. 43, no. 3, pp. 92–104,
2015.

[48] P. H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. Lecun, and
E. Culurciello, “NeuFlow: Dataflow vision processing system-on-a-
chip,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Sep. 2012,
pp. 1044–1047.

[49] L. Cavigelli and L. Benini, “A 803 GOp/s/W convolutional net-
work accelerator,” IEEE Trans. Circuits Syst. Video Technol.,
doi: 10.1109/TCSVT.2016.2592330.

[50] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ultra-
low power convolutional neural network accelerator based on binary
weights,” in Proc. ISVLSI, 2016, pp. 236–241.

Xichuan Zhou (S’06–M’13) received the B.S. and
Ph.D. degrees from Zhejiang University, Hangzhou,
China, in 2005 and 2010, respectively.

He is currently an Associate Professor and
the Assistant Dean of the College of Commu-
nication Engineering with Chongqing University,
Chongqing, China. He has authored or co-authored
over 20 papers on peer-reviewed journals, such as
the IEEE TRANSACTIONS ON BIOMEDICAL ENGI-
NEERING, the IEEE TRANSACTIONS ON COMPU-
TATIONAL BIOLOGY AND BIOINFORMATICS, the

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, the IEEE TRANS-
ACTIONS ON ELECTRON DEVICES, and the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS I. His current research interests include parallel
computing, circuits and systems, and machine learning.

Dr. Zhou was a recipient of the Outstanding Young-and-Middle-Age Faculty
Award of Chongqing in 2016.

Shengli Li received the B.S. degree from Chongqing
University (CQU), Chongqing, China, in 2013.

He is currently a Graduate Student with the
College of Communication Engineering, CQU. His
current research interests include circuit and system
design for image and video processing.

Fang Tang (S’07–M’14) received the B.S. degree
from Beijing Jiaotong University, Beijing, China,
in 2006, and the M.Phil. and Ph.D. degrees from the
Hong Kong University of Science and Technology,
Hong Kong, in 2009 and 2013, respectively.

He was a Research Associate with the Hong Kong
University of Science and Technology. Since 2013,
he has been a Distinguished Research Fellow and
Tenure-Track Assistant Professor with the College of
Communication Engineering, Chongqing University,
Chongqing, China. His current research interests

include circuit and system design for biomedical applications.

Shengdong Hu received the M.S. degree in material
science and engineering from Sichuan University,
Sichuan, China, in 2005, and the Ph.D. degree in
microelectronics from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2010.

Since 2010, he was with Chongqing Univer-
sity, Chongqing, China, where he was involved in
research on semiconductor devices and integrated
circuits. In 2011, he joined the No.24 Research
Institute of China Electronics Technology Group

Corporation Chongqing, as a Post-Doctoral Researcher.

Zhi Lin received the B.S. and Ph.D. degrees from
the University of Electronic Science and Technol-
ogy of China, Chengdu, China, in 2009 and 2015,
respectively.

Since 2016, he has been with Chongqing Univer-
sity, Chongqing, China, where he was involved in
research on semiconductor devices and integrated
circuits.

Lei Zhang (M’14) received the Ph.D. degree in cir-
cuits and systems from the College of Communica-
tion Engineering, Chongqing University, Chongqing,
China.

He has authored over 50 scientific papers in
top journals. His current research interests include
machine learning, pattern recognition, computer
vision, electronic olfaction, and intelligent systems.

Dr. Zhang was a recipient of the Hong Kong
Scholar Award in 2014 and the New Academic
Researcher Award for Doctoral Candidates from the

Ministry of Education, China, in 2012.

