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a  b  s  t  r  a  c  t

Chemical  sensor  drift  shows  a chaotic  behavior  and  unpredictability  in long-term  observation  which
makes  it difficult  to  construct  an  appropriate  sensor  drift  treatment.  The  main  purpose  of  this  paper  is to
study  a new  methodology  for chaotic  time  series  modeling  of  chemical  sensor  observations  in  embedded
phase space.  This  method  realizes  a  long-term  prediction  of  sensor  baseline  and  drift  based  on  phase
space  reconstruction  (PSR)  and  radial  basis  function  (RBF)  neural  network.  PSR  can  memory  all  of the
eywords:
ensor drift
haotic time series
ong-term prediction
hase space reconstruction
adial basis function neural network

properties  of  a chaotic  attractor  and  clearly  show  the  motion  trace  of a  time  series,  thus  PSR makes  the
long-term  drift prediction  using  RBF neural  network  possible.  Experimental  observation  data  of  three
metal  oxide  semiconductor  sensors  in a year  demonstrate  the  obvious  chaotic  behavior  through  the
Lyapunov  exponents.  Results  demonstrate  that  the  proposed  model  can  make  long-term  and  accurate
prediction  of  chemical  sensor  baseline  and  drift  time  series.

© 2013 Elsevier B.V. All rights reserved.
. Introduction

Artificial olfaction system such as electronic nose (E-nose) is
ecoming a very promising method to monitor air contaminates

n environmental field. Chemical sensors have been widely used
or the analysis of volatile organic compounds. An E-nose is an
nstrument which employs a sensor array of chemical sensors
ut only semi-selective gas sensors with pattern recognition, and
rovides a higher degree of selectivity and reversibility leading
o an extensive range of applications [1,2]. However, sensors are
ften operated over a long period time in real-world applica-
ion, and aging will reduce the lifetime of sensors. Sensor drift is
aused by unknown dynamic process in the sensor system includ-
ng poisoning, aging of sensors or environmental variations [3].
he drift will decrease the selectivity and sensitivity of sensors,
nd an E-nose consisting of drifting sensors will lose its effective-
ess as a usable monitor because the previous pattern recognition
odel cannot fit the drifted array space. Therefore, the sensor

rift with gradual and unpredictable variation of sensor response
as been recognized as the most challenging issue in E-nose
evelopment [4].

In recent years, many drift counteraction methods have been

roposed by researchers. The most commonly used methods are
ultivariate component correction [5],  principal component anal-

sis [6,7], adaptive drift correction based on evolutionary algorithm

∗ Corresponding author. Tel.: +86 13629788369; fax: +86 23 65111745.
E-mail address: leizhang@cqu.edu.cn (L. Zhang).

925-4005/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.snb.2013.03.003
[8],  orthogonal signal correction [9],  and drift compensation based
on estimation theory [10]. However, all the methods assume
that the long-term sensor drift trend can be tracked through
the drift direction in principal component space or the sam-
ples’ distribution. Unfortunately, the long-term sensor drift has
no regular trend and the sensor drift is not always positive or
negative from a long-term view [4].  In addition, previous meth-
ods can only be analyzed off-line in computer, and it is difficult
to be used in real-life application. Therefore, through a long-
term observation of sensor response within one year, we studied
the chaotic characteristic of long-term sensor response using
Lyapunov exponents in embedded phase space, and proposed a
novel drift prediction model using chaotic time series predic-
tion method based on phase space reconstruction and RBF neural
network.

Chaos is a universal phenomenon of nonlinear dynamic sys-
tems. Chaos is an irregular motion, and seemingly unpredictable
random behavior exhibited by a deterministic nonlinear system
under deterministic conditions. Chaotic time series prediction is
based on Phase Space Reconstruction (PSR), and aims to find the
embedding way, dimensions and time delay of attractor in terms
of the present observation sequence [11,12]. The time series will
reconstruct the attractor of system in a high dimension without
changing its topology, an appropriate time delay will transform
the prediction problem into a short evolutionary process in phase

space. Phase space reconstruction reserves the attractor’s proper-
ties. Therefore, to an unknown drift model, application of chaotic
attractor theory for drift prediction in embedded phase space is
reasonable.

dx.doi.org/10.1016/j.snb.2013.03.003
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:leizhang@cqu.edu.cn
dx.doi.org/10.1016/j.snb.2013.03.003
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ig. 1. Self-designed electronic nose for indoor air quality monitoring. The left pic
ircuits  with the main modules labeled.

. Data

.1. Long-term sensor baseline data

In our previous publications [13–15],  our electronic nose sys-
em has been presented. The picture of our electronic nose made in
ur laboratory and the internal circuit of PCB (print circuit board)
as been illustrated in Fig. 1. The JTAG (Joint Test Action Group)

s used for communication between PC and the PCB, such as write
rograms from PC to the CPU, and read data from the CPU to PC.
hree metal oxide semiconductor sensors were studied in this work
or sensor drift. They are TGS2620 and TGS2201 with dual outputs
TGS2201A/B). The sensors started work on September 04, 2011,
nd stopped on July 06, 2012. The operation surrounding of sen-
ors is inside the room. The heater voltage is 5 V. The total number
f sampling points for each sample is set as 3000. Therefore, we
ead the data from the instrument for about 3 days. Totally, 136
amples were obtained in order within one year. Consider that the
edundancy of 3000 sampling points in each sample around 3 days
ill cause the complexity of analysis, thus, we extract 100 points
niformly from each sample with the interval of 30 points. Totally,

3,600 points of sensor baseline within one year were obtained.
ig. 2 illustrates the extracted observations of each sensor within
ne year. We  can find from Fig. 2 that there is a reduction of sensor
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Fig. 2. Raw observation points of sensors.
 the integral electronic nose; the right picture is the internal PCB with integrated

response at the approximated position of 6725. It is due to that the
temperature indoor descends when the air conditioner was turned
on, and results in a reduction of sensor response. Note that the
unit of sensors’ raw outputs is voltage (V), however, the responses
in Fig. 2 is the output of 12 bit-ADC (analogy to digital converter)
after 0–1 normalization by dividing the maximum 4095 (212–1).

2.2. Long-term drift extraction using discrete fourier transform
(DFT)

Although sensor drift is difficult to describe, some properties of
drift are known. The drift has a low-frequency behavior, and it can
also be considered as a band-limited signal [16]. The sensor baseline
is extremely related with environmental factors (e.g. temperature,
humidity and pressure). Therefore, DFT is used for spectrum anal-
ysis of the long-term sensor signal. The representation of DFT is
shown as

X(k) = 1
N

N−1∑
n=0

x(n)e−j·(2�/N)·k·n, k = 0, 1, . . . , N − 1 (1)

where {x(n), n = 0,. . .,  N − 1} denotes the sensor baseline signal
vector, N is the length of vector x, and {X(k), k = 0,.  . .,  N − 1} denotes
the DFT.

Fig. 3 presents the spectrum plots (real part) of three sensors
through the DFT operation. In this work, the frequency segment
between 0.0001 and 0.001 Hz are selected as desired spectrum of
drift signal, and the spectrum is set to 0 for other frequencies. Gen-
erally, the frequency components of environmental factors should
be lower than drift. Then, an inverse DFT (IDFT) is employed for
drift signal in time domain. The representation of IDFT is shown as

x̃(n) =
N−1∑
k=0

X(k)ej·(2�/N)·k·n, n = 0, 1, . . . , N − 1 (2)

where {x̃(n), n = 0, . . . , N − 1} denotes the reconstructed drift
signal in time domain.

Fig. 4 presents the reconstructed drift signal of three sensors
using IDFT operations.
It is worthy noting that this work is realized with two poten-
tial assumptions: first, the sensor drift shows a sufficiently low
frequency; second, the drift from the long-term data time series
should not change during the practical lifetime of the E-nose.
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Fig. 3. Spectrum plo

. Chaotic time series prediction

.1. Phase space reconstruction

Phase space reconstruction (PSR) is the basic theory in anal-
sis of chaotic dynamic systems, founded by Taken [17]. Taken’s
heorem proves that we can reconstruct a phase space from a one-
imension chaotic time series which has an equal phase space with
ynamic system in topology. The discrimination, analysis and pre-
iction are employed in the reconstructed phase space, thus PSR is
he key point in chaotic time series study. The embedding dimen-
ion m and time delay � are the most important variables in PSR. The
elections of m and � have been well studied by researchers in chaos
18–23]. In this paper, False Nearest Neighbors (FNN) method [18]
s used to determine the embedding dimension m. Auto-correlated
unction is used to calculate the time delay � [18,19].

Given a chaotic time series {x(n), n = 1,. . .,N}, the reconstructed

hase space can be represented by

(t) =
{

x(t), x(t + �), . . . , x(t + (m − 1) · �)
}

(3)
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Fig. 4. Reconstructed sensor drift signal using IDFT.
cy(Hz)

FT for three sensors.

where t = 1,. . .,N − (m − 1)�  − 1, and m (m = 2,3,. . .)  is the embed-
ding dimension, provided that m ≥ 2D + 1, and D is the fractal
dimension of attractor.

For clarity, we  expand the formula (3) as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X(1) = [x(1), x(1 + �), . . . , x(1 + (m − 1) · �)]T

X(2) = [x(2), x(2 + �), . . . , x(2 + (m − 1) · �)]T

X(3) = [x(3), x(3 + �), . . . , x(3 + (m − 1) · �)]T

. . .

X(N − (m − 1) · � − 1) = [x(N − (m − 1) · � − 1),  x(N − (m − 2) · �), . . . , x(N − 1)]T

(4)

where symbol T denotes the transpose of a vector.
Lyapunov exponent is a useful tool to characterize a chaotic

attractor quantitatively, which effectively measures the sensitivity
of the chaotic orbit to its initial conditions and quantizes the attrac-
tor’s dynamics of a complex system. When the Lyapunov exponent
� of a time series is positive, then the time series will become
chaotic [12]. The computation of Lyapunov exponent in this work
is employed using classical Wolf-method [24].

For example of PSR analysis, we  generate a time series by
numerically integrating the Lorenz system which consists of three
ordinary differential equations [25]. The representation of Lorenz
system is shown as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= � · (y − x)

dy

dt
= r · x − y − x · z

dz

dt
= −b · z + x · y

(5)

where x is proportional to the intensity of convective motion; y
is proportional to the horizontal temperature variation; z is propor-
tional to the vertical temperature variation; �, r and b are constants.

For analysis, the parameters �, r, and b are set as 25, 3 and 50,
respectively; the step size of integration is set to 0.01; the initial
value of y is [–1, 0, 1]T. Fig. 5 illustrates the PSR of Lorenz attractor
in which the embedding dimension m = 3 and time delay � = 1.
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.2. Prediction model

In chaotic time series prediction, RBF (radial basis function) neu-
al network is used to trace the attractor in embedded phase space
or each sensor. The use of RBF to model strange attractors rep-
esenting time series data has been referred in [26]. RBF neural
etwork [27] is a forward feedback artificial neural network com-
osed of three layers. The number of input nodes depends on the
mbedding dimension m. The input signal is just the reconstructed
(t) (t = 1,.  . .,  N − (m − 1)�) in phase space. In the hidden layer, a
aussian function is used as activation function. The structure of
BF neural network prediction in PSR is shown as Fig. 6.
Combined with Eq. (4),  the training input matrix can be shown
y

 = [X(1),  X(2), . . . , X(N − (m − 1) · � − 1)] (6)
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After expansion of P using formula (4) and (6),  we  obtain

P =

⎡
⎢⎢⎣

x(1) x(2) · · · x(N − (m − 1) · � − 1)

x(1 + �) x(2 + �) · · · x(N − (m − 2) · � − 1)

.

.

.
.
.
.

.

.

.
.
.
.

x(1 + (m − 1) · �) x(2 + (m − 1) · �) · · · x(N − 1)

⎤
⎥⎥⎦ (7)

Then the vector of training goal is represented as

T = [x(2 + (m − 1) · �), x(3 + (m − 1) · �), · · ·, x(N)] (8)

In this paper, three models are constructed for TGS2620,
TGS2201A and TGS2201B, respectively. The chaotic time series pre-
diction can be concluded as two steps: Phase space reconstruction
and RBF neural network learning. We  apply the method to Lorenz
attractor prediction for example analysis. We  select 5000 points
in Lorenz sequence for prediction, in which the first 1000 points
are used for RBF neural network learning and the remaining 4000
points as test. The test results are presented in Fig. 7(a) and (b),
which illustrate the prediction of Lorenz chaotic time series and
the prediction residual error, respectively. We  can see in Fig. 7 that
the prediction of Lorenz chaotic time series is successful using the
proposed model.

The well known statistics RMSEP (root mean square error of
prediction) [28] is also used to quantitatively measure the sensor
baseline and drift prediction models in this work. Its representation
can be expressed as

√

RMSEP =

√√√ 1
N − 1

·
N∑

t=1

[
s(t) − ŝ(t)

]2
(9)
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Fig. 9. Predictions of long-term sensor baseline using the proposed model.
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Fig. 10. Predictions of reconstructed sensor drift signal using the proposed model.

Table  1
RMSEP of sensor baseline and drift prediction modeling with different Ntr of training data points.

Ntr RMSEP of sensor baseline prediction RMSEP of sensor drift prediction

TGS2620 TGS2201A TGS2201B TGS2620 TGS2201A TGS2201B

100 0.0319 0.0330 0.5719 4.64e−04 5.44e−04 4.49e−04
250  0.0102 0.0121 0.0684 5.33e−04 3.72e−04 5.92e−04
500  0.0054 0.0060 0.0290 1.05e−04 9.09e−05 3.02e−04
750  0.0045 0.0044 0.0170 7.28e−05 6.71e−05 1.58e−04

1000  0.0045 0.0044 0.0179 5.69e−05 5.25e−05 1.13e−04
1250 0.0046 0.0045 0.0288 5.37e−05 4.93e−05 1.15e−04
1500 0.0046 0.0045 0.0177 5.31e−05 4.87e−05 1.16e−04
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Fig. 11. TGS2620 sensor baseline prediction

here N denotes the length of test sequence s which is the true
equence, and ŝ denotes the predicted output. In the ideal situation,
f there is no error in prediction, then RMSEP = 0.

. Results

.1. Chaotic characteristic of long-term sensors data

Chaotic characteristic of long-term sensor response has been
onfirmed in this work. Through analysis of {x(n), n = 1,. . .,N} of
ach sensor, the time delays calculated by auto-correlated func-
ion method for TGS2620, TGS2201A and TGS2201B are 22, 24 and

3, respectively. The embedding dimension is calculated as m = 3.
hree subfigures in Fig. 8 illustrate the three-dimensional (x(t),
(t + �), x(t + 2�)) PSR plots of the extracted 13600 points for each
ensor within a year which show the motion traces of sensors in
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PSR. Through the PSR plots in Fig. 8, we can find that the motion
trace for each sensor has similar characteristic of chaotic attractor.

In addition, for further confirmation, the Lyapunov exponents
�1, �2 and �3 of time series calculated using Wolf method are
0.1412, 0.2435, and 0.2933 for TGS2620, TGS2201A and TGS2201B
sensor, respectively. The three Lyapunov exponents are positive,
and thus there is obviously chaotic behavior in long-term sensor
observation in terms of chaotic attractor theory. This promotes us
to study the sensor drift in a novel chaotic time series method.

4.2. Sensor baseline and drift prediction

The phase space reconstruction and RBF neural network are

used for raw sensor baseline and reconstructed drift prediction in
this work. The long-term observation data for each sensor includes
13600 points (from September 04, 2011 to July 06, 2012.). To vali-
date the long-term predictability of each sensor, the first 1000
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Fig. 13. TGS2201B sensor baseline prediction

oints in September, 2011 (from September 04, 2011 to September
5, 2011) are used to train a prediction model. The remaining
2600 points (from September 26, 2011 to July 06, 2012) are used
or model test. Fig. 9 presents the raw sensor baseline prediction
esults of three sensors. Fig. 9(a), (b) and (c) illustrate the predic-
ions of TGS2620, TGS2201A and TGS2201B, respectively. For more
lear visualization of the prediction, we show the prediction results
f detailed local segment from 12000 to the end of the sequence in
he Rectangular window (totally, 552 points) in Fig. 9(a), (b) and (c).
he obvious results in Fig. 9(a’), (b’) and (c’) correspond to the three
ectangular windows of Fig. 9(a), (b) and (c), respectively. We  can
ee in Fig. 9 that the long-term baseline prediction is successful.

Fig. 10 presents the prediction results of long-term drift signal

econstructed using DFT and IDFT. Similarly, Fig. 10(a), (b) and (c)
llustrate reconstructed drift prediction of TGS2620, TGS2201A and
GS2201B, respectively. Fig. 10(a’), (b’) and (c’) correspond the local
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Fig. 14. TGS2620 sensor drift predictions of the 
data segment

e data segment in the Rectangular window.

prediction of the three Rectangular windows from point 12000 to
the end of the sequence in Fig. 10 (a), (b) and (c), respectively. Fig. 10
also demonstrates the effective drift prediction based on PSR and
RBF neural network.

The prediction results shown in Figs. 9 and 10 are based on the
RBF model trained by using the first 1000 data points of each sensor
sequence. Due to that the number of training data points maybe
useful to the potential researchers, we also experimentally show
how many initial data points are required for prediction. Thus, the
procedures of sensor baseline and drift predictions with smaller
and larger numbers of training (Ntr) data points, such as 100, 250,
500, 750, 1250 and 1500, is performed, respectively. The predic-
tions of TGS2620, TGS2201A and TGS2201B sensor baseline with

different numbers (Ntr) of training data points are shown in Fig. 11,
Fig. 12 and Fig. 13.  From the three figures, we  can find that the pre-
diction performance can be approved when Ntr is equal to 500, and
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Fig. 16. TGS2201B sensor drift predictions

here is little change when the number Ntr of training data points
s larger than 1000. In addition, we also present the sensor drift
redictions of TGS2620, TGS2201A and TGS2201B with different
umbers (Ntr) of training data points in Fig. 14,  Fig. 15 and Fig. 16.
e  can also obtain from these figures that the smallest Ntr should

e 500, and the modeling of RBF is enough when Ntr is not larger
han 1000.

Besides the qualitative analysis, for quantitative evaluation of
he prediction performance, Table 1 presents the RMSEPs of sen-
ors’ baseline and drift prediction modeling with different number
f training data points calculated by using the Eq. (9).  From Table 1,
e can find that the RMSEP reduces with increasing number of Ntr,

nd an appropriate value of Ntr should be between 500 and 1000.

The results presented in this work confirm that long-term sensor

aseline and drift signal has chaotic characteristic. Thus, it is diffi-
ult to find an effective drift compensation model in general ways.
or example, the usual drift counteraction method is attributed to
data segment

 data segment in the Rectangular window.

a fixed drift data set. However, the drift model constructed using
the fixed data set may  be not effective to a long-term drift. That
is because the drift trend is uncertain, chaotic and unpredictable.
Chaotic time series prediction is developed based on chaotic attrac-
tor in embedded phase space. PSR remains the properties of raw
chaotic attractor, and the prediction is feasible in PSR of a chaotic
time series.

5. Conclusions

This paper presents a novel methodology in treatment of chemi-
cal sensor drift in embedded phase space. The chaotic characteristic
of long-term sensor time series is studied in terms of chaotic attrac-

tor theory and Lyapunov exponents. In view of the uncertainty,
unpredictability and obvious chaotic characteristic, PSR and RBF
neural network are combined together for long-term prediction
of chaotic time series. In drift signal extraction, DFT technique is
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