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(e)

Visualization of cost matrix observed in different tasks (C indicates the number of classes). Note that tasks 1, 2, and 3 denote the attractiveness

assessment based on facial feature, dressing feature, and vocal feature, respectively, task 4 denotes the face recognition, and task 5 denotes the GR. (a) Cost
matrix of task 1. (b) Cost matrix of task 2. (¢c) Cost matrix of task 3. (¢c) Cost matrix of task 4. (d) Cost matrix of task 4. (e) Cost matrix of task 5.

TABLE V
RECOGNITION RATES OF COST-SENSITIVE SUBSPACE-BASED METHODS ON LFW DATA

Method CSPCA CSLDA CSLPP CSMFA ECSDL
LBP descriptor 82.87+1.18 | 82.45+1.69 | 84.30+1.45 | 53.18+1.70 | 85.77+0.83
SIFT descriptor 78.65+1.14 | 79.27+1.23 | 81.65+1.74 | 52.76+1.35 | 83.43+1.50

TABLE VI

COMPARISONS WITH STATE-OF-THE-ART METRIC LEARNING METHODS ON LFW

Method SILD ITML LDML CSML KISSME DML-cig ECSDL
LBP descriptor 80.07+4.27 | 83.98+1.52 | 82.27+1.83 | 85.57+1.64 | 83.37+1.71 | 82.28+1.30 | 85.77+0.83
SIFT descriptor | 80.85+1.93 | 81.45+1.45 | 81.05£1.52 - 83.08+1.77 | 81.27+7.27 | 83.43+1.50

verification and matching in the wild. Two face pairs are shown
in Fig. 7.
The data set is organized into two views.
1) In view 1, a set consisting of 2200 pairs for training and
1000 pairs for testing is developed for model selection.
2) In view 2, 6000 pairs for tenfold cross validation are
developed. In each fold, 600 pairs with 300 similar pairs
and 300 dissimilar pairs are contained.

Note that the experimental setup for face verification is
different from that for the standard face recognition. In exper-
iment, the fair pairs are given and the decision on each pair
is generally made as “same” (positive pair) or “not same”
(negative pair) without needing the identity information of
each person.

For this data set, state-of-the-art metric learning methods
[28]-[34] are generally explored over intrapersonal subspace
instead of the generic classifiers (e.g., SVM). In order to make
the proposed ECSDL method suitable in LFW data, the feature
vector that can reflect the similarity information is constructed
for each pair. We do the experiments by following the standard
protocol of LFW. The brief description is shown as follows.

For each aligned face, two facial descriptors: LBP and scale
invariant feature transformation (SIFT) are used to extract
features, respectively. The SIFT feature has the characteristic
of scale, rotation, and translation invariance, which aims at
extracting the key points of an image in the scale space.
For this LFW database, the wild faces are unconstrained
multiposes and different illuminations, and therefore, SIFT is
a good candidate for feature description. Each face is then
represented as a 300-D vector [28] after PCA dimension
reduction. Due to the lack of label information, for evalu-
ating the proposed method in this scenario, we represent a
face pair using five similarity metrics: correlation coefficient,

Euclidean distance, cosine distance, Mahalanobis distance,
and bilinear similarity function with positive semidefinite
matrix learned in [28]. Hence, a 5-D vector is formulated to
represent each similar/dissimilar pair and a binary classifier is
trained.

Following the tenfold cross-validation protocol on view 2,
the mean accuracy of tenfold is reported with standard devi-
ation. The results of cost-sensitive subspace methods are
reported in Table V, from which we can observe that CSMFA
shows the worst performance among all the methods.

The possible reason is that the constructed locality graph
using k NNs of each input sample fails on the LFW database
that consists of many pairwise faces, such that the intrasam-
ple information is lost. The proposed ECSDL outperforms
other cost-sensitive subspace methods and the effectiveness
is demonstrated further.

Moreover, we have also compared ECSDL with several
state-of-the-art metric learning methods such as SILD [29],
KISSME [30], CSML [31], ITML [32], LDML [33], and
DML-eig [34]. The comparison results are shown in Table VI,
from which we observe that our proposed ECSDL performs a
significantly better recognition than metric learning methods
for both descriptors. Besides, a new prospective is that group
metrics can be integrated as input features for face verifi-
cation by learning a binary classifier. Notably, we focus on
cost-sensitive learning and subspace learning, and the deep
neural networks that depend on large training data are not
compared.

VI. E-NOSE DATA ANALYSIS FOR OLFACTION
APPLICATION

Gas recognition (GR) is an important part in artificial
olfaction. Generally, it aims at detecting the existence of
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TABLE VII

RANK-1 RECOGNITION OF GASES USING SUBSPACE-LEARNING-BASED NN CLASSIFIERS

Method | PCA-NN | CSPCANN | LDA-NN | CSLDA-NN | LPP-NN | CSLPP-.NN | CSMFA-NN | ECSDL-NN
HCHO 9524 95.24 92.06 92.06 92.06 93.65 95.24 96.83
CeH, 87.50 87.50 83.33 79.17 91.67 91.67 87.50 91.67
C,Hs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
&) 95.00 95.00 70.00 85.00 85.00 85.00 95.00 90.00
NH; 100.0 100.0 100.0 100.0 95.00 95.00 100.0 100.0
NO, 84.62 84.62 69.23 69.23 76.92 76.92 84.62 100.0
ARR 93.73 93.73 85.77 37.58 90.11 90.37 93.73 96.42
TRR 94.44 94.44 88.27 89.51 91.35 91.98 94.44 96.30
TABLE VIII
RANK-1 RECOGNITION OF GASES USING GENERAL CLASSIFIERS
Method | SVM | PCA-SVM | KSVM | LDA | PCA-LDA | PLSDA | KLDA | KPLS-DA | CISVM | ECSDL-NN
HCHO | 9841 9841 9341 88.89 82.54 93.65 95.24 93.41 93.65 96.83
CoH, 79.17 91.67 87.50 66.67 58.33 45.83 100.0 91.67 83.33 91.67
C,H; 100.0 100.0 100.0 90.91 86.36 68.18 9545 9545 72.73 100.0
CO 100.0 65.00 100.0 100.0 90.00 75.00 95.00 95.00 30.00 90.00
NH; 90.00 100.0 95.00 90.00 90.00 70.00 95.00 90.00 95.00 100.0
NO, 69.23 30.77 76.92 30.77 30.77 23.08 76.92 69.23 30.77 100.0
ARR 89.47 80.97 92.97 77.87 73.00 62.62 92.94 89.96 75.91 96.42
TRR 92.59 88.27 95.06 82.72 77.16 72.22 94.44 9321 82.72 96.30
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poisonous gases. If a kind of poisonous gas is wrongly recog-
nized into a kind of nontoxic odor, it may cause harm to peo-
ple’s health. Therefore, GR can be viewed as a cost-sensitive
problem.

The cost matrix is definitely defined according to (4).
E-NOSE is an artificial olfaction system composed of a sensor
array with partial specificity coupled with the pattern recog-
nition algorithm [35]. The gaseous contaminant recognition is
also recognized as a cost-sensitive recognition problem. In this
section, we will explore the proposed methods on the E-NOSE
database for a new application of GR. The E-NOSE database
is provided in [13], which contains six kinds of gaseous
contaminants, i.e., formaldehyde (HCHO), benzene (CgHg),
toluene (C7Hg), carbon monoxide (CO), ammonia (NH3), and
nitrogen dioxide (NO»). The number of samples for each kind
of gas is 188, 72, 66, 58, 60, and 38, respectively. In feature
extraction, the steady-state point of each sensor is extracted
as a feature, and as a result, a 6-D sensory feature vector
is formulated for sample representation. The position of the
steady-state point is set as the 4/5 (240th point) of the whole
response (300 points). The specific details of gas sensing and
data acquisition can be referred to as [13].

In the implementation, two-thirds of samples of each class
are selected as training set. The rank-1 recognition of each
class, average recognition rate (ARR), and the total recognition
rate (TRR) are reported. Notably, ARR is the ratio of the
summation of all recognition rates and the number of classes,
while TRR is the ratio between the number of correctly clas-
sified samples for all classes and the total number of samples.
The comparisons with subspace-based learning methods are
shown in Table VII, in which the rank-1 recognition results
using the NN classifier are reported. We can observe that the
proposed ECSDL performs the best recognition performance
with 96.42% of ARR and 96.30% of TRR.

For comparison with existing methods (e.g., SVM, LDA,
PLS-DA, and their kernel extensions) that have been used
in the E-NOSE application, we report the recognition results
in Table III. We can observe that the proposed ECSDL method
shows the best performance. Note that the one-against-one
scheme is used in SVM- and LDA-based methods.

VII. COMPUTATIONAL COMPLEXITY AND TIME ANALYSIS

For ECSDL in Algorithm 3, it involves the computational
complexity of Algorithms 1 and 2. For Algorithm 1, it involves
the computation of Spy), Sy,v) and the eigendecomposition
of S;(IN*)SIU(N*), and thus the complexity is O(D?). For
Algorithm 2, the complexity is related to the population size N
and the number epochs for loop, and thus the extra complexity
is O(N - epochs). Therefore, the computational complexity
of ECSDL is O(D3) + O(N - epochs). Note that the NN
classifier is independent of the proposed method, and thus
the computational complexity of NN classifier is excluded
here.

With a naive MATLAB implementation, the algorithms are
run on a 2.5-GHz Windows machine with a 4-GB RAM.
The computation time on the large-scale LFW data set is
presented in Table VIII, from which we observe that CSPCA
and CSLPP cost much more time than CSLDA. This is
because the covariance matrix computation in CSPCA and
the locality graph construction in CSLPP are time consuming.
The CSMFA cost the most time (6731.9 s) among all the
methods. The reason is that the computation of two locality
graphs for intraclass and interclass is needed. The ECSDL
method costs a comparatively little high computational time
(2318.1 s), because of the large-scale evolutionary search
process. The computational time depends on the population
size and searching epochs.
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TABLE IX
COMPUTATIONAL TIME ON LFW DATA SET FOR TRAINING AND TESTING IN ONEFOLD
Method CSPCA CSLDA CSLPP CSMFA ECSDL
Time (s) 412.08 26.39 331.77 6731.9 2318.1

VIII. VISUALIZATION OF COST MATRIX

In order to visualize the learned cost matrix using the
proposed model and have an insight into what the cost matrix
looks like, we show the cost matrix of different tasks in
experiments in Fig. 8. From the visualization of cost matrix,
we know that the diagonal entries of each cost matrix are zero,
which comply with the cost definition in (4). Additionally,
different sizes of values are obtained in each cost matrix,
which corresponds to the best classification performance.
The nonuniform cost matrix also confirms the necessity of
cost-sensitive learning for improving the classification ability.
Additionally, we can see that the cost matrix is not symmetric,
which shows that the cost of misclassifying A as B is
different from the cost of misclassifying B as A. For example,
in Fig. 8(a), the cost N1 = 0.17 and the cost Np; = 1.02.
Note that classes 1 and 2 in task 1 (facial attractiveness analy-
sis) denote “poor” and “fair,” respectively. In our motivation,
we expect that the cost N, of classifying “poor” attractiveness
as “fair” should be lower than that cost Ny; of classifying
“fair” attractiveness as “poor” (i.e., N1z < Npp), and clearly,
the cost matrix complies with our expectation. Further, we
consider the classification between class 1 “poor” and class 5
“excellent.” We can observe that N5 < Ns;, which implies
that misclassifying “excellent” as “poor” leads to the highest
cost and comply with our expectation. Notably, the true cost
matrix is unknown and expected to be solved in our proposed
ECSDL approach. The recognition accuracy as an effective
measure has been shown from Tables I-VII and IX, which
demonstrate the effectiveness of the proposed model.

IX. DISCUSSION

From a variety of benchmark data sets in vision and
olfaction application, the generality of the proposed method
is effectively and preliminarily revealed. From the perspective
of algorithm, the complexity, computational cost, and the
convergence of the proposed approach are optimistic. ECSDL
is proposed under a cost-sensitive discriminative learning
framework. EAs are widely used to solve different types of
optimization problems for their rapid search in the whole
solution space with heuristic and bioinspired update strategies.
EAs have global exploration in the entire search space and
local exploitation abilities to find the best solution near a
new solution it has discovered, but they do not guarantee
to find the global optimums of a problem. In this paper,
the instinct optimization involves three bioinspired genetic
operators, i.e., mutation, crossover, and selection. The optimal
or near-optimal solutions of the proposed methods can be
obtained with finite iterations and a low computational cost for
real applications. The velocity depends much on the size of
population. Another aspect that we would like to claim is the
deep learning algorithms trained on a large-scale data. The pro-
posed cost-sensitive learning method is proposed for general

problems (i.e., small sample problems). The cost-sensitivity
may be avoided if large-scale data are available.

In a real-world application scenario, similar to general-
machine-learning-based classification, a batch of training data
will be obtained or collected for model construction. Gener-
ally, the training process (model parameter tuning) is imple-
mented offline and then the model parameters are used for
prediction or classification. There is no exception for the
proposed model and the training process including the sub-
space projection solver and the off-line cost matrix optimizer;
then, the learned projection Wy and the cost matrix N are
saved for testing. Note that the motivation of the proposed
method is for cost-sensitive classification problems; however,
for general classification problems, the method also works
by appropriately defining the cost matrix as some particular
matrix (e.g., identity matrix).

It is possible to manually assign trivial cost “0” to difficult
cases. However, how to measure the difficulty becomes an
open problem. That is, it is difficult to quantify how severe
one type of mistake is against another one. Although users
may know what type of mistake is more serious than another
type, it is difficult to specify the cost value of one mistake.
Cost-sensitive learning is closely related with the real classi-
fication scenario. Both discriminative subspace learning and
classifier learning target at improving the classification per-
formance. In this paper, cost-sensitive discriminative subspace
learning is focused by considering the cost-sensitive nature of
the feature subspace. Learning a robust cost-sensitive classifier
by incorporating the weighted prediction error will be a future
direction.

X. CONCLUSION

In this paper, we propose an ECSDL framework for dealing
with the cost-sensitive classification tasks in real-world vision
and olfaction applications. The misclassification loss is paid
more attention than the single classification accuracy in mod-
eling process. In cost-sensitive scenarios, high classification
accuracy may not mean the best performance. Instead, a lower
misclassification loss may be a more effective metric. The
merits of this paper include the discriminative subspace Wy
learning in Algorithm 1 for pursuit of the maximum class
separability and the automatic cost matrix N optimization in
Algorithm 2 based on an evolutionary backtracking search
algorithm. A unified ECSDL method in Algorithm 3 with a
variable alternating optimization algorithm is proposed. Exten-
sive experiments have been conducted on a variety of vision
and olfaction application scenarios. The experimental results
and comparisons with the state-of-the-art methods demonstrate
the extremely prominent efficacy of the proposed approach for
cost-sensitive recognition tasks.

In the future work, four aspects may be involved.

1) It is also challenging to make more insight into the cost

matrix convex optimization based on gradient learning
and make it really intelligent.
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2)

3)

4)
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The proposed ECSDL method can be extended to its
nonlinear version using Mercer kernel theorem, such
that a kernelized version can be proposed for nonlinear
subspace projection.

In terms of the representation ability of deep learning,
the deep features of the database may be extracted for
the proposed method.

The cost-sensitive classifier model can be directly con-
structed by optimizing the cost matrix such that the best
classifier is solved.
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