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Abstract—Sparse representation based classification (SRC),
nuclear-norm matrix regression (NMR), and deep learning (DL)
have achieved a great success in face recognition (FR). However,
there still exist some intrinsic limitations among them. SRC and
NMR based coding methods belong to one-step model, such
that the latent discriminative information of the coding error
vector cannot be fully exploited. DL, as a multi-step model,
can learn powerful representation, but relies on large-scale data
and computation resources for numerous parameters training
with complicated back-propagation. Straightforward training of
deep neural networks from scratch on small-scale data is almost
infeasible. Therefore, in order to develop efficient algorithms
that are specifically adapted for small-scale data, we propose
to derive the deep models of SRC and NMR. Specifically, in this
paper, we propose an end-to-end deep cascade model (DCM)
based on SRC and NMR with hierarchical learning, nonlinear
transformation and multi-layer structure for corrupted face
recognition. The contributions include four aspects. First, an
end-to-end deep cascade model for small-scale data without
back-propagation is proposed. Second, a multi-level pyramid
structure is integrated for local feature representation. Third,
for introducing nonlinear transformation in layer-wise learning,
softmax vector coding of the errors with class discrimination
is proposed. Fourth, the existing representation methods can
be easily integrated into our DCM framework. Experiments
on a number of small-scale benchmark FR datasets demon-
strate the superiority of the proposed model over state-of-the-
art counterparts. Additionally, a perspective that deep-layered
learning does not have to be convolutional neural network with
back-propagation optimization is consolidated. The demo code is
available in https://github.com/liuji93/DCM

Index Terms—Deep cascade model, softmax vector, represen-
tation learning, face recognition, corruption.

I. INTRODUCTION

FACE recognition has been recognized as one of the
most popular and challenging topic in computer vision

and pattern recognition. In the past decade, various face
recognition methods have been developed by world-wide
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researchers. Among them, sparse coding, nuclear-norm matrix
regression analysis and deep learning have yielded significant
performance and become mainstream methods of an era.

Naseem et al. [1] proposed a linear regression classifier
(LRC) and the key idea is to linearly represent a query
face by using a gallery set. Further, Wright et al. [2] for-
mulated a novel sparse representation based classification
(SRC) framework, by imposing l1-norm regularization term
on the LRC model to avoid over-fitting. In SRC, a testing
image is linearly coded by the training set with l1-norm
constraint on the coding coefficients for pursuit of sparsity.
Since then, a number of methods [1], [3]–[11] have been
proposed with sparse lp-norm modeling. Zhang et al. [12],
[13] argued that the collaborative representation scheme plays
a more important role than l1-norm based sparsity constraint,
and then proposed a collaborative representation classifier
(CRC) based on l2-norm constraint. Competitive results on
face recognition were also achieved without pursuit of sparsity.
With Bayesian learning theory, the rationality behind l2-norm
or l1-norm regularization follows a conditionally independent
probabilistic prior assumption that the noise (coding error)
obeys Gaussian or Laplacian distribution. The probabilistic
prior works if the data is uncorrupted. Nevertheless, if there
were some illumination variation, occlusion, or disguise, in
which the corrupted region is pixel-correlated, the prior as-
sumption becomes invalid. Therefore, a number of algorithms
have been developed to model the images with corruptions
and outliers [14]–[23].

Besides the sparse coding, low-rank coding is also proved
to be useful for modeling intra-pixel highly-correlated cor-
ruptions. Yang et al. [24] proposed a two-dimensional image
matrix model, i.e. nuclear-norm matrix regression (NMR) for
corrupted face recognition. Further, Xie et al. [25] proposed a
weighted nuclear-norm based robust matrix regression (RMR)
model and the corrupted FR performance is promoted.

Recently, deep neural networks have achieved a great suc-
cess in computer vision [26], [27] and face recognition [28],
[29]. The reason is that deep learning allows nonlinear com-
putational models to learn fantastically complex, subtle and
abstract features by connecting multiple hierarchical layers.

Conventional representation models such as sparse rep-
resentation and nuclear-norm matrix regression can capture
discriminative features by efficient one-step prior modeling
on the error (noise) for uncorrupted FR. However, the implied
discriminant information in the coding error vector cannot be
exploited via a one-step strategy, such that the performance is
seriously degraded especially for corrupted face recognition.
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Additionally, although deep learning has become dominant
in various applications, DL still relies on large-scale labeled
data for massive parameters training, powerful computational
resources for programming and expensive time cost due to
the very cumbersome gradient back-propagation optimization
and labeling process. Additionally, the biological nature and
interpretability of DL (i.e. deep neural network) are still not
completely clear. More importantly, straightforward training
of DL from scratch on small-scale data is almost impossible.
Therefore, the above issues motivate us to propose a deep
framework that is specifically adapted for small-scale data.
With this goal, in this paper, we target at integrating the deep
concept of DL into the coding framework of conventional
representation models such as SRC and NMR. Consequently,
a specialized end-to-end deep cascade model (DCM) for
small-scale data is developed. In DCM, we are committed to
inherit the excellent traits in DL such as hierarchical learning,
nonlinear feature transformation and multi-layer connections,
and achieve discriminative feature abstraction with SRC and
NMR as the basic operation unit in DCM. Besides, we would
also like to show that deep-layered learning does not have
to be convolutional neural network architecture with cum-
bersome back-propagation optimization, and the models with
hierarchical learning, nonlinear transformation and multi-layer
connection characteristics can also be called deep-layered
methods. This will contribute to the emergence of more
deep-layered algorithms for small-scale data (e.g. hundreds
of samples). The recent deep forest method (gcForest) [30]
also shows that multi-layer cascade of random forest could
achieve competitive representation learning ability even with-
out using convolutional neural network and back-propagation
optimization, especially for small-scale data. The mind of
deep-layered learning with end-to-end layer-wise training and
without neural convolution is further consolidated in our DCM.

Specifically, as shown in Fig. 1, the proposed model in-
cludes two modules: multi-level image coding and multi-layer
softmax vector coding. In multi-level image coding, three-level
representation on the raw images are implemented in parallel.
In softmax vector coding, a multi-layer cascade representation
with layer-wise hierarchical learning is implemented. For both
modules, a basic operator, i.e. getting new feature (GNF),
which refers to either SRC or NMR, is integrated. To the best
of our knowledge, this is the first work formulating sparse
coding as a deep framework trained from scratch on small-
scale data. The main contributions of this paper include:

• An end-to-end deep cascade structure with hierarchical
learning and multi-layer representation for high-level
discriminative feature abstraction is proposed, which
interprets deep learning as a novel hierarchical cod-
ing perspective with coding error retraining rather than
conventional neural convolution with back-propagation.
Different from conventional deep learning, the proposed
deep model is designed for small-scale data.

• To explore whether the facial subregions can help im-
prove classification performance, we utilize a three-level
pyramid structure in the image coding part. In the three-
level spatial pyramid structure, each image is divided

into 4 and 16 subregions. For uncorrupted data, the local
information can be fully explored; for corrupted data, the
subregions without corruption can provide supplementary
features that facilitate recognition. For discrimination, the
representation errors of the whole images in the 1st level
together with the subregions in the 2nd and 3rd level are
transformed into softmax vectors. To further explore the
effectiveness of the softmax vectors, we design a cascade
model where the softmax vectors are concatenated layer
by layer in the softmax vector coding part.

• In sparse representation classifier, the testing image is
categorized as the class with minimum reconstruction
error. In other words, the representation error vector of all
classes shows significant class discrimination. Therefore,
in this paper, we propose to use the representation error
vector of all classes to represent an image.

• Most of existing sparse and low-rank coding based meth-
ods can be easily integrated into the proposed multi-level
image coding part. In this paper, we have integrated the
SRC and NMR to obtain representation errors.

The rest of this paper is organized as follows. In Section II,
we review the related work. Section III presents the proposed
DCM framework. The experimental results are shown in
Section IV. The discussion of the proposed DCM is presented
in Section V. The analysis of algorithms is presented in Section
VI. Finally, Section VII concludes this paper.

II. RELATED WORK

In recent years, a number of representation based models
have been proposed to deal with face recognition with oc-
clusion and illumination changes. For both uncorrupted and
corrupted data, a half-quadratic based method (HQ) [17] is
applicable to perform both error correction and error detection.
The additive function and multiplicative function based on l1-
norm sparsity constraint are defined in HQ framework, for
handling corrupted and uncorrupted data, respectively. Li et
al. explored the error structure incurred by occlusion from two
aspects: the error morphology and the error distribution. They
argued that the shape of the occlusion is also an important
feature and therefore formulated a structural sparse error
coding for face recognition with occlusion (SSEC) [20], where
the error of the non-occluded part and the occluded part were
measured differently. Although SSEC considered the non-
occluded part and occluded part in an image, it still suppose
that the occlusion exists in images.

Recently, robust regression methods based on low-rank
constraint [25], [31]–[41] have been developed for face recog-
nition problem. Typically, Luo et al. [42] argued that most ex-
isting one-dimensional pixel-based error models (e.g. SRC [2],
RSC [14], RLRC [19], etc.) for dealing with face recognition
problem with corruption are unreasonable for two reasons.
On one hand, those one-dimensional pixel-based error models
assume that pixel-wise errors are independent and identically
distributed (i.i.d.). However, the pixel-wise errors are highly
correlated in real-world images. On the other hand, those one-
dimensional pixel-based error models use a vector to represent
an image, which neglects the structure information of the
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Fig. 1: The proposed DCM framework, which illustrates how the deep cascade model works when classifying a query image
y under all training images X. Specifically, two parts, multi-level image coding and softmax vector coding are included.
Getting New Feature (GNF) is designed to compute the class-discriminative softmax vectors based on coding errors. High-
level representation features, softmax vector, are computed with pyramid structure based on GNF function in the multi-level
image coding part. The softmax vector coding aims to mining more discriminative features based on layer-wise representation.
Note that the detailed operation in red dashed box is specially described in Fig. 3

error image (e.g., the rank of error image). Based on the
above motivations, Yang et al. proposed a two-dimensional
image matrix based error model, i.e. nuclear norm matrix
regression (NMR) [24]. The NMR model is also suitable for
uncorrupted data because the elements of the residual image
almost approach zeros and endows a low-rank structure.

Recently, a multi-grained cascade forest (gcForest) is pro-
posed by Zhou et al. [30], in which some basic decision tree
algorithms are adopted in the learning mechanism for class
vectors computation. These class vectors associates with the
original input are treated as the input of next level. Similarly, in
this paper, we also adopt a cascade learning framework based
on linear representation method for high-level discriminative
feature learning with softmax function. In our previous work, a
sparse softmax vector coding (SSVD) method that uses sparse
coding for multi-layer feature representation was proposed
in [43]. Different from the previous work, this paper introduces
sparse coding and nuclear norm matrix regression models in
image coding part. We can empirically choose the appropriate
baseline representational learning methods in the image coding
part to achieve better recognition performance.

III. REPRESENTATION BASED DEEP CASCADE MODEL

In this section, we present the formulation of the proposed
DCM framework for robust face recognition. First, we present
the function, i.e., getting new feature (GNF) part. Further, for
easy following the principle of DCM, we describe DCM in two

parts: multi-level image coding part and multi-layer softmax
vector coding part. The whole process of the proposed DCM
framework is shown in Fig. 1.

A. The Basic Getting New Feature Unit: GNF

In our DCM model, we formulate a function of getting new
feature (GNF), which, in the image coding part, transforms the
whole image as well as its subregions into softmax vectors ac-
tivated by the softmax function on the representation error. In
this paper, two different representation (coding) models such
as sparse representation and nuclear norm matrix regression
are used in the GNF function to obtain softmax vectors. It
is worth noting that more suitable coding methods that is
beneficial to recognition can be freely selected and integrated
into GNF in the proposed DCM model.

1) Getting New Feature based on Sparse Representation:
Suppose that we have C classes of subjects, d represents
a query sample and D = [D1,D2, · · · ,DC ] represents the
dictionary (a group of basis). In terms of sparse representation
based classifier (SRC) [2] and dictionary learning [44], the
representation model can be transformed into the following
minimization problem:

min
α
‖d−Dα‖22+λ‖α‖1 (1)

where λ is a scalar constant, ‖·‖2 and ‖·‖1 represent the
l2-norm and l1-norm, respectively. After solving the coding



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, JAN 2018 4

coefficients α, the representation error of each class can be
computed as follows:

rc = ‖d−Dcαc‖22 (2)

where Dc is the sample set with respect to class c, and αc is
the coefficient vector associated with class c. Then, by using
the softmax function, the proposed softmax vector Sv ∈ RC
can be computed as follows:

Sv = [
e−r1∑C
c=1 e

−rc
,

e−r2∑C
c=1 e

−rc
, · · · , e−rC∑C

c=1 e
−rc

]T (3)

where C denotes the number of classes. It is obvious that if the
testing sample d belongs to class i (≤ C), Siv should be bigger
than other atoms in the softmax vector Sv, which shows class
discrimination. For clarity, the above process of obtaining the
softmax vector Sv is defined as Getting New Feature (GNF)
conditioned on dictionary D (i.e., GNFD). For convenience,
we define the the whole procedure of computing the softmax
vector Sv for a given query sample y as:

Sv = GNFD(y,α, C) (4)

2) Getting New Feature based on Nuclear-norm Matrix
Regression: Suppose that we have C classes of subjects,
b represents a query sample and A = [A1,A2, · · · ,AC ]
represents the dictionary. In terms of the nuclear-norm based
matrix regression (NMR) [24], the representation model is
formulated as the following problem:

min
α
‖b−A(α)‖∗+

λ

2
‖α‖2 (5)

where λ is a scalar constant. ‖ · ‖∗ denotes the nuclear-
norm computed as the summation of the singular values of
a matrix, which is the convex approximation of the rank
function. A(α) = α1A1 + α2A2 + · · · + αNAN represents
linear combination of all training images represented in matrix
form. Therefore, by minimizing the nuclear-norm of the rep-
resentation error, the low-rank property is guaranteed. After
solving the coding coefficient α, the representation error of
each class can be computed as follows:

rc = ‖b−Ac(αc)‖∗ (6)

where Ac is the dictionary with respect to class c, and αc is the
coefficient vector associated with class c. Then, the softmax
vector Sv can be computed as follows:

Sv = [
e−r1∑C
c=1 e

−rc
,

e−r2∑C
c=1 e

−rc
, · · · , e−rC∑C

c=1 e
−rc

]T (7)

If a query sample b belongs to class i (≤ C), then Siv should
be bigger than other atoms in the softmax vector Sv, which
implies class discrimination. The above process of computing
the softmax vector Sv is defined as Getting New Feature
conditioned on dictionary A (i.e., GNFA). Then, for a given
query sample y, its softmax vector Sv can be computed as:

Sv = GNFA(y,α, C) (8)

B. Multi-level Image Coding

Without loss of generality, we let X = {xn}Nn=1 represent
the training images (gallery set), where xn ∈ Rp×q . We let
y ∈ Rp×q represent the testing image (query sample), where p
and q represent image size. The number of classes is C and the
number of training images is N . For each image, a three-level
spatial pyramid is established for representation and softmax
vector generation. We take one face image in Extended Yale
B database as an instance to illustrate the three-level spatial
pyramid, which is shown in Fig. 2.

We let Hli
X represent the training set which consists of the i-

th subregion in level l of all training images xn (n = 1, ..., N)
and Hli

y represent the i-th subregion of the testing image in
level l, where l = [0, 1, 2] and i = [1, · · · , 4l]. Specially,
when l = 0, Hli

X is the original training image set (i.e.,
X) and Hli

y is the raw testing image (i.e., y). As shown
in Fig. 1, there are three parallel channels (3-level pyramid)
designed to transform each input image into a softmax vector
Sv in the image coding part. Note that, due to that multiple
subregions exist in the 2nd and 3rd channels, we therefore
introduce the max-pooling and average-pooling operations
such that each image can only be represented by one softmax
vector. In the following, we present the specific models and
algorithms for computing the softmax vectors of the testing
image y by using sparse representation and nuclear-norm
matrix regression, respectively.

1) Sparse Representation based Multi-level Image Cod-
ing: Following SRC model, we formulate the sparse coding
problem of the i-th subregion of a query in level l as:

min
w
li
y

‖Hli
y −Hli

Xwli
y ‖22+λ‖wli

y ‖1 (9)

where λ is the regularization parameter. In recent years,
different solving algorithms have been proposed for sparse
representation. In particular, the alternating direction method
of multipliers (ADMM) proposed in 1970s [45] has drawn a
lot of attention. Yang and Zhang [44] integrated the proximal
methods into ADMM when solving l1-norm minimization
problems. In this paper, we also use ADMM method to solve
the sparse representation problem.

Generally, based on ADMM, we introduce an auxiliary
variable z, there is zliy = wli

y . Then, the augmented Lagrangian
function of problem (9) can be formulated as

Lµ(wli
y , z

li
y ,Λ

li
y ) = min

w
li
y ,z

li
y ,Λ

li
y

‖Hli
y −Hli

Xwli
y ‖22+

λ‖zliy ‖1+ < Λli
y ,w

li
y − zliy > +

µ

2
‖wli

y − zliy ‖22
(10)

where < P,Q >= tr(PTQ), Λli
y is a Lagrange multiplier

and µ is a scalar constant. The augmented Lagrangian function
is minimized alone one coordinate direction at each iteration.
Specifically, ADMM consists of the following iterations.
(i) Given zliy = zliy

(t)
,Λli

y = Λli
y
(t), updating wli

y by

wli
y

(t+1)
= arg min

w
li
y

Lµ(wli
y , z

li
y ,Λ

li
y ) (11)
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level 0 level 1 level 2

Fig. 2: Toy example of constructing a three-level pyramid.
Level 0 is the original image. In level 1, the original image
is equally divided into 4 subregions. In level 2, the original
image is equally divided into 16 subregions.

(ii) Given wli
y = wli

y
(t+1)

,Λli
y = Λli

y
(t), updating zliy by

zliy
(t+1)

= argmin
z
li
y

Lµ(wli
y , z

li
y ,Λ

li
y ) (12)

(iii) Given wli
y = wli

y
(t+1)

, zliy = zliy
(t+1), updating Λli

y by

Λli
y

(t+1)
= Λli

y

(t)
+ µ(wli

y

(t+1) − zliy
(t+1)

) (13)

The key steps are to solve the optimization problems in Eqs.
(11) and (12). Based on the augmented Lagrangian function
in Eq. (10), Eq. (11) can be expressed as

wli
y

(t+1)
= arg min

w
li
y

(‖Hli
y −Hli

Xwli
y ‖22+ < Λli

y ,

wli
y − zliy > +

µ

2
‖wli

y − zliy ‖22)

(14)

Since Eq. (14) is a standard least-square regression problem,
the closed-form solution can be obtained as follows

wli
y

(t+1)
= (Hli

X

T
Hli
X + µI)−1(Hli

X

T
Hli
y −Λli

y

(t)
+ µzliy

(t)
)

(15)
where I is an identity matrix. Based on the augmented
Lagrangian function in Eq. (10), Eq. (12) is rewritten as

zliy
(t+1)

= arg min
z
li
y

(λ‖zliy ‖1+ < Λli
y ,w

li
y − zliy >

+
µ

2
‖wli

y − zliy ‖22)

(16)

Because l1-norm problem is convex but non-differentiable at
zero point, the shrinkage technique [44] is used to solve this
problem. Therefore, the optimal solution can be presented as

zliy
(t+1)

= shrinkageλ
µ

(wli
y

(t+1)
+

Λli
y
(t)

µ
) (17)

After solving the representation coefficients wli
y , the Getting

New Feature (GNF) function can be used to obtain the multi-
level softmax vectors Sv

li
y ∈ RC×1.

• In the 1st channel (l = 0), we can get one softmax vector
Sv

0(1)
y which is used to replace the testing image H01

y .
• In the 2nd channel (l = 1), by using Eq. (4) and or (8),

we can obtain four softmax vectors Sv
1i
y (i = 1, · · · , 41),

which can be transformed into one softmax vector Sv
1
y ∈

RC×1 by using max-pooling function, there is

Sv
1
y = max{Sv

1(1)
y , · · · ,Sv

1(4)
y } (18)

Algorithm 1 The solving algorithm for problem (9)

Input: Training samples Hli
X and testing samples Hli

y with
l2-normalization, class number C, parameters λ1 =
10−4, µ1 = 10−1;

Output: wli
y , Sv

li
y

1: Initialize: wli
y
(0)

= zliy
(0)

= Λli
y
(0)

= 0
2: repeat
3: Update wli

y : wli
y
(t+1)

= (Hli
X

T
Hli
X+µI)−1(Hli

X

T
Hli
y−

Λli
y
(t)

+ µzliy
(t)

) using Eq.(15);

4: Update zliy : zliy
(t+1)

= shrinkageλ
µ

(wli
y
(t+1)

+
Λ
li
y

(t)

µ )

using Eq.(17);
5: Update Λli

y : Λli
y
(t+1)

= Λli
y
(t)

+µ(wli
y
(t+1)− zliy

(t+1)
)

6: until convergence
7: Sv

li
y = GNF

H
li
X

(Hli
y ,w

li
y , C)

or average pooling function, then there is

Sv
1
y =

1

4

4∑
i=1

Sv
1i
y (19)

• Similarly, in the 3rd channel (l = 2), we can obtain
four softmax vectors Sv

1i
y (i = 1, · · · , 42) which can be

transformed into one softmax vector Sv
2
y ∈ RC×1 by

using max pooling function, there is

Sv
2
y = max{Sv

2(1)
y , · · · ,Sv

2(16)
y } (20)

or average pooling function, then there is

Sv
2
y =

1

16

16∑
i=1

Sv
2i
y (21)

In terms of ADMM algorithm, the objective function will
converge when a certain optimality condition and stopping
criteria are satisfied. In this paper, a maximum number of
iterations is set instead. The detailed procedure for solving
problem (9) is summarized in Algorithm 1.

Generally, with these similar operations, for each training
image xn, we can also obtain its softmax vectors Sv

0
xn in 1st

channel (level 1), Sv
1
xn in 2nd channel (level 2), and Sv

2
xn

in 3rd channel (level 3). By putting the softmax vectors of all
training images together in three channels, we can obtain three
groups of softmax vector set Sv

0
X ∈ RC×N , Sv

1
X ∈ RC×N ,

and Sv
2
X ∈ RC×N . Visually, the generation process of the

softmax vectors for each level based on max/average pooling
function and GNF function are illustrated in Fig. 3, which
describes the generation process of softmax vectors in level 1.

2) Nuclear-norm Matrix Regression based Multi-level
Image Coding: According to NMR [24] model, we formulate
the image coding problem of a query sample y as follows:

min
f
li
y

‖Hli
X(f liy )−Hli

y ‖∗+
κ1
2
‖f liy ‖22 (22)

where κ1 is trade-off parameter. As presented in the NM-
R [24], ADMM method is used to solve this nuclear norm
optimization problems as well as [46]–[48]. In the following
section, we present the detailed solving algorithm.
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Fig. 3: The generation process of softmax vectors in level
1. Xi denotes the dictionary of the i-th subregion. For each
image, a C × 4 softmax matrix is generated after GNFXi .
Then, by using max or average pooling operator, a C × 1
softmax vector (new feature) is formulated for each image.
Finally, the softmax vector for each image is grouped into a
feature matrix.

In this work, we transform the Eq. (22) into a constrained
optimization problem as follows.

min
f
li
y

‖Eli
y ‖∗+

κ1
2
‖f liy ‖22 s.t. Hli

X(f liy )−Hli
y = Eli

y (23)

Afterwards, the augmented Lagrangian function is defined as

Lν1(Eli
y , f

li
y ,P

li
y ) = ‖Eli

y ‖∗+
κ1
2
‖f liy ‖22+ < Pli

y ,

Hli
X(f liy )−Eli

y −Hli
y > +

ν1
2
‖Hli

X(f liy )−Eli
y −Hli

y ‖2F
(24)

where ν1 > 0 is a scalar constant and Pli
y is the Lagrange

multipliers. ADMM consists of the following iterations.
(i) Given Eli

y = Eli
y
(t) and Pli

y = Pli
y
(t), updating f liy by

f liy
(t+1)

= arg min
f
li
y

Lν1(Eli
y , f

li
y ,P

li
y ) (25)

(ii) Given f liy = f liy
(t+1) and Pli

y = Pli
y
(t), updating Eli

y by

Eli
y

(t+1)
= arg min

E
li
y

Lν1(Eli
y , f

li
y ,P

li
y ) (26)

(iii) Given f liy = f liy
(t+1) and Eli

y = Eli
y
(t+1), updating Pli

y by

Pli
y

(t+1)
= Pli

y

(t)
+ ν1(Hli

X(f liy )−Eli
y −Hli

y ) (27)

In the following, the update equations for f liy and Eli
y are

described. Similar to the sparse representation, the coding
coefficient fy has a closed-form solution derived as

f liy
(t+1)

= (Gli
X

T
Gli
X +

κ1
ν1

I)−1Gli
X

T
Gli
y (28)

where Gli
X = [V ector(Hli

x1
), · · · , V ector(Hli

xN )] and Gli
y =

V ector(Hli
y + Eli

y − 1
ν1

Pli
y ). V ector(·) is an operator that

reshapes the image matrix into a vector.

Algorithm 2 The solving algorithm for problem (23)

Input: The training samples Hli
X and testing samples Hli

y ,
class number C, the trade-off parameters κ1 = 1, ν1 =

1, Mli
X = (Gli

X

T
Gli
X + κ1

ν1
I)−1Gli

X

T
where Gli

X =

[V ector(Hli
x1

), · · · , V ector(Hli
xn)]

Output: f liy , Sv
li
y

1: Initialize: t = 0, Eli
y
(t)

= −Hli
y , Pli

y
(t)

= 0
2: repeat
3: Update f liy : Let Gli

y = V ector(Hli
y +Eli

y
(t)− 1

ν1
Pli
y
(t)),

then f liy
(t+1)

= Mli
XGli

y ;

4: Update Eli
y : Eli

y
(t+1)

= D 1
ν1

(Hli
X(f liy

(t+1)
) − Hli

y +

1
ν1

Pli
y )

(t) using Eq. (30);

5: Update Pli
y : Pli

y
(t+1)

= Pli
y
(t)

+ ν1(Hli
X(f liy

(t+1)
) −

Eli
y
(t+1) −Hli

y );
6: until convergence
7: Sv

li
y = GNF

H
li
X

(Hli
y , f

li
y , C)

We can rewrite the Lagrangian function (24) as the follows.

Eli
y

(t+1)
= arg min

E
li
y

(
1

ν1
‖Eli

y ‖∗+
1

2

‖Eli
y − (Hli

X(f liy )−Hli
y +

1

ν1
Pli
y )‖2F )

(29)

The above problem (29) involves nuclear-norm minimization.
According to singular value thresholding (SVT) algorith-
m [49], the solution of Eliy is computed as follows:

Eli
y = D 1

ν1

(Hli
X(f liy )−Hli

y +
1

ν1
Pli
y ) (30)

where D(Q) is the singular value shrinkage operator, which
is defined as follows

D(Q) = Up1×rdiag({max(0, σj − ε)}1≤j≤r)VT
q1×r (31)

where r is the rank of matrix Q ∈ Rp1×q1 and σ1, · · · , σr
are the positive singular values of Q. The singular value
decomposition of Q is derived as

Q = Up1×rΣVT
q1×r (32)

where Σ = diag(σ1, · · · , σr) is a diagonal matrix.
The detailed solving algorithm based on ADMM for prob-

lem (23) is summarized in Algorithm 2.
After solving the representation coefficients f liy , GNF is used

to obtain the softmax vectors Sv
li
y ∈ RC×1. In the 1st channel

(l = 0), we can get one softmax vector Sv
0(1)
y which is used to

replace the testing image feature H
0(1)
y . In the 2nd channel (l =

1), we can obtain four softmax vectors Sv
1i
y (i = 1, · · · , 41),

which are then transformed into one softmax vector Sv
1
y ∈

RC×1 by using the max-pooling function,

Sv
1
y = max{Sv

1(1)
y , · · · ,Sv

1(4)
y } (33)

or the average pooling function,

Sv
1
y =

1

4

4∑
i=1

Sv
1i
y (34)
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Similarly, in the 3rd channel (l = 2), we can obtain
four softmax vectors Sv

1i
y (i = 1, · · · , 42), which are then

transformed into one softmax vector Sv
2
y ∈ RC×1 by using

the max-pooling function, there is

Sv
2
y = max{Sv

2(1)
y , · · · ,Sv

2(16)
y } (35)

or the average pooling function,

Sv
2
y =

1

16

16∑
i=1

Sv
2i
y (36)

According to the softmax vector generation process, for
each training image xn, we can also obtain its softmax vector
r0xn in the 1st channel, r1xn in the 2nd channel, and r2xn in
the 3rd channel, respectively. By putting each softmax vector
of each training image together, we will obtain three groups
of softmax vector sets Sv

0
X ∈ RC×N , Sv

1
X ∈ RC×N , and

Sv
2
X ∈ RC×N . Further, after getting the softmax vectors

(Sv
0
y , Sv

1
y , and Sv

2
y) of the query sample y and the softmax

vector sets (Sv
0
X , Sv

1
X , and Sv

2
X ) of the training set X with

max/average pooling by using sparse representation or nuclear-
norm matrix regression, the layer-wise Softmax Vector Coding
(SVC) is then implemented in the following section.

C. Multi-layer Softmax Vector Coding
In this section, the detailed multi-layer SVC in the proposed

deep cascade model is presented. As described in the softmax
vector, a sparse probability value vector can be computed.
Therefore, sparse coding is modeled for multi-layer SVC in
DCM framework.

Specifically, after image coding as described above, three
softmax vectors (Sv

0
y , Sv

1
y , and Sv

2
y) of a query sample

and three softmax vector sets (Sv
0
X , Sv

1
X , and Sv

2
X ) of

the training set are obtained. Here, we concatenate the three
softmax vectors of the query y into one single feature
vector d1

y = [(Sv
0
y)T, (Sv

1
y)T, (Sv

2
y)T]T ∈ R3C×1 and

concatenate the three softmax vector sets of the training
set into one single feature softmax vector set as D1

X =
[(Sv

0
X)T, (Sv

1
X)T, (Sv

2
X)T]T ∈ R3C×N . Then, d1

y and D1
X

are recognized as the input of the 1st layer in our DCM.
Then, d1

y is fed into the GNFD1
X

procedure to compute
the softmax vector s1y , that is then concatenated with d1

y

to construct the input sample d2
y = [(d1

y)T, (s1y)T]T of the
2nd layer. Similarly, each column in D1

X is fed into the
GNFD1

X
procedure to compute the softmax vector set S1

X

that is concatenated with D1
X to construct the input dictionary

D2
X = [(D1

X)T, (S1
X)T]T of the 2nd layer. In the same way,

the feature vector dky of the query y and the training dictionary
Dk
X of X in the kth (k = 1, · · · ,K) layer can be computed.

Finally, d
(K−1)
y and D

(K−1)
X are fed into the GNF

D
(K−1)
X

to get the final softmax vector dKy of query y and the final
softmax vector set DK

X of the training set X. In recognition
of y, the label is determined as the class with respect to the
maximum value in the final softmax vector, therefore there is

label(y) = arg max
i

sKy (37)

The detailed procedure of the multi-layer softmax vector
coding part is summarized in Algorithm 3.

Algorithm 3 The solving algorithm for Deep Cascade Model
Input: d1

y , D1
X , the trade-off parameters λ2 and µ2 in sparse

coding, and the layer number K in DCM.
Output: The predicted label of the query image y.

1: Initialize: k = 1.
2: repeat
3: Compute sky = GNFDkX (dky) using Eq. (4);
4: Compute SkX = [GNFDkX (Dk

x1
), · · · , GNFDkX (Dk

xN )]
using Eq. (4);

5: Update dk+1
y = [(dky)T, (sky)T]T;

6: Update Dk+1
X = [(Dk

X)T, (skX)T]T;
7: k = k + 1;
8: until k > K
9: Find the index of the maximum value in s

(K)
y using Eq.

(37), which shows the label of y

D. Remarks on Why DCM Works: An Example

We use a simple example to explain why the proposed
method with softmax vectors and pooling operator can amend
the misclassified samples.

Suppose a face recognition task of 4 subjects. Given a query
image of class 1, for misclassification, a softmax vector Sv =
[0.25, 0.40, 0.15, 0.20]T will be obtained after sparse coding,
frow which one can know that the query image is misclassified
as class 2. However, DCM aims to amend the misclassified re-
sult. Specifically, in the 2nd channel, as for its subregions, the
softmax vectors can be obtained by using DCM(S). Two cases
can be considered. (1) There exists one subregion which shows
better discrimination than other subregions and the whole im-
age, because it is possible that other subregions are occluded or
corrupted. To this end, the softmax vectors of the 4 subregions
are supposed to be Sv1 = [0.60, 0.20, 0.10, 0.10]T, Sv2 =
[0.30, 0.45, 0.10, 0.15]T, Sv3 = [0.25, 0.50, 0.10, 0.15]T, and
Sv4 = [0.30, 0.35, 0.25, 0.10]T, respectively. From the soft-
max vectors, we see that misclassification is encountered
based on three subregions. However, by using max-pooling
operator, we will obtain the final softmax vector Sv =
[0.60, 0.50, 0.25, 0.15]T, from which we can see that the
query image is correctly classified as class 1, instead of
class 2. (2) The above extreme case is actually unusual,
however, it is more likely that most subregions are discrim-
inative due to that the occlusions and corruption would not
always appear. Therefore, the average pooling works under
this condition. We let Sv1 = [0.35, 0.25, 0.15, 0.25]T, Sv2 =
[0.40, 0.20, 0.30, 0.10]T, Sv3 = [0.20, 0.50, 0.10, 0.20]T, and
Sv4 = [0.45, 0.15, 0.20, 0.20]T represent the softmax vectors
of the 4 subregions, respectively. We see that the misclas-
sification is encountered for the 3rd softmax vector. By
using the average pooling, the final softmax vector Sv =
[0.35, 0.28, 0.19, 0.19]T can be obtained, which can also a-
mend the misclassified image.

IV. EXPERIMENTS

In this section, the experimental results of our proposed
DCM method on publicly benchmark databases, including
Extended Yale B database [50], AR database [51], CMU
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TABLE I: Recognition rates (%) on Extended Yale B database
with different number of training samples per subject

Algorithm 15 20 25 30
CRC 91.39 94.26 95.91 97.04
SRC 91.72 93.71 95.56 96.37

CESR 77.92 83.42 85.68 88.51
RSC 95.01 97.04 97.81 98.40
HQA 93.39 93.99 90.19 92.41
HQM 91.14 94.15 95.29 96.46
NMR 93.50 96.29 97.57 98.54
RMR 93.56 94.08 92.15 92.72
FDDL 93.44 94.92 96.38 96.94

LRSDL 94.92 96.69 97.88 98.31
DCM(N) 93.17 95.97 97.38 98.38
DCM(S) 98.87 99.51 99.63 99.79

PIE database [52], FRGC database [53] are presented for
performance verification. We compare the proposed method
with state-of-the-art representation based learning methods for
face recognition, such as CRC [12], SRC [2], CESR [16],
RSC [14], half-quadratic with the additive form (HQA) [17],
half-quadratic with the multiplicative form (HQM) [17], N-
MR [24], RMR [25], FDDL [54], and LRSDL [55]. FDDL
and LRSDL are dictionary based learning methods. Note that
RMR refers to two sub-models, i.e., RMRL1 and RMRL2,
in which the best one is reported. For fair comparison, these
methods have been fully tuned to achieve the best results by
choosing the optimal parameters. Specifically, the experiments
are divided into two groups: uncorrupted data and corrupted
data. Note that, for differentiating the representation model
used in the multi-level image coding part, we use DCM(S) and
DCM(N) to demonstrate the choice of sparse representation
and nuclear-norm matrix regression in the GNF module,
respectively. The best results with respect to max-pooling or
average pooling in DCM are reported in this paper.

For DCM(S), λ1 and µ1 are the hyper parameters for query
and gallery set in the image coding part. For DCM(N), κ1 and
ν1 are the hyper parameters for query and gallery set in the
image coding part. λ2 and µ2 are the hyper parameters for
query and gallery set in the multi-layer softmax vector coding
part. It is worth noting that all experiments are conducted on
the raw face image pixels without extra hand-crafted feature
extraction. In DCM(S), we reshape each image into a feature
vector in the image coding part for computing the softmax
vectors based on model (9). In DCM(N), the raw face image
matrix is directly used to calculate the softmax vectors by
following the NMR method based on model (22).

A. Experiments on Uncorrupted Data

We randomly split the each database into two parts: training
set and testing set. Generally, 10 random splits are experi-
mented for all compared methods and the average recognition
rates are reported. The images in the four image databases
(Extended Yale B, CMU PIE, AR and FRGC) are cropped
and resized into 32×32. For our DCM(S), we set λ1 = 10−4,
µ1 = 10−1, λ2 = 10−4, and µ2 = 1. For our DCM(N), we

TABLE II: Recognition rates (%) on CMU PIE database with
different number of training samples per subject

Algorithm 15 20 25 30
CRC 89.76 92.42 93.80 94.61
SRC 88.97 91.14 92.62 93.71

CESR 79.47 84.55 87.16 89.24
RSC 92.93 94.91 95.98 96.38
HQA 80.23 84.77 89.73 91.98
HQM 86.15 89.72 91.90 93.24
NMR 91.77 93.54 94.75 95.46
RMR 91.99 94.02 94.60 95.38
FDDL 90.44 92.12 91.00 93.87

LRSDL 92.12 94.40 92.34 95.21
DCM(N) 90.70 92.63 94.05 94.99
DCM(S) 93.79 95.59 96.37 96.84

TABLE III: Recognition rates (%) on AR database with
different number of training samples per subject

Algorithm 8 11 14 17
CRC 94.96 97.01 98.06 98.53
SRC 95.49 97.50 98.45 98.87

CESR 60.53 68.88 79.35 81.98
RSC 94.78 96.93 98.08 99.11
HQA 80.57 67.60 91.37 95.60
HQM 73.07 81.31 86.30 90.63
NMR 94.18 97.01 98.02 98.47
RMR 96.39 97.84 98.49 99.00
FDDL 93.00 95.93 96.38 96.44

LRSDL 95.28 97.51 98.02 98.67
DCM(N) 91.96 95.02 96.82 97.92
DCM(S) 96.17 97.78 98.66 99.11

set κ1 = 1, ν1 = 1, λ2 = 10−4, and µ2 = 1. For CMU PIE
database, we set µ2 = 10−2.

1) Results on Extended Yale B Database: The Extended
Yale B database contains 2414 frontal face images of 38
individuals, and each of them has around 64 near frontal
images under different illuminations. We randomly select 15,
20, 25, 30 images per person for training, and the rest for
testing. The average recognition rates of 10 random splits by
using different methods based on this dataset are summarized
in Table I, in which the best recognition rates are highlighted
by bold numbers. It can be observed that our method, i.e.
DCM(S), can achieve the best recognition rates. Typically,
when the number of training samples is 15, the recognition
rate of our method is almost 4% higher than the RSC that
ranks the second among the compared methods. Besides, we
also observe that our DCM can achieve competitive better
recognition result when there are few training samples. It is
worth noting that DCM(S) is much better than DCM(N), which
demonstrates that the choice of representation model is task
specific. For uncorrupted data, the sparse representation model
outperforms nuclear-norm based representation in multi-level
image coding. This is also verified by the NMR method which
achieves slightly worse result than the RSC algorithm.
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Fig. 4: Example images for CMU PIE database.

Fig. 5: Example images for FRGC databae.

2) Results on CMU PIE Database: The CMU PIE face
database contains totally 41,368 face images from 68 subjects.
The image sets under 5 near frontal poses (C05, C07, C09,
C27 and C29) are used in our experiment. The example
images of frontal pose under C05 are shown in Fig. 4. We
randomly select 15, 20, 25, 30 images from each subject
as training samples and the remaining images are used as
test samples. The classification rates with different number of
training samples by using different methods are summarized in
Table II, from which we can clearly observe that our method
DCM(S) outperforms the compared methods with different
number of training images per subject.

3) Results on AR Database: The AR face database contains
about 4,000 color face images from 126 subjects, which
are shown in frontal faces with different facial expressions,
illuminations and disguises, respectively. In this experiment,
we select a subset consisting of 2600 images from 50 female
and 50 male subjects. We randomly select 8, 11, 14, 17
images per subject as the training samples and the rest of
images are directly used as test samples. The recognition
rates with different number of training samples per subject by
using different algorithms on this database are summarized in
Table III. From the table, we can observe that our method
DCM(S) achieves competitive recognition rates when we
choose 8 or 11 images per person for training. Additionally,
when 14 or 17 images per subject are used for training, the
recognition performance is higher than other methods, which
demonstrates the effectiveness of our DCM. Notably, DCM(S)
always outperforms DCM(N) under uncorrupted data.

4) Results on FRGC Database: The Face Recognition Grand
Challenge (FRGC) v2 database contains 12,776 training im-
ages, 16,028 controlled target images, and 8,014 uncontrolled
query images. Several example face images are shown in
Fig. 5. For this database, we choose a subset of FRGC database

（a）

（b）

（c）

Fig. 6: Example images with different level of occlusions from
10% to 60% on Extended Yale B database. (a) Baboon block;
(b) Dark block; (c) Random block

RLRC, HQ_M and SSEC, when the occlusion level is equal
to or larger than 50 percent. When the occlusion level is no
more than 30 percent, SRC, RSC, RLRC and HQ_M achieve
similar results with NMR. The performance of SSEC is good
when the occlusion level becomes high, but it has no advan-
tage when the occlusion level is relative low. The recogni-
tion rates of LRC and CRC drop fast with the increase of
occlusion levels; thus the two methods are sensitive to the
level of structural noise. From Fig. 3b, we can see the pro-
posed methods still achieve the leading results among all
methods in face verification task.

In the second experiment, we also use Subsets 1 and 2 for
training and Subset 3 for testing, but with occlusions of dif-
ferent kinds of objects: cup, dollar, cartoon mask, book,
flower and puzzle in test images (as shown in Fig. 4). The
recognition rate of each method is shown in Fig. 5. The pro-
posed NMR and Fast NMR achieve the best results among
all methods. This experiment demonstrates that NMR is
more robust than the others for face recognition with differ-
ent, contiguous occlusions.

In the third experiment, for the test images in Subset 3,
we impose another two special occlusions: a square black
block and a square block whose elements are random num-
bers between 0 and 255. Fig. 6 shows the recognition rates
of each method under various occlusion levels with the
black block and the random block. In general, the results in
Fig. 6 are consistent with those in Fig. 3. NMR and Fast

NMR always achieve robust performance and outperform
state-of-the-art methods in both occlusion cases. In Fig. 6a,
the performance difference between NMR and RSC (or
SSEC) is not as remarkable as that shown in Fig. 3 when the
occlusion level is over 50 percent. The recognition rate of
NMR is 57.3, 6.2, 4.0 percent higher than SRC, RSC and
SSEC when the occlusion level is 60 percent. In Fig. 6b, the
performance difference between NMR and RSC (or RLRC)
is remarkable when the occlusion level is larger than 40 per-
cent. NMR still achieves a recognition rate of 86.4 percent
when the occlusion level is 60 percent, which is 4.1, 22.8 per-
cent higher than SSEC and RSC.

Finally, for all of the above mentioned face recognition
experiments, we conduct the corresponding face verifica-
tion tests. The verification accuracy is measured in terms
of the DET curve and the equal error rate (EER), i.e., the
point where the false accept rate is equal to the false reject
rate. The EERs of all methods are shown in Table 1 and
the corresponding DET curves are shown in Fig. S-9 in
supplemental materials, available online. From Table 1
and Fig. S-9, available online, we can see that the verifica-
tion performances of different methods are generally con-
sistent with their recognition performances. Our methods

Fig. 3. (a) Recognition rates (percent) of LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, SSEC, HQ_A, HQ_M, NMR and Fast NMR under different
levels of occlusion; (b) DET curves of all methods when the occlusion level is 50 percent.

Fig. 4. Sample images of one person with occlusions of different kinds of
objects.

Fig. 5. Recognition rates (percent) of LRC, CRC, SRC, SSRC, RLRC,
CESR, RSC, RSC, SSEC, HQ_A, HQ_M, NMR and fast NMR under
different, contiguous occlusions.

YANG ET AL.: NUCLEAR NORM BASED MATRIX REGRESSION WITH APPLICATIONS TO FACE RECOGNITION WITH OCCLUSION AND... 165

Fig. 7: Example images with different kinds of object occlu-
sions on Extended Yale B database.

by following the same experimental setting as NMR [24].
This subset contains 220 persons and 20 images per person
in different conditions such as large illumination variations,
low resolution, and blurring are included. We use the first 10
images per person for training and the remaining 10 images
are used for testing. Specifically, the recognition rates (%)
for different methods are shown in Table IV, from which we
can see that the proposed DCM(S) shows the best recognition
performance in extreme conditions.

B. Experiments on Corrupted Data

In this section, by following the same experimental setting
as [24], the experiments on corrupted data are conducted to
verify the effectiveness of the proposed DCM method for
robust face recognition with different kinds of occlusions.

1) Experiments under added occlusions on Extended Yale
B faces: For the Extended Yale B database, manually added
occlusions are experimented and each image is resized to 96×
84 pixels. In parameter setting, for DCM(S), we set λ1 =
10−4, µ1 = 10−2, λ2 = 10−4, and µ2 = 10−1. For DCM(N),
we set κ1 = 1, ν1 = 1, λ2 = 10−4, and µ2 = 10−1. In
this section, 4 experiments with 4 kinds of manually added
occlusions shown in Fig. 6(a), Fig. 6(b), Fig. 6(c), and Fig. 7
are conducted, respectively.

Baboon Block Occlusion. In the 1st experiment, by follow-
ing the same experimental setting as [2], [24], we use the
Subset 1 and 2 of Extended Yale B database for training
and Subset 3 for testing. For occlusion, a randomly located
square block in the test images is replaced by a baboon image
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TABLE IV: Recognition results on FRGC database

Method CRC SRC CESR RSC HQA HQM NMR RMR FDDL LRSDL DCM(S) DCM(N)
Accuracy (%) 92.2 89.2 81.9 92.0 84.7 91.9 93.3 92.6 84.1 89.0 93.6 91.3
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Fig. 8: Results on Extended Yale B with different levels of occlusions. (a) Baboon; (b) Dark; (c) Random.

with a varying block size, as shown in Fig. 6(a). The varying
block size is determined by 6 levels of the occlusion from
10% to 60%. The recognition rates with 6 levels of baboon
occlusion are shown in Fig. 8(a), from which we can clearly
observe that our DCM(N) method outperforms other state-
of-the-art methods. With low occlusion levels (e.g., 10, 20,
and 30%), RMR, NMR, RSC, and HQM shows competitive
performance with the proposed DCM model. Particularly,
when the occlusion level is higher than 40%, our DCM(N)
achieves much better and more stable recognition performance
than NMR method. For other methods, the performance drops
sharply when occlusion is larger. Therefore, the robustness of
the proposed DCM in face recognition under large occlusions
is well demonstrated. It is worth noting that the DCM(N)
outperforms DCM(S) when it encounters occlusions, which
shows the significant importance of low-rank property in
modeling the representation error.

Dark Block Occlusion. In the 2nd experiment, with the
same training and testing data as experiment 1, a randomly
located square block in each testing image is replaced with a
dark block image whose elements are all 0 with a varying
block size, as shown in Fig. 6(b). The varying block size
is determined by 6 levels of occlusion from 10% to 60%.
Obviously, the dark block occlusion is intra-correlated with
zero pixels. The experimental results are shown in Fig. 8(b),
from which we can observe that the proposed DCM method
outperforms the compared methods when the occlusion levels
are from 10 to 50 percent. When larger dark block occlusion
is encountered, DCM(N) performs competitively similar with
RMR, NMR and RSC methods.

Random Block Occlusion. In the 3rd experiment, we also
use the Subset 1 and 2 of Extended Yale B database for train-
ing and Subset 3 for testing. A randomly located square block
in the test images is replaced with a random block image
whose elements are random integral number from 0 to 255
with a varying block size, as shown in Fig. 6(c). The varying
block size is also determined by 6 levels of occlusion which
varies from 10% to 60%. It is clear that the random block

occlusion is pixel independent. The experimental results are
shown in Fig. 8(c), from which we can see that the recognition
rates of our DCM(N) are always superior to the results of
other state-of-the-art methods. The NMR ranks the second,
which is better than DCM(S). Another finding is that DCM(N)
always outperforms DCM(S) under corrupted data, which is
contrary under uncorrupted data. The experiments on relevant
and irrelevant noise show that the proposed DCM model
has significantly better performance and robustness in large
occlusion conditioned face recognition.

Multiple Object Occlusions. In the 4th experiment, by
using the same training and testing data as that in previous
experiments, different kinds of objects, such as cup, dollar,
cartoon mask, book, flower and puzzle are used as occlusion
to cover a block in each test image, as shown in Fig. 7.
The recognition accuracies are shown in Table V, from which
we can observe that the proposed DCM(N) achieves state-
of-the-art performance (97.8%) over other compared methods
(96.1% for NMR). The experimental results demonstrate that
our DCM method under nuclear-norm based representation
model gives rise to better robustness than others when handling
face recognition tasks under occlusions.

2) Experiments under real-world occlusions on AR faces:
For the AR database, real world occlusions (e.g., sunglass vs.
scarf) are experimented and each image is resized to 50× 40
pixels. A subset of AR database that contains 120 individuals
(65 men and 55 women) is exploited. For each person, the
photos are taken in two sessions and 13 photos are contained
per session. Example photos of one person in AR database
are shown in Fig. 9. In parameter setting, for DCM(S), we
set λ1 = 10−2, µ1 = 1, λ2 = 10−4, and µ2 = 10−1. For
DCM(N), we set κ1 = 1, ν1 = 1, λ2 = 10−4, and µ2 = 10−1.
In this section, experiments with real world occlusions are
conducted on AR database to verify the effectiveness and
robustness of the proposed method. As described in Fig. 9,
8 frontal face images per person without occlusion, composed
of the first 4 images from Session 1 and 2, are used as training
images. The test images are divided into two groups: (1)
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TABLE V: Recognition results under different kinds of occlusions on Extended Yale B database

Method CRC SRC CESR RSC HQA HQM NMR RMR FDDL LRSDL DCM(S) DCM(N)
Accuracy (%) 57.0 53.5 72.2 92.0 83.6 91.9 96.1 82.7 23.3 30.0 82.2 97.8

Fig. 9: Example images of the first person in AR face database. The face images in the first row are from Session 1 and
the faces in the second row are from Session 2. The faces without occlusion are used for training. The faces with sunglass
occlusion are used for test (Group 1) and the faces with scarve occlusion are used for test (Group 2). 
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Fig. 10: Recognition performance with real-world occlusion
on AR database. (a) sunglass occlusion; (b) scarf occlusion.

in Group 1, there are 6 images per person with sunglass
occlusion from both sessions; (2) in Group 2, there are 6
images per person with scarf occlusion from both sessions.
The recognition rates of the CRC, SRC, CESR, SRC, HQA,
HQM, NMR, RMR, FDDL, LRSDL, and the proposed DCM
including DCM(S) and DCM(N) are reported in Fig. 10. We
can observe from Fig. 10 that the proposed DCM(S) achieves
the best test performance for each group. For sunglass
occlusion, the proposed DCM(S) performs competitively well
with state-of-the art NMR method. For larger scarf occlusion,
the proposed DCM(S) can achieve much higher recognition
performance than other methods. The DCM(N) is slightly
inferior to the NMR method. Through the test results with
real world occlusion, the proposed DCM is demonstrated to be
more effective and robust than other state-of-the-art methods
in face recognition under larger occlusion.

V. DISCUSSION

From the face recognition experiments on several bench-
mark databases under uncorrupted and corrupted conditions,
the effectiveness of the proposed DCM(S) and DCM(N)
methods is fully demonstrated. Some insightful and interesting
perspectives on the proposed methods are observed.

In the proposed DCM method, a three-level spatial pyramid
structure is used for multi-level image coding with subregions.

In the 1st level, each face image is viewed as one region.
In the 2nd level, each face image is equally divided into
4 subregions. In the 3rd level, each face image is equally
divided into 16 subregions. Therefore, each image can be
represented 1, 4 and 16 times, respectively, which is useful
to face recognition under large occlusions. Additionally, the
multi-layer sparse softmax vector coding is beneficial to
improve the discriminative ability of the represented features.
As a result, DCM(S) and DCM(N) outperform state-of-the-art
representation models under uncorrupted data and corrupted
data, respectively. For encoding the softmax vectors from
the GNF function in each subregion, max-pooling or average
pooling is introduced for feature vector generation.

From the face recognition performance under different level
of occlusions, the proposed DCM can still achieve the state-of-
the-art recognition performance and robustness. The examples
still hold when occlusions exist in the test images. The
subregions show local information of each face image. Similar
to human being who can recognize a person based on parts
of each face image, the local information can also be used
to recognize a person with computer vision techniques. To
achieve this goal, a three-level spatial pyramid structure and
max/pooling operator are designed to transform the image
and its subregion into softmax vectors by using sparse coding
method. Most of sparse coding methods are designed under the
statistical prior of Laplacian noise existed in the face images.
However, in real-world application, it is unknown whether the
corruptions exist. Therefore, the proposed DCM is formulated
for robust face recognition of clean or dirty data.

It is also worth noting that DCM(S) is better than DCM(N)
in recognition when there is no corruption in the test data.
On the contrary, when there is corruption, DCM(N) is better
than DCM(S). This demonstrates that the reconstruction errors
are random and approximately obey Gaussian distribution for
uncorrupted data. Therefore, it is better to model the errors
by using sparse representation model than low-rank model.
Instead, the representation error matrix of a corrupted query
image generally shows a low-rank structure when encountered
with manually added occlusions, under which nuclear-norm
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TABLE VI: Computation time (s) of all methods on Extended Yale B database with 15 training images per subject

Method CRC SRC CESR RSC HQA HQM NMR RMR FDDL LRSDL DCM(S) DCM(N)
Time (s) 3.32 172.77 163.03 6305.54 1527.70 1313.81 81.88 56.79 18.92 396.87 314.04 479.56
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Fig. 11: Performance variation with increasing number of
layers on two databases. (a) Extended Yale B (b) CMU-PIE.
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Fig. 12: The convergence curves of Algorithm 1 (a) and
Algorithm 2 (b) on Extended Yale B database.

modeling is therefore more suitable to quantize the corruption.
Therefore, the performance promotion of the proposed DCM
is rational, feasible, and interpretable.

VI. ANALYSIS OF LAYERS, CONVERGENCE, AND
COMPUTATION TIME

A. Analysis of Layers

In this paper, the DCM is a multi-layer learning framework
consisting of image coding and softmax vector coding. It
is insightful to observe the performance variation with the
increasing number of layers. Specifically, the performance
curves based on benchmark databases under uncorrupted con-
dition are presented in Fig. 11. In analysis, 15 images per
subject are selected for training and the total number of layers
is set as 10. From Fig. 11, we can observe that with the
increasing number of layers, the recognition rates show a rising
tendency on Extended Yale B dataset and keep unchanged
when the layer number is higher than 2 on CMU-PIE dataset.
Thus, for different datasets, one can empirically set the layer
number as K = 2. Note that the recognition rate of Layer = 0
represents the test result based on the output feature of multi-
level image coding without subsequent softmax vector coding.
The effectiveness of the proposed deep cascade model (DCM)
over general sparse representation models is demonstrated.

B. Analysis of Convergence

To illustrate the convergence of the solving algorithm for
problem (9) and (23), the objective function values with 50
iterations on the Extended Yale B database by using the
Algorithm 1 and Algorithm 2 are presented in Fig. 12(a) and
Fig. 12(b), respectively. We can observe from Fig. 12 that the
DCM model shows a stable convergence.

C. Analysis of Computation Time

Due to that the proposed DCM is a multi-level and multi-
layer representation learning model, more computation time
is needed in training phase. For better insight of the compu-
tational complexity, we present the training time of different
methods in Table VI, from which it is rational that the DCM
costs more time than others, because each image is divid-
ed into 21 (1+4+16) subregions in representation. However,
it is still several times faster than RSC, HQA and HQM
methods. By comparing with the very hot deep convolutional
neural network, the proposed sparse representation based deep
cascade model should be much more efficient due to the
hierarchical learning layer-by-layer without back-propagation.
All experiments are conducted on Matlab 2015, by using a
computer with CPU E3-1231 v3 3.40GHz and 16G RAM.

VII. CONCLUSION

This paper presented a novel softmax vector coding based
deep cascade model (DCM) for robust face recognition under
large occlusions. There are three key merits in the proposed
DCM model. First, we propose a multi-level image coding
module which includes a three-level spatial pyramid struc-
ture (three channels) for processing each image. Second,
we propose a getting new feature (GNF) operator, in which
existing representation models can be easily integrated. To
that end, in this paper, sparse representation and nuclear-
norm based matrix regression are considered, which, therefore
formulates two methods, DCM(S) and DCM(N). Each level
is recognized as a channel for transforming the image and its
subregions into softmax vectors that carry class discrimination
information by using GNF operator. Particularly, in the 2nd

and 3rd channel, the off-the-shelf pooling functions (e.g., max
vs. average) are introduced to encode the softmax vectors
of multiple subregions into one single feature representation
vector. Third, a hierarchical and multi-layer softmax vector
coding module is designed for deep cascade representation,
which is beneficial to the learning of discriminative facial
identity features. Extensive experiments on several benchmark
face recognition databases under uncorrupted and corrupted
conditions are conducted. Experimental results demonstrate
the superior performance of the proposed DCM framework
over other state-of-the-art representation models. Remarkably,
our proposed method shows significantly superior performance
to counterparts under large corruptions.
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