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Abstract—We address the problem of visual knowledge 

adaptation by leveraging labeled patterns from source 

domain and a very limited number of labeled instances in 

target domain to learn a robust classifier for visual 

categorization. This paper proposes a new extreme learning 

machine based cross-domain network learning framework, 

that is called Extreme Learning Machine (ELM) based 

Domain Adaptation (EDA). It allows us to learn a category 

transformation and an ELM classifier with random 

projection by minimizing the     -norm of the network 

output weights and the learning error simultaneously. The 

unlabeled target data, as useful knowledge, is also 

integrated as a fidelity term to guarantee the stability 

during cross domain learning. It minimizes the matching 

error between the learned classifier and a base classifier, 

such that many existing classifiers can be readily 

incorporated as base classifiers. The network output 

weights cannot only be analytically determined, but also 

transferrable. Additionally, a manifold regularization with 

Laplacian graph is incorporated, such that it is beneficial to 

semi-supervised learning. Extensively, we also propose a 

model of multiple views, referred as MvEDA. Experiments 

on benchmark visual datasets for video event recognition 

and object recognition, demonstrate that our EDA methods 

outperform existing cross-domain learning methods. 
 

Index Terms—Domain adaptation, knowledge adaptation, 

cross-domain learning, extreme learning machine 

I. INTRODUCTION 

N recent years, the computer vision community has 

witnessed a significant progress in content based 

video/image retrieval from a large amount of web video and 

image data. Visual event recognition and object recognition, 

however, still remain extremely challenging in real-world 

cross-domain scenarios containing a considerable camera 

motion, occlusion, cluttered background, geometric and 

photometric variations, and large intra-class variations within 

the same category of videos or images [1]-[3]. It violates the 

basic assumption of machine learning that the test data lies in 

the same feature space as training data. Additionally, 

annotating a large number of videos and images also imposes a 
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great challenge to conventional visual recognition tasks. 

To address the above issues in video event recognition, 

Chang et al. [4] developed a multimodal consumer video 

recognition based on visual and audio features obtained from 

the consumer video dataset [5], in which 25 concepts were 

manually labeled. Xu et al. [6] studied the problem of 

unconstrained news video event recognition, and proposed a 

discriminative kernel method with multilevel temporal 

alignment. Laptev et al. [7] investigated the movie scripts for 

automatic video annotation of human actions, and proposed a 

multi-channel non-linear support vector machine (SVM) 

method. Liu et al. [8] studied realistic action recognition based 

on motion and static features from videos in the wild, such that 

the influence caused by camera motion, changes in object 

appearance, and scale, etc. is alleviated. In object recognition, 

Gehler et al. [9] studied several feature combination methods 

including average kernel SVM (AKSVM), product kernel 

SVM (PKSVM), multiple kernel learning (MKL) [10], column 

generation boosting (CG-Boost) [11], and linear programming 

boosting (LP-B and LP-β) [12]. Joint sparse representation and 

dictionary learning have also been studied for robust object 

recognition in [13]-[16]. 

These traditional learning methods for video event 

recognition [1]-[4], [6]-[8] and object recognition [9]-[16] can 

achieve promising results when sufficient and labeled training 

data are provided, and also both training and testing data are 

drawn from the same domain. However, it is time consuming 

and expensive to annotate a large number of training data in 

real-world applications. Consequently, sufficient training data 

that share the same feature space and statistical properties (e.g., 

mean, intra-class, and inter-class variance) as the testing data 

cannot be guaranteed. Therefore, it violates the basic 

assumption that the training and testing data should be with 

similar feature distribution. Existing work demonstrate that the 

mismatch of data distribution may be alleviated by domain 

adaptation, such as the sampling selection bias [17] or covariate 

shift [18]. The training instances in the source domain are 

re-weighted by leveraging some data from the target domain. 

In this paper, following [19]-[25], we propose a new cross 

domain learning framework for computer vision tasks, e.g., 

consumer video events recognition by leveraging a large 

number of labeled YouTube videos (web data) and object 

recognition by leveraging the labeled images collected with 

different experimental conditions (e.g., camera, angle, 

illumination, etc.). In Fig. 1, two frames of “sport” are given to 

visualize the domain shift/bias. 

By reviewing the existing works in domain adaptation, the 

motivations behind the proposed idea are as follows. 
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Fig. 1. Two frames from consumer videos (left) and YouTube videos (right). 

 

 
Fig. 2. The data distribution and decision boundaries. (a) linear classifiers 

learned for a three-class problem on labeled data in source domain. (b) 

classifiers learned on the source domain do not fit the target domain due to the 

change of data distribution. (c) domain adaptation with EDA by simultaneously 

learning new classifier and category transformation matrix. Note that the 

category transformation denotes the output adaptation with a matrix  . 

 

 Due to that the distribution difference between source data XS 

and target data XT is uncertain, the features from source and 

target domain are expected to be randomized (randomly 

corrupted by W, i.e., WXS and WXT) in classifier learning. 

Then the domain bias of the randomly projected features 

between two domains can be easily adapted by adjusting the 

cross-domain classifier with random components. 

 It would be interesting to consider an output adaptation in 

label space, not only the conventional input adaptation in 

feature space. Adaptation in label space can also contribute to 

the classification performance during the learning process 

from input to output. This is motivated by the fact that the 

label space between source and target domains may also be 

different, i.e.,  (     )   (     ) . The conventional 

domain adaptation problem is summarized as Problem 1. 

 Classifier-based domain adaptation is often with low 

robustness, because of the uncertain domain variances. It is 

therefore rational to design a more complex classifier by 

fusing multiple terms such as cost function, regularizer, etc. 

in the objective function. However, complex model would 

result in a high computation complexity. To guarantee the 

optimization efficiency, an extreme learning machine 

mechanism with closed-form solution is particularly desired. 

With these motivations, the proposed idea is preliminarily 

described in Fig.2. Fig.2(a) and (b) show the same decision 

boundary for three classes. Fig.2(b) denotes the inseparability 

caused by domain shift and Fig.2(c) denotes the newly learned 

decision boundary via the proposed idea with a well-learned 

Problem 1 (Domain Adaptation). Given a source data, and 

learn a classifier that can fit a target dataset with different 

feature distribution and statistical properties (e.g. mean, 

intra- and inter-class variance), i.e. (    )   (    ). 

 

category transformation. Fig.2(c) implies that our goal is to 

learn a robust classifier with automatic category transformation 

learning under “random” domain shift (manually corrupted). 

The flowchart of the proposed EDA framework is described 

in Fig.3 and the merits of this paper are as follows. 

 Many existing classifiers including ELM [25]-[27], SVM, 

MKL [28]-[30], and domain adaptation methods [19]-[22], 

etc. can be incorporated into the proposed EDA framework as 

base classifiers accounting for the unlabeled target data, such 

that the EDA is more flexible. 

 Feature transformation is commonly used to reduce the 

mismatch between data distribution of different domains 

[23]. However, the probabilistic distribution  (  )  and 

 (  )  may also be different. The proposed EDA also 

concentrates on the consistency of P(Y) for “output/label” 

adaptation by learning a category transformation, besides 

only varying the data distribution in feature level. 

 To our knowledge, EDA is the first cross-domain learning 

under the extreme learning machine (ELM) framework, and 

solved with the basic formulation of ELM. EDA does not 

assume that the training and testing data are drawn from the 

same domain. Moreover, by comparing with SVM based 

domain adaptation, EDA directly learns a classifier for 

multi-class problem. More importantly, the randomly 

corrupted features with augmented domain bias can enhance 

the robustness of the proposed cross-domain classifier.  

 Inspired by semi-supervised learning methods [31], [54], a 

manifold structure preservation term, i.e., manifold 

regularization based on a graph Laplacian matrix for label 

consistency, is incorporated into EDA. The intrinsic 

geometry information of unlabeled data is exploited. 

 Multi-view learning [32], [33] concept in the scenario where 

multiple observations of an image are available is 

incorporated in EDA. The complementary manifold 

structural information among features can be exploited for 

improving the domain adaptation performance. 

The remainder of the paper is organized as follows. We 

briefly review the related work in Section II. Then we introduce 

our Extreme Learning Machine based Domain Adaptation 

(EDA) framework in Section III. In Section IV, the EDA is 

extended to multiple views for dealing with the scenarios with 

multi-view representations. The experiments and comparisons 

with state-of-the-art methods based on several benchmark 

vision datasets are discussed in Section V. Finally, conclusive 

remarks are provided in Section VI. 

II. RELATED WORKS 

A. Domain Adaptation 

Domain adaptation tackles the problems where the 

distribution over the features varies across tasks (domains) (e.g., 

data bias [17] and covariate shift [18]) by leveraging labeled 

data in a related domain when learning a classifier. It has been  
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Fig. 3. The flowchart of the proposed cross-domain learning framework in multiple views. Specifically, for each domain, the same type of feature is first extracted. 

Second, the base classifier is trained on the raw feature of source data. Third, the feature mapping (random projection) is conducted on the both features of source 

and target data. Fourth, the EDA based domain adaptation classifier is learned. Finally, the visual categorization task with domain adaptation is done.  

 

exploited in natural language processing [34], [35], and 

recently computer vision [36]-[37], [59]. In this paper, we are 

committed to the challenging computer vision issues. In what 

follows, we present recent domain adaptation approaches. 

One of the prominent approaches is feature augmentation, 

i.e., feature replication (FR) [35], which defines augmented 

feature vectors in source and target domains. Other feature 

augmentation based approaches such as semi-supervised 

heterogeneous feature augmentation (SHFA) [21] and 

heterogeneous feature augmentation (HFA) [39] learn a feature 

transformation into a common latent space as well as the 

classifier. Asymmetric regularized cross-domain transform 

(ARC-t) method proposed in [36] uses the labeled training data 

from both domains to learn an asymmetric transformation 

metric between different feature spaces. Further, in Symm [22] 

and max-margin domain transforms (MMDT) [22], a category 

specific feature transformation is learned to diminish the 

domain bias. Zhang et al. [23] propose a latent sparse domain 

transfer (LSDT) method for sparse subspace reconstruction 

between source and target domain and achieve state-of-the art 

cross-domain performance. Zhang et al. [24] also proposed a 

domain adaptation ELM method for time-varying drift 

compensation in E-nose. In heterogeneous spectral mapping 

(HeMap) [41] and domain adaptation manifold alignment 

(DAMA) [42], a common feature space is learned by utilizing 

class labels of the source and target training data. Geodesic 

flow kernel (GFK) [43] aims at purely unsupervised subspace 

learning in the source and target domain, which shows how to 

exploit all subspaces on the geodesic path based on kernel trick. 

In [57], an unsupervised sampling geodesic flow (SGF) is 

proposed for low-dimensional subspace transfer. The idea 

behind SGF is that it samples a group of subspaces along the 

geodesic between source and target domain, and projects the 

source data into the subspaces. In [55], a LandMark method is 

proposed for bridging the source and target domain. 

In classifier adaptation based cross domain learning, most 

are based on SVM and MKL. Under the framework of SVM, a 

transductive SVM (T-SVM) [38], [44] was formulated to learn 

a classifier using both the labeled data and unlabeled data. Yang 

et al. [45] proposed an adaptive SVM (A-SVM) to learn a new 

classifier   ( )  for the target domain by using   ( )  

  ( )    ( ), where the classifier   ( ) is trained with the 

labeled source samples and   ( ) is the perturbation function. 

Duan et al. [46] proposed a domain transfer SVM (DTSVM) 

which learns a decision function and also attempts to reduce the 

mismatch between domain distributions measure by maximum 

mean discrepancy (MMD). Also, two related state-of-the-art 

cross domain methods based on MKL framework were 

proposed as adaptive MKL (A-MKL) [20] and domain transfer 

MKL (DTMKL) [40], which simultaneously learn a SVM 

classifier and a kernel function by minimizing the distribution 

mismatch between source and target domain.  

Transfer learning (TL), known as multi-task learning, is 

closely related with domain adaptation (DA). TL has been 

applied in a wide range of vision problems, such as object 

categorization. TL addresses a slightly different problem that 

there are multiple output variables Y1,…,YT (i.e., T tasks) under 

a single distribution of the inputs p(X) (i.e., single domain). 

Comparatively, domain adaptation addresses the learning 

problem of single task but with multiple domains. DA aims at 

solving the problem of  (    )   (    ) and TL may also 

solve the problem of  (     )   (     ) . From the 

viewpoint of inclusion relation, DA based methods may be 

included in TL based methods. In this paper, we target at 

proposing a novel domain adaptation method. 

B. Extreme Learning Machines 

Extreme learning machine (ELM), proposed for training a 

“generalized” single-layer feed-forward network (SLFN) by 

analytically determining the output weights β between hidden 

layer and output layer using Moore-Penrose generalized 

inverse, has been proven to be effective and efficient 

algorithms for classification and regression [25]-[27]. In 

contrast to most of the existing approaches, ELMs only update 

the output weights β with randomly generated L hidden layer 

matrix. The random hidden layer can be produced based on the 

random input weights W and biases B, and an activation 

function   ( ). Specifically, the training of output weights β 

can be transformed into a regularized least square problem 

solved efficiently and analytically. Briefly, the ELM model is 

described mathematically as follows. 

         
 

 
‖ ‖  

 

 
∑ ‖  ‖

  
     

       (  
      )    

    
           

where        
 denote the label and error vector w.r.t the i-th 

training sample, C is a penalty coefficient on the training error, 

N is the number of training samples, c is the number of classes 

and  ( ) is the activation function of the hidden layer with L 

nodes. Note that        ,     
 ,       , and     . 

From the compact model above, the optimal solution of   

(output weights) can be analytically determined as follows. 
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where   , (  
      )    (  

      )-       

is the hidden layer output,        is the label matrix, IL is a 

L×L identity matrix. Interested readers can refer to [26] for 

more details about the deduction of  . 

ELM theories [25], [27], [60], [61] show that hidden neurons 

need not be adjusted in many applications and the output 

weights of the networks can be adjusted based on different 

optimization constraints which are application dependent. 

Hidden neurons can be randomly generated independent of the 

training data or can be transferred from other ancestors. ELM 

may bridge the gap between machine learning and biological 

learning. Additionally, the biological learning mechanism of 

ELM has been confirmed in [62]. However, ELMs with 

different versions are only studied in single domain and lack of 

cross domain transfer capability. 

III. EXTREME LEARNING MACHINE BASED DOMAIN 

ADAPTATION FRAMEWORK (EDA) 

A. Summary of Main Notations 

Let     
    be the data matrix of source domain  , 

   (  
      

  )
 
       be the label matrix of source 

domain with c categories,     
  (       )  be the data 

matrix of target domain  ,    (   
       

   )
 
        be 

the label matrix of labeled target domain with c categories, and 

    
    ,      

     ,       
      and    

 (       )   denote the hidden layer output matrix of source 

data, labeled target data, unlabeled target data, and all target 

data, respectively, with L hidden nodes. Let        be the 

learned classifier,        be the learned category 

transformation matrix (for output adaptation in label space), 

  
    be the predicted label w.r.t. the i-th labeled source sample, 

   
 
   be the predicted label w.r.t. the j-th labeled target sample. 

Let    be a pre-learned classifier (i.e., base classifier trained 

on the source data),       (     
         

   )  be the 

predicted target label matrix based on the pre-classifier, where 

existing classifiers can be used (incorporated) to learn the 

pre-classifier    such as ELM, SVM, their variants, etc. 

B. Problem Formulation 

In the proposed EDA, the classifier and category 

transformation matrix are simultaneously learned with domain 

adaptation ability. Intuitively, three parts related with respect to 

the source data, labeled target data and unlabeled target data are 

designed in the EDA, which is generally formulated as 

        ( )     (   )     (    )             (1) 

The first term   ( ) carries out the classifier training using 

labeled samples from source domain, formulated as 

  ( )  ‖ ‖   
 
   ∑ ‖  

 ‖
   

                       (2) 

where ‖ ‖   
 

 is used to control the complexity of the output 

weights   (i.e., classifier parameters).    is the penalty 

coefficient and   
    

    
    denotes the error. In this paper, 

  
   
   if pattern    belongs to the j-th class, and -1 otherwise. 

‖ ‖   denotes     -norm. Given a matrix       , there is 

‖ ‖    (∑ (∑ |   |
  

   )
  ⁄

 
   )

  ⁄

               (3) 

As can be seen from the Eq.(3), it is common Frobenius norm 

or   -norm when      , and in this case the first term of 

Eq.(2) becomes the conventional ELM. In order to impose 

sparse property on  , we constrain     and      . 

Intrinsically, different selection of (q, p) denotes different 

approaches. If    , the formulated problem is not convex and 

hard to solve, therefore, we suppose    . Since q is set to 

measure the norm of each row vector,     is generally used. 

In this paper,     is set because larger q value does not 

improve the final results [47]. Therefore,     -norm of the 

output weights  , i.e., ‖ ‖    is used in the proposed EDA 

framework for better sparsity and generalization ability. 

The second term    (   )  tends to learn the category 

transformation matrix   and the cross-domain classifier   

using a few number of labeled target data. It is formulated as 

   (   )    ∑ ‖  
 
    ‖

   
     ‖   ‖ 

             (4) 

where   
 
     (   

 
)
 
      

 
  , and ‖   ‖ 

  is to control 

the category distortion during transformation. The symbol   
denotes a multiplication operator of category transformation 

via  , which is different from feature transformation (input 

adaptation) for feature alignment between domains [23]. 

   and   are trade-off parameters. Actually, the category 

transformation performs output adaptation and makes the 

classification more conducive. That is, the discrepancy of label 

distribution between domains can also be aligned in this work 

in addition to aligning the feature distribution.  

In most domain adaptation methods, numerous available 

unlabeled data in target domain that also have significant 

contribution to classifier learning are not fully exploited. The 

importance of unlabeled data has been emphasized in [48]. In 

this work, for exploiting the unlabeled data, we introduce a 

fidelity term    (    ) to guarantee the generalization and 

stability of EDA by minimizing the systematic perturbation 

error between the extreme classifier   and the pre-learned 

classifier    (e.g., SVM, nearest neighbors, etc.) when fed into 

the same inputs, which is formulated as 

   (    )   ∑ ‖   
      ‖

 
   
      ( )          (5) 

where    
            

     
   , and   ( )  denotes the 

manifold regularization, which, as commented in [54], is 

incorporated in our EDA to improve the classifier adaptability.  

To better represent   ( ) , we assume that two points 

   and    are close to each other, then the conditional 

probability  (    ) and  (    ) should be similar, which is a 

widely known smoothness assumption in machine learning. 

The manifold regularization framework proposed to enforce 

such assumption, is formulated as 

   
 

 
∑     ‖ (    )   (    )‖

 
                 (6) 

where      is the pair-wise similarity between pattern xi and xj. 

The similarity matrix   is sparse in which a non-zero element 

(e.g., 1) is assigned if    is among the k nearest neighbors of   , 

i.e.,      (  ), or    is among the k nearest neighbors of   , 

i.e.,      (  ). Due to the difficulty in computing  (    ), 

the Eq.(6) is generally transformed as 
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∑     ‖     ‖

 
                           (7) 

where    and    are the predicted output label vector w.r.t. 

pattern    and   , respectively. By expanding Eq.(7) in matrix 

trace-form, the manifold structure preservation term   ( ) in 

Eq.(5) is therefore formulated as 

  ( )      ( 
   )                          (8) 

where       is the Laplacian graph matrix,   is a 

diagonal matrix with diagonal entries     ∑      , and 

  (             )
 
 denotes the target output matrix. 

By substituting (2), (4), (5) and (8) into (1), the proposed 

EDA framework with constraints is summarized as follows 

   
      

    
 
    
 ‖ ‖      ∑ ‖  

 ‖
 

   
      ∑ ‖  

 
    ‖ 

   
    

 ‖   ‖ 
   ∑ ‖   

      ‖ 

 
   
        (    )                  (9) 

    

{
 
 

 
 
  
     

    
                                        

  
 
  (  

 
)
 
     

 
                      

   
        

     
                      

                                                             

                (10) 

By substituting the constraints (10) into the objective 

function (9), the EDA model can be compactly rewritten as 

       (   )  ‖ ‖      ‖      ‖ 
    ‖    

    ‖ 
   ‖   ‖ 

   ‖          ‖ 
 
   

  (       )                                                                      (11) 

C. Learning Algorithm 

As can be seen from the objective function (11) of EDA, it is 

differentiable w.r.t.    and  , such that an efficient alternative 

optimization can be easily proposed to solve this problem. 

First, fix     , by calculating the derivative of objective 

function w.r.t.  , we then have 
  (   )

  
          

 (      )       
 (    

   )      
 (          )    

                                (12) 

where        is a diagonal matrix, whose i-th diagonal 

element is shown as 

    
 

 ‖  ‖ 
                                    (13) 

where    denotes the i-th row of  . 

In terms of the first term of (12), ‖ ‖    can be written as 

‖ ‖      ( 
   )                            (14) 

where   is defined as Eq.(13). 

Intuitively,     becomes larger with the decreasing of ‖  ‖ , 

and the minimization of Eq.(11) tends to derive    with much 

smaller   -norm close to zero, i.e., a sparse   is obtained. Note 

that if     , a very small value     will be introduced, i.e., 

‖  ‖   , to update  , then there is 

    
 

 (‖  ‖   )
                              (15) 

The optimal   is solved by setting 
  (   )

  
  , then we have 

  

(      
        

        
     

     )
  
(    

        
         

      )               (16) 

Second, when   is fixed in one iteration, the optimization 

problem (11) becomes 

 

Algorithm 1. Extreme Learning Machine based Domain Adaptation (EDA) 

1: Input:   ,   ,    ,  ,   ,   ,   , and  ; 

2: Initialization:        ,  
      ,    ; 

3: While not converged (      ) do  

4:       Calculate the output weights    using (16); 

5:       Update      using (19); 

6:       Update      using (15); 

7:             ; 
8: Until convergence; 

9: Output:    and    

     ( )    ‖        ‖ 
   ‖   ‖ 

       (17) 

Then, one can update   by setting the derivative of the 

objective function (17) w.r.t.   to be zero. There is 

  (   )

  
       

          
                (18) 

From (18), we can obtain the expression of   as follows 

  (    
      )

  
(    

       )             (19) 

The whole optimization procedure of EDA is summarized in 

Algorithm 1. The iterative update procedure is terminated once 

the number of iterations reaches Tmax. In terms of experiments 

and convergence, we set Tmax to be 5 in this work. From 

Algorithm 1, we observe that the two variables are iteratively 

solved in closed-form with computational complexity of  (  ) 
and  (  ) using (20) and (19), respectively. 

D. Convergence Analysis of EDA 

Since EDA is solved in an alternative way, its convergence 

behavior should be discussed. First, two lemmas are provided. 

Lemma 1 ([49]). For any non-zero vectors       , there is  

‖ ‖  
‖ ‖ 

 

 ‖ ‖ 
 ‖ ‖  

‖ ‖ 
 

 ‖ ‖ 
                     (20) 

Under the Lemma 1, we have the following Lemma 2. 

Lemma 2. For alternative optimization, after fixing    the two 

steps that when fix   , update   , and when fix   , update      

will not increase the complete joint objective function (11). Two 

claims with proofs are given as follows: 

Claim 1.  (        )   (            ) 
Claim 2.  (            )   (              ) 
The proofs of claim 1 and 2 are shown in Supplementary 

Material. The EDA convergence is summarized as theorem 1. 

Theorem 1. The joint objective function in (11) is 

monotonically non-increasing by employing the optimization 

procedure in Algorithm 1. 

Proof. As can be seen from claim 1 and claim 2 in Lemma 2, it 

is easy to obtain that the complete joint function will converge 

from one iteration to the next, and there is 

 (        )   (            )   (              )  (21) 

Notably, due to that U is not dominant in the objective function 

(11) and U is just an intermediate variable which is completely 

determined when   is fixed as shown in (15), we have 

 (     )   (         ). Then, Theorem 1 is proven. One 

point should be denoted that the above theorem only indicates 

that the objective function is non-increasing. The convergence 

of   can be observed by calculating the difference ‖   
    ‖ . Additionally, the objective function based on 

    -norm is convex and the closed-form solution of each 
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variable is calculated. Therefore, the algorithm can converge to 

a global optimum after several iterations. 

IV. EDA OF MULTIPLE VIEWS (MVEDA) 

In this section, motivated by the multi-feature learning as 

well as multi-view learning, we exploit the EDA in multiple 

views and induce a new method (i.e., MvEDA), which is an 

extension of EDA. It is used to address the scenario where 

images/videos are represented with multiple features. MvEDA 

does not simply combine features (i.e., feature concatenation), 

but fully exploits the complementary structural information and 

correlation among multiple features, by simultaneously 

learning an intrinsic data manifold for each feature. 

A. Multi-view EDA (MvEDA) 

The proposed EDA of   views based on (9) and (10) is 

formulated as follows 

   
             

      
 
      
 ∑ ‖  ‖   

 
      ∑ ∑   ‖    

 ‖
  

   
   
    

  ∑ ∑   ‖    
 
      ‖

 
 
   

   
     ∑   ‖    ‖ 

  
    

 ∑ ∑   ‖     
        ‖

 
 
   

   
        (∑   

   
   

 
     )             (22) 
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   (  

 
)
 
        

 
                        

     
         

         
                     

                                                          

∑                                                      
 
   

                                                          

            (23) 

where    represents the weighted coefficient of the v-th feature. 

From the expression (22), MvEDA belongs to a multi-view 

learning framework, which fully exploits the manifold structure 

of the intrinsic data geometry implied in multiple features, by 

learning the coefficient    and the feature specific classifier    

w.r.t. the v-th feature. Therefore, the underlying feature 

correlation and complementary structural information among 

multiple features can be exploited during domain adaptation, 

which results in a more robust classification in complex data. 

Similar to formulation of EDA, by substituting the 

constraints (23) into the objective function (22), the MvEDA 

can be reformulated as 
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which can be compactly rewritten as 

 (  
       )  ∑ ‖  ‖   

 
      ∑   ‖         ‖ 

  
    

  ∑   
 
   ‖            ‖ 

 
  ∑   ‖    ‖

 
    

 
 

 ∑   
 
   ‖             

 ‖
 

 
    (∑   

   
   

   
 
       )   (25) 

Note that the setting of r>1 of   
  is to better exploit the 

complementary structure information of multiple features, and 

avoid that case where only the best modality is considered (e.g., 

    ). In this paper, we set r=2 in experiment. 

B. Optimization Algorithm 

As can be seen from the objective function (25), it is convex 

w.r.t.    when      and    are fixed. Note that ‖  ‖    is 

convex, however, its derivative does not exist when   
    for 

i=1,…,L. Thus, when   
    for i=1,…,L, by calculating the 

derivate of the objective function (25) w.r.t.   , one can obtain 

  (        )

   
   

 (           
              

              
       

   
   

     )    (        
            

      

        
      

 )                                                                         (26) 

where     
    is formulated similarly with (13). 

First, fix      ⁄  and         , let 
  (      )

   
  , then 

   can be solved as 
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(27) 

Once    is solved,     can be intuitively calculated by 

adding a small perturbation   as shown in (15). 

Second, when    is fixed, the optimization becomes 

       ∑   
 
   ‖            ‖ 

 
  ∑   ‖    ‖

 
    

 
 (28) 

The objective function (28) is convex w.r.t.   . By setting 
  (        )

   
  , the update rule of    is obtained as follows 

   (      
        )

  
(      

            )    (29) 

Third, after fixing    and   , we update    using Lagrange 

multiplier method with constraints, which is formulated as 
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where   denotes the Lagrange multiplier. 

By calculating the derivatives of (30) w.r.t.    and   , one 

can obtain the following equations 

{

  (       )
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       )           

  (       )

  
   ∑   

 
                                          

    (31) 

where the variable   is calculated as follow 
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By solving the Eq.(31), it is easy to get the expression of    as 

   (
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       )
)

 

   
∑ (

 

  (  
   

       )
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   ⁄          (33) 

where r (r>1) is set as 2 in this paper. In summary, an efficient 

alternative optimization is presented in Algorithm 2 to solve the 

proposed MvEDA model. 

From the structure of Algorithm 1 in single view, we can see 

that it is a special case of Algorithm 2 when V=1. In this paper, 

we call the proposed unified framework as EDA. It is worth 

noting that although an alternative optimization is used in EDA, 

the proposed EDA is still accord with the conventional ELM 

framework in computing the output weights  , into which three 

steps are incorporated: 1) ELM network (SLFN) initialization; 

2) feature mapping in hidden layer with randomly generated 

input weights and bias; 3) analytically determine the output  
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Algorithm 2. Multi-view EDA 

1: Input:   
 ,   

 ,    
 ,   ,   ,   ,   

 ,   ; 

2: Initialization:   
      ,   

      ,   
    ⁄ ,    ; 

3: While not converged (      ) do  

4:       Calculate the output weights   
  using (27); 

5:       update   
    using (29); 

6:       update   
    using (33); 

7:       update   
    using (15); 

8:            ; 

9: Until Convergence; 

10: Output:   ,    and    (v=1,…,V) 

 

weights   (i.e., closed-form solution). The complete training 

algorithm of the unified EDA framework for implementation is 

summarized as Algorithm 3. 

C. Convergence analysis of MvEDA 

To explore the convergence analysis of the proposed 

MvEDA framework shown in Algorithm 2, we first provide a 

lemma 3 as follows 

Lemma 3. For alternative optimization, after fixing   
  the 

three update steps that update   
 , update   

    and update 

  
    will not increase the complete joint objective function. 

Three claims are given: 

Claim 3.  (  
    

    
    

 )   (  
      

    
    

   ) 

Claim 4.  (  
      

    
    

   )   (  
      

      
    

   ) 

Claim 5.  (  
      

      
    

   )   (  
      

      
      

   )  

The proofs of claim 3, claim 4, and claim 5 are provided in 

Supplementary Material. Further, the convergence of 

MvEDA is summarized as the following theorem 2. 

Theorem 2: The joint objective function in (25) is 

monotonically non-increasing by employing the optimization 

procedure in Algorithm 2. 

Proof. As can be seen from claim 3, claim 4, and claim 5 in 

Lemma 3, it is easy to obtain that the complete joint function 

will converge from one iteration to the next. 

 (  
    

    
 )   (  

    
    

    
 )   (  

      
    

    
   )  

  (  
      

      
    

   )   (  
      

      
      

   )  

Then Theorem 2 is proven. Note that   
  is simultaneously 

determined when   
  is fixed according to (15), thus   

    is 

also determined when   
    is fixed. 

V. EXPERIMENTS 

In this section, we evaluate our proposed methods EDA and 

MvEDA on four datasets: 1) the challenging YouTube & 

Consumer videos (SIFT and ST features), 2) the 3DA Office 

dataset (SURF feature), 3) the 4DA Extended office dataset 

(SURF vs. CNN features), 4) the Bing-Caltech dataset 

(Classeme feature). Notably, EDA is termed for single feature 

scenarios and MvEDA is termed for multiple features based 

application scenarios (e.g., YouTube videos). 

A. Brief Descriptions of Experimental Datasets 

 YouTube & Consumer Videos Dataset 

This dataset was developed for visual event recognition and 

evaluating semi-supervised domain adaption approaches, in 

which part of the consumer videos were derived from Kodak  

Algorithm 3. Complete EDA 

Input: 

1: Training samples {         }  *    
      

 +   
  of the source domain   w.r.t. 

the v-th modality,        ; 

2: Labeled guide samples {         }  *    
 
     
 
+   
    of the target domain   

w.r.t. the v-th modality,        ; 

3: Unlabeled samples {           }  *     
 

      
 

+   
    of the target domain   

w.r.t. the v-th modality,        ; 
4: The trade-off parameters; 

Output:    and    (        ) 

Procedure: 

Stage 1. EDA Network Initialization. 

5: Initialize the EDA network of L hidden neurons with randomly selected input 

weights   and hidden bias   with 0-1 uniform distribution; 

Stage 2. EDA Feature Mapping and Graph Construction. 

6: Calculate the hidden layer output matrix     ,     ,       as       

 (        ) ,       (        ) and         (         ), 
respectively; 

7: Compute    w.r.t. all the instances in target domain; 

8: Compute the graph Laplacian matrix   ; 
Stage 3. Learning algorithm. 

9:   if V<2 then  

10:   Call Algorithm 1. 
11: else Call Algorithm 2. 

12: end if 

 

Consumer Video Benchmark Data Set [5], and part of new 

consumer video clips from real users were collected by Duan et 

al. [19]. The YouTube videos were from the website
1
. Totally, 

six events such as “birthday”, “picnic”, “parade”, “show”, 

“sports” and “wedding” of 195 consumer videos (target domain) 

and 906 YouTube videos (source domain, i.e., web videos) are 

included in the dataset. Notably the domain bias/shift results 

from camera viewpoint, resolution of imaging sensor, 

background, etc. as shown in Fig.1.  

 3DA Dataset (office data) 

We employ the benchmark 3DA dataset in [37] for object 

recognition, which was introduced for evaluating visual 

domain adaptation approaches. This database shows a 

challenging office environment and reflects the difficult task of 

real-world object recognition. This dataset contains totally 

4106 images of 31 categories from three domains:  

Amazon (object images from the web): The amazon domain 

contains 2813 images, which capture a large intra-class 

variation across categories and shows typical appearances. 

Webcam (low-resolution images by a webcam): The webcam 

domain contains 795 images, with five objects per class 

captured on five different viewpoints per object on average. 

The images are of low resolution, showing significant noise and 

visual domain shifts in a realistic office environment. 

Dslr (high-resolution images by a digital SLR camera): The 

dslr domain consists of 498 images from 31 classes, which are 

captured in realistic office environment under natural lighting 

condition by a digital SLR camera. The same five objects per 

category as the webcam were used, and three images per object 

taken from different camera viewpoints were captured on 

average. These images are of higher resolution and lower noise. 

Note that the dimensionality of source data (i.e., webcam and 

 
1.http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/domain_adapt
ation_home.html 
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amazon) is 800 (i.e., the length of each sample vector), while 

that of target data (i.e., dslr) is 600. The SURF feature [37] was 

extracted for each domain. 

 4DA Dataset (extended office data)  

This 4DA dataset [43] is an extended version of 3DA office 

dataset with an extra caltech domain, resulting in four domains: 

amazon, webcam, dslr and caltech.  10 categories sampled from 

the 3DA data set consist of the first 3 domains, while the caltech 

domain is sampled from the well-known Caltech256 data. For 

4DA dataset, two kinds of features are exploited: 800bin-SURF 

feature [37], [43] and 4096-dims convolutional neural net 

(CNN) feature [52]. Specifically, the total number of samples is 

958, 295, 157, and 1123 for amazon, webcam, dslr, and caltech 

domains, respectively. Notably, the structures of CNN trained 

on the ImageNet with 1000 categories are the same as the 

proposed CNN in [58], which includes 5 convolutional layers 

and 3 fully-connected layers. The well-trained network 

parameters are used for deep representation of the 4DA dataset. 

The CNN outputs of the 6
th

 (f6) and 7
th

 (f7) fully-connected 

layers would be used as the input features of the EDA model. 

 Bing-Caltech Dataset  

To demonstrate the effect of our method on large-scale 

dataset, the Bing dataset from [38], which has a larger number 

of images per class than the office data, is used in this paper. 

The Bing data sampled by Bing search engine that contains 300 

images per class (256 classes) is used as source domain. The 

Caltech 256 data that contains 80 images per class is used as 

target domain. The classeme features with 2625 keywords 

computed by the developers of the dataset in [38] are used in 

this paper. The number of classes for both domains is 256 and 

the dimensionality of each feature vector is 2625. 

B. Experimental Setup 

 Details for YouTube & Consumer Videos Dataset 

We follow the same experimental settings as [20], where 906 

loosely labeled YouTube videos are used as labeled training 

data in source domain. Additionally, m (m=1, 3, 5, 7, 10) 

consumer videos per event are selected as the labeled training 

videos in target domain, respectively. The remaining videos of 

consumer data are then viewed as the unlabeled test data in 

target domain (note that they are also used as unlabeled training 

data in a semi-supervised setting). We adopt the given 5 

random train/test splits of the labeled training videos from 

target domain in [20], and the MAPs (mean average precision) 

are reported. The features provided in [20] include scale 

invariant feature transform (SIFT with level L=0 and L=1) and 

space-time (ST with L=0 and L=1) features [49]. Clearly, the 

training data consists of source data and a limited number of 

labeled target data. Specifically, three feature-specific cases are 

studied: (a) SIFT with L=0 and L=1; (b) ST with L=0 and L=1; 

(c) SIFT+ST with L=0 and L=1. 

The comparisons of algorithms for video event recognition 

are briefly described in the following two parts: 

 We first compare with the conventional ELM, i.e., ELM_S 

(ELM trained on source domain), ELM_T (ELM trained on 

target domain), ELM_ST (ELM trained on both source and 

target domains) and SS-ELM (semi-supervised ELM) [31]. 

For the proposed EDA, EDALapSVM (SVM with Laplacian 

kernel  (   )     . √  (     )/ ), EDAIdSVM (SVM with 

inverse distance kernel  (   )  
 

√  (     )  
) and EDAavg (i.e. 

   (              )) are incorporated as pre-learned base 

classifiers, where  (     ) denotes the distance between the 

i-th and the j-th video, and   denotes the default kernel 

parameter 
 

 
 (A is the average of the square distance) [20]. 

 We then compare with the baseline methods including 

SVM_T (i.e., SVM trained on target domain), SVM_ST (i.e., 

SVM trained on both source and target domains), and MKL 

[30]. Additionally, the state-of-the-art domain adaptation 

approaches including FR [35], DTMKL [40] and AMKL [20] 

are also explored. For the proposed EDA, AMKL is shown as 

a pre-classifier in learning, i.e., EDAAMKL. 

 Details for Office Dataset (3DA) 

For this dataset, the amazon and webcam domains are used as 

source domain, respectively, and the dslr domain is considered 

as target domain. We strictly follow the experimental setting in 

[21], [37]. To this end, 800-dimensional histogram features 

were obtained for amazon and webcam domains, and 600- 

dimensional histogram features were obtained for dslr domain 

through k-means cluster and vector quantization. The number 

of labeled data per class used is 20, 8, and 3, respectively for 

amazon (source), webcam (source) and dslr (target) domains. 

The comparison algorithms are SVM_T, SGF [57], GFK 

[43], HeMap [41], DAMA [42], ARC-t [36], T-SVM [38], 

HFA [39] and SHFA [21]. The brief introduction of these 

methods can be referred in Section 2. The SVM with RBF 

kernel is used as pre-classifier in EDA, i.e., EDASVM . 

 Details for Extended Office Dataset (4DA) 

The 4DA dataset is from [43]. The same SURF features
2
 that 

are vector quantized to 800 dimensions for amazon, webcam, 

dslr, and caltech domains are used. From the website
3
, 20 kinds 

of train/test splits of the labeled samples from source and target 

domains can be obtained, and the average results across these 

splits are reported. We strictly follow the experimental settings 

in [23], [43]. The number of labeled source samples per class 

for amazon, webcam, dslr and caltech is 20, 8, 8, and 8, 

respectively, when they are used as source domain. Instead, 

when they are used as target domain, the number of labeled 

target samples per class is 3 for each domain. Additionally, the 

4096-dimensional deep CNN features for the same dataset with 

completely the same experimental configuration have also been 

explored in experiments. Specifically, the images of the 4DA 

data are feed into the well-trained CNN, and the outputs of the 

6
th

 (f6) and 7
th

 (f7) fully-connected layers are recognized to be 

the deep feature representations of the 4DA dataset, separately. 

The compared algorithms for this dataset are SVM_S, 

SVM_T, SGF [57], GFK [43], HFA [39], ARC-t [36], Symm 

 
2. http://www-scf.usc.edu/~boqinggo/ 
3. http://www.eecs.berkeley.edu/~jhoffman/projects/index.html 
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[22], MMDT [22] and LandMark [55]. Their brief 

introductions can be captured in Section 2. For our EDA, SVM 

is used as a pre-classifier, i.e., EDASVM. 

 Details for Bing-Caltech Dataset 

For this dataset, with the Bing as source domain and Caltech 

256 as target domain, we follow the two settings as [38], [22]: 

 Setting 1 [38]: fix Nt=10 target training samples per class, 

and vary the number Ns=5, 10, 50, 100, and 150 of source 

training samples per class, respectively. 

 Setting 2 [22]: fix Ns=50 source training samples per class, 

and vary the number Nt =5, 10, 15, and 20 of target training 

samples per class, respectively. Note that only the data of the 

first 20 categories are considered in this setting. 

C. Parameter Tuning 

As can be seen from the proposed EDA model (33), five 

dominant model parameters such as   ,   ,  ,  , and    are 

referred. It‟s known to us that tuning five parameters are 

generally not robust for a machine learning algorithm. 

Therefore, it is unnecessary to tune all of them in real 

applications. In this work, we only free two important 

parameters with other parameters frozen. Intuitively, we set 

      . For better exploiting the unlabeled data of target 

domain, a slightly larger coefficient   can be used, e.g.,  
    . In experiments, cross-validation may not be suitable to 

tune the two free parameters    and    due to the limited 

number of labeled data in target domain. Therefore, following 

the same strategy [40] published in T-PAMI, the best result 

after tuning the two parameters from *                + is 

reported. The parameter sensitivity has also been discussed in 

Section V, which indicates that the parameters can be 

empirically determined for obtaining an acceptable result. 

Additionally, in terms of ELM theory, the number of hidden 

nodes is not necessarily related with the performance. 

Empirically, we fix the number L of hidden nodes in EDA 

approximately as DlogN. The hidden layer function is radbas. 

D. Experimental Results and Comparisons 

 Results on YouTube & Consumer Videos Dataset 

We first compare our EDA framework with ELM based 

methods for video event recognition. The comparison results 

with ELM based methods by using 3 labeled training samples 

per category from target domain are shown in Table I, from 

which we have the following observations: 

 The ELM_ST trained on both domains achieves better results 

than ELM_S and ELM_T, which demonstrates that ELM can 

be explored for domain adaptation. SS-ELM [31] 

incorporates the manifold regularization to leverage 

unlabeled data, which achieves similar results with ELM_ST. 

The potential of ELM for cross-domain learning is shown. 

 The proposed EDA is superior to the ELM based methods 

(10%, 3.7% and 12.7% improvements for three cases). This 

strongly proves that the proposed EDA has made an excellent 

contribution to ELM theory in domain adaptation. 

 EDA with Laplacian kernel SVM, inverse distance kernel 

SVM and their average decision 
 

 
(              ) achieve 

slightly different results, which also demonstrate that the 

pre-classifier for the unlabeled data in EDA is user and 

task-specific, and can be selected appropriately. One merit of 

EDA is that it can incorporate many different classifiers and 

becomes controllable as well as operable. 

Furthermore, we compare our proposed method with 

baselines and state-of-the-art approaches, with m (m=1, 3, 5, 7, 

10) labeled training samples per class from the target domain. 

The results are reported in Table II. We can observe that, 

 SVM_ST is better than SVM_T for case (a). It demonstrates 

that the classifier trained on a limited number of labeled 

training samples from target domain is not effective, by 

comparing to that classifier trained on both source and target 

data. However, we can also observe that SVM_ST is always 

worse than SVM_T for case (b) and (c). A potential and 

possible explanation is that the distribution of ST features 

between source domain and target domain is not dense, such 

that the source data has negative effect on the performance 

when ST features are used in case (b) and (c). 

 For all methods, the recognition performance learned on 

SIFT features (case a) is better than that based on ST features 

(case b). This demonstrates that SIFT features are more 

robust for classifier learning. For DTMKL, A-MKL and the 

proposed EDA, the combined case c (SIFT+ST) is always 

better than that of case a. This demonstrates that information 

sharing and fusion among multi-features can promote the 

classification. However, for other methods under case c, the 

performance is not obvious. The reason is that the 

correspondence between two kinds of features is not bridged, 

that is, simple concatenation does not well analyze features. 

Comparatively, the A-MKL and our method can learn 

optimal weights to realize the fusion of SIFT and ST features. 

Additionally, the proposed MvEDA can deeply insight the 

features better with a joint multi-view learning framework. 

 AMKL is better than DTMKL for all cases, which is accord 

with [20]. DTMKL is always worse than MKL for case (b). 

However, A-MKL is worse than MKL for case (b) when m=7 

and 10. One possible explanation is that ST features 

distribute sparsely in feature space. Learning only on very 

few number of target data has weak domain adaptability. 

 Both SVM_ST and FR are always better than MKL for case 

(a). This proves that cross-domain learning on dense SIFT 

features of both domains can achieve better performance than 

those without considering domain adaptation. 

 Our proposed EDA achieves the best performance by 

constructing a single layer feed-forward network, trained 

with semi-supervised cross-domain learning algorithms as 

well as multiple views. We also prove that the pre-classifiers 

for exploiting the unlabeled data in target domain can make 

the learned EDA classifier more stable. The manifold 

regularization can also improve the recognition ability of the 

unlabeled data. We have highlighted the best, second best 

results and the increments in Table II, from which, we can 

observe that the proposed EDA has a significant 

improvement than A-MKL (4.7% improvement at the most). 

However, for case (b) with m=7 and 10, the A-MKL is much 

worse than EDA (8.8% and 6.0% improvement). 
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TABLE I 

MEANS AND STANDARD DEVIATIONS OF MAPS (%) IN THREE CASES 

Methods ELM_S ELM_T ELM_ST SS-ELM EDALapSVM EDAIdSVM EDAavg Improvement 

SIFT 38.9±2.5 36.0±3.6 40.3±2.2 40.3±2.2 49.0±1.9 50.1±1.4 50.3±2.4 10.0% 

ST 32.8±2.4 26.0±1.9 33.5±1.2 33.5±1.2 36.2±1.7 36.6±1.6 37.2±2.1 3.7% 

Methods ELM_S ELM_T ELM_ST SS-ELM MvEDALapSVM MvEDAIdSVM MvEDAavg Improvement 

SIFT+ST 43.3±2.0 36.4±5.5 44.4±1.7 44.4±1.6 55.6±1.8 57.1±2.2 56.3±1.9 12.7% 

TABLE II 

MEAN AVERAGE PRECISION (%) OF THREE CASES WITH DIFFERENT NUMBER OF LABELED TARGET TRAINING DATA (M=1, 3, 5, 7, 10)  

# m Methods SVM_T SVM_ST FR MKL DTMKL A-MKL EDAAMKL MvEDA Improvement 

1 
SIFT 38.8±4.8 49.4±3.2 47.3±0.4 43.9±2.4 48.7±1.4 51.6±1.4 51.9±1.0 - 0.3% 

ST 27.3±3.8 23.9±1.2 28.8±2.1 35.1±1.9 33.4±1.0 37.6±1.7 38.7±1.6 - 1.1% 

SIFT+ST 36.9±7.3 33.9±1.8 43.9±3.4 45.3±2.1 48.8±1.6 52.2±1.0 - 56.0±1.4 3.8% 

3 
SIFT 42.3±5.5 53.9±5.6 50.0±5.6 47.2±2.6 52.4±1.9 57.1±2.3 57.2±2.1 - 0.1% 

ST 32.6±2.1 24.7±2.2 28.4±2.6 35.3±1.6 31.1±2.6 37.2±1.6 39.0±1.8 - 1.8% 

SIFT+ST 42.0±4.9 36.2±3.4 44.1±3.6 46.9±2.5 53.8±2.9 58.2±1.9 - 60.3±1.8 2.1% 

5 
SIFT 46.8±4.1 54.9±5.2 53.3±5.9 49.0±8.1 54.8±7.6 57.4±9.0 57.4±8.1 - 0% 

ST 35.4±3.6 25.1±2.1 29.6±2.2 37.7±2.3 33.3±3.1 41.6±7.0 43.1±6.4 - 1.5% 

SIFT+ST 48.4±3.4 39.2±2.4 48.8±4.3 44.2±6.0 58.1±8.4 57.7±9.0 - 62.4±7.9 4.7% 

7 
SIFT 66.5±2.7 71.8±3.9 71.9±3.8 62.1±2.2 71.6±4.5 72.6±4.4 72.8±3.5 - 0.2% 

ST 42.2±3.2 24.9±1.3 30.4±0.7 46.3±2.0 37.4±1.6 41.0±2.6 49.8±4.6 - 3.5% 

SIFT+ST 63.8±2.5 54.0±4.0 67.8±2.3 58.4±3.7 72.9±4.5 73.2±4.6 - 76.5±4.4 3.3% 

10 
SIFT 68.7±2.7 73.3±3.5 74.0±3.8 66.0±2.9 73.6±2.6 74.4±2.3 74.7±2.5 - 0.3% 

ST 46.0±4.7 25.2±3.4 30.5±3.0 45.6±4.0 39.2±3.9 42.0±8.2 48.0±3.5 - 2.4% 

SIFT+ST 66.0±5.6 59.7±2.3 69.1±2.5 58.5±4.0 76.5±2.2 74.9±2.1 - 77.3±2.9 2.4% 

 
TABLE III 

COMPARISON WITH BASELINES ON 3DA DATASET 

Source Target SVM_T SGF GFK EDA 

Amazon Dslr 52.9±3.1 44.3±4.1 55.9±2.5 62.3±2.4 

Amazon Webcam 30.5±2.8 39.3±1.8 50.9±1.9 55.1±2.4 

Webcam Amazon 6.90±1.8 19.5±1.6 22.1±0.6 23.8±2.2 

Webcam Dslr 52.9±3.1 47.8±2.4 57.0±4.4 60.9±2.2 

Dslr Amazon 6.90±1.8 10.3±1.2 21.1±1.0 24.0±2.2 

Dslr Webcam 30.5±2.8 36.3±2.4 52.9±2.2 55.0±2.4 

 Results on 3DA Dataset 

The preliminary comparisons with several baseline methods 

including SVM, SGF and GFK on 3DA dataset across domains 

are reported in Table III. It clearly shows that the proposed 

EDA is much better than the competitive GFK method. Further, 

we conduct the comparisons with several state-of-the-art 

methods on the Dslr target domain (standard setting) in Table 

IV, in which the results of the compared methods can be 

captured in [21]. From Table IV, we observe that: 

 HeMap performs the worst recognition among all methods. 

The reason may be that the learning process of a feature 

mapping matrix does not exploit the label information of 

target data. Thus, the learned space cannot well preserve the 

similar structural information of the data in both domains. 

 T-SVM is slightly better than SVM_T, DAMA and ARC-t. 

This demonstrates that it is useful to minimize the training 

error of source and target data for learning without feature 

transformation. Notably the feature dimension of source and 

target data is different, so SVM_ST is not presented. 

 Both HFA and SHFA are better than T-SVM for 

amazon→dslr (about 3% improvement) and webcam→dslr 

(about 2% improvement). One possible explanation is that 

SHFA can handle the unlabeled target data, which is not 

considered in other methods. Additionally, SHFA can train a 

better classifier by learning the transformation metric from 

augmented features and well exploit the source data. 

 Our proposed EDA framework significantly outperforms 

other methods for both cases (62.3% for A→D and 62.5% for 

W→D). The improvement is 5.7% and 6.6% for both cases 

by comparing with SHFA. The improvements demonstrate 

that learning a classifier and a category transformation matrix 

simultaneously in a semi-supervised and multi-view 

framework can effectively promote the domain adaptability. 

 Results on 4DA Dataset 

We then test our proposed method on the 4DA dataset with 

four domains (i.e., A: amazon, W: webcam, D: dslr, C: caltech). 

The results of the baseline methods and state-of-the-arts that 

have been widely tested on this dataset are reported in Table V. 

For example, C→D represents that caltech is viewed as source 

domain and dslr is target domain. Totally, 12 cross tasks are 

given. From Table V, we have the following observations: 

 SVM_S performs around 35% for each domain pair, except 

the case W→D (66.6%) and D→W (74.3%). This is due to 

that the shift between dslr and webcam is significantly less 

than the shifts between other domain pairs. Additionally, the 

tasks of W→D and D→W also perform the best for other 

approaches except the SVM_T, because SVM_T is learned 

using only a very limited number of target training data. 

 HFA has the worst performance on the cases W→D and 

D→W with smaller domain shifts. The reason is that the 

feature augmentation in HFA may change the distribution in 

feature space. For the case when the domain shift is small, 

overfitting is easily caused in feature transformation learning, 

such that the performance is degraded. 

 Comparatively, Symm, ARC-t, GFK and LandMark perform 

better than MMDT on W→D and D→W. This demonstrates 

that overfitting may be caused during feature transformation 

learning of MMDT when domain shift is too small. However, 
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TABLE IV 

RECOGNITION ACCURACIES (%) FOR ALL METHODS ON THE 3DA OFFICE DATASET 

Source Target SVM_T HeMap DAMA ARC-t T-SVM HFA SHFA EDASVM Improvement 

Amazon-800 Dslr-600 52.9±3.1 42.8±2.4 53.3±2.3 53.1±2.4 53.5±2.0 55.4±2.9 56.6±2.4 62.3±2.4 5.7% 

Webcam-800 Dslr-600 52.9±3.1 42.2±2.6 53.2±3.2 53.0±3.2 53.5±2.0 54.3±3.6 55.9±3.3 62.5±2.2 6.6% 

TABLE V 

RECOGNITION ACCURACIES (%) FOR ALL METHODS ON THE 4DA EXTENDED OFFICE DATASET WITH LOW-LEVEL SURF FEATURE 

Method SVM_S SVM_T LandMark SGF GFK HFA ARC-t Symm MMDT EDASVM Improvement 

C→D 35.6±0.7 55.8±0.9 57.3 50.2±0.8 57.7±1.1 51.9±1.1 50.6±0.8 48.6±1.1 56.5±0.9 59.0±1.2 1.3% 

C→W 30.8±1.1 60.3±1.0 49.5 54.2±0.9 63.7±0.8 60.5±0.9 55.9±1.0 50.5±1.6 63.8±1.1 67.3±0.8 3.5% 

C→A 35.9±0.4 45.3±0.9 56.7 42.0±0.5 44.7±0.8 45.5±0.9 44.1±0.6 43.8±0.6 49.4±0.8 53.5±0.5 - 

A→C 35.1±0.3 32.0±0.8 45.5 37.5±0.4 36.0±0.5 31.1±0.6 37.0±0.4 39.1±0.5 36.4±0.8 43.8±0.4 - 

A→W 33.9±0.7 62.4±0.9 46.1 54.2±0.8 58.6±1.0 61.8±1.1 55.7±0.9 51.0±1.4 64.6±1.2 68.9±1.0 4.3% 

A→D 35.0±0.8 55.9±0.8 47.1 46.9±1.1 50.7±0.8 52.7±0.9 50.2±0.7 47.9±1.4 56.7±1.3 57.6±1.0 0.9% 

W→C 31.3±0.4 30.4±0.7 35.4 32.9±0.7 31.1±0.6 29.4±0.6 31.9±0.5 34.0±0.5 32.2±0.8 38.6±0.5 3.2% 

W→A 35.7±0.4 45.6±0.7 40.2 43.4±0.7 44.1±0.4 45.9±0.7 43.4±0.5 43.7±0.7 47.7±0.9 52.4±0.9 4.7% 

W→D 66.6±0.7 55.1±0.8 75.2 78.6±0.4 70.5±0.7 51.7±1.0 71.3±0.8 69.8±1.0 67.0±1.1 73.8±0.8 - 

D→C 31.4±0.3 31.7±0.6 - 32.9±0.4 32.9±0.5 31.0±0.5 33.5±0.4 34.9±0.4 34.1±0.8 38.0±0.4 3.1% 

D→A 34.0±0.3 45.7±0.9 - 44.9±0.7 45.7±0.6 45.8±0.9 42.5±0.5 42.7±0.5 46.9±1.0 50.4±0.8 3.5% 

D→W 74.3±0.5 62.1±0.8 - 78.6±0.4 76.5±0.5 62.1±0.7 78.3±0.5 78.4±0.9 74.1±0.8 84.1±0.6 5.5% 

Average 40.0±0.6 48.5±0.8 50.3 49.7±0.7 51.0±0.7 47.4±0.8 49.5±0.6 48.7±0.9 52.5±1.0 57.3±0.8 4.8% 

TABLE VI 

RECOGNITION ACCURACIES (%) ON THE 4DA EXTENDED OFFICE DATASET WITH DEEP CNN-FEATURE 

Method Layer C→D C→W C→A A→C A→W A→D W→C W→A W→D D→C D→A D→W 

SVM_S 
f6 76.6±2.2 67.5±1.6 85.8±0.4 79.3±0.3 70.5±0.9 80.8±0.8 59.5±0.9 66.8±1.0 96.1±0.4 67.3±1.2 77.0±1.0 95.4±0.6 

f7 77.6±1.1 67.8±1.8 86.5±0.5 79.3±0.3 71.6±0.6 81.3±0.7 68.1±0.6 73.4±0.7 96.2±0.6 74.3±0.6 81.8±0.5 95.1±0.8 

SVM_T 
f6 82.0±2.8 73.3±3.3 77.5±3.5 55.4±2.8 74.2±3.5 77.2±4.2 44.0±3.9 75.8±3.4 80.2±2.6 55.5±2.6 73.4±2.8 67.1±3.0 

f7 85.7±2.5 80.0±2.1 83.9±2.2 62.4±2.8 79.5±2.5 85.8±2.7 57.0±3.5 85.5±1.5 83.3±2.4 61.2±2.6 82.6±2.6 72.4±2.9 

SGF 
f6 93.1±1.2 89.4±0.9 88.5±0.4 77.1±0.8 87.2±0.9 90.5±0.8 74.1±0.8 87.2±0.5 97.7±0.4 75.9±1.0 88.0±0.8 96.8±0.4 

f7 92.4±1.1 87.8±0.8 89.3±0.4 77.4±0.7 88.1±0.8 92.0±1.3 76.8±0.7 86.8±0.7 97.6±0.5 78.2±0.7 88.0±0.5 95.7±0.8 

GFK 
f6 92.0±1.2 87.7±0.8 87.5±0.3 78.9±1.1 89.5±0.8 92.6±0.7 77.5±0.8 86.2±0.8 97.8±0.5 78.8±0.8 88.9±0.3 97.0±0.8 

f7 91.9±0.8 86.4±0.7 88.4±0.4 79.1±0.7 88.6±0.8 94.3±0.7 76.1±0.7 85.6±0.5 98.5±0.3 77.5±0.8 90.1±0.4 96.5±0.3 

EDASVM 
f6 93.9±0.6 92.2±0.7 91.0±0.1 84.9±0.3 91.6±0.6 95.3±0.5 82.6±0.3 90.6±0.3 99.2±0.2 84.4±0.2 91.7±0.2 98.6±0.3 

f7 93.6±0.6 91.8±0.6 91.3±0.1 84.9±0.3 92.2±0.6 95.0±0.5 83.0±0.4 91.2±0.2 99.1±0.2 84.9±0.3 91.7±0.3 98.0±0.3 

MvEDA f67 94.1±0.6 92.6±0.6 91.6±0.1 85.7±0.3 92.4±0.6 95.7±0.4 84.0±0.4 91.6±0.2 99.3±0.1 85.8±0.2 92.3±0.2 98.7±0.2 

 

MMDT performs better in most cases with large domain shift 

than other methods except the proposed EDA. GFK obtains 

relatively good results and it may be more suitable to the case 

with small domain shift. Notably, the results with Dslr as 

source data were not reported by LandMark [55]. 

 The results of both tasks C→W and A→W for all methods 

except SVM_S are ranking the second compared with that of 

W→D and D→W in all tasks. Interestingly, C→D and A→D 

are ranking the third. This demonstrates that webcam and dslr 

are more suitable to be target domains, while amazon and 

caltech are more suitable to be source domains. 

 The proposed EDA outperforms other methods for most tasks. 

The highest improvement is 5.5% for D→W, and the average 

improvement is 4.8%. Note that the improvement is 

computed between the best and the second best results, 

highlighted in Table V. The highest average accuracy of 

EDA is 57.3%, followed by MMDT (52.5%). The significant 

improvements indicate that the proposed EDA is well suited 

to handle small or large domain shifts for object recognition. 

 It‟s worth noting that the deep features (DeCAF) of 4DA 

office dataset based on CNN [52], [53] have been explored 

by using several state-of-the-art domain adaptation methods. 

The results are reported in Table VI, from which we can 

clearly observe that the proposed EDA outperforms other  

 
Fig. 4. Recognition accuracy on Bing-Caltech data with two settings 

 

methods. By jointly learning the deep features of the 6
th

 and 

7
th

 fully-connected layers together (i.e., f67) using the 

proposed MvEDA, the performance is further improved. 

 Results on Bing-Caltech Dataset 

By following the two settings (Setting 1 and 2) [38], the 

testing accuracies are shown in Fig.4 (a) and (b), from which 

we can observe that the proposed EDA method still performs 

the best by comparing with other state-of-the-art domain 

adaptation methods. For setting 1, the proposed EDA has an 

improvement of 0.6% than SVM-T, but much higher than SGF 

and GFK. For setting 2, the proposed EDA is 2.5% higher than 

MMDT. By comparing with several popular domain adaptation  
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Fig. 5. Performance variations of our EDA using different parameters    and 

  . (a) MAP on SIFT+ST features of YouTube & Consumer Videos data with 3 
labeled target training samples per event. (b) Recognition accuracy (RA) tested 

on 3DA Office data for task amazon→dslr. (c) RA for task webcam→dslr. 

TABLE VII 

EMPIRICAL PARAMETER SELECTION 

Parameter CS CT γ λ τ L 

Value 1~10 ≈100CS ≈CS ≈CS ≈1000CS ≈DlogN 

 

methods on large-scale data, the performance of our EDA is 

proven to be comparable to state-of-the-art methods. The 

generalization and robustness of EDA is well shown. 

E. Parameter Sensitivity and Selection 

To evaluate the performance variations of our EDA with the 

two free parameters    and   , we conduct the experiments on 

YouTube & Consumer Videos data and Office data (two tasks: 

amazon→dslr and webcam→dslr). The two parameters are 

tuned from the set {1, 10, 100, 1000, 10000} in experiment. 

Specifically, we alternatively free one parameter by frozen the 

other one. The results for different tasks are shown in Fig. 5, 

from which we can observe the performance variation of our 

EDA with respect to the parameters. We find that the 

performance drops dramatically when    is set to be a large 

value (e.g., 1000 and 10000). From Fig.5(a) and (b), we easily 

obtain that        and        can be better choices for 

the optimal parameter selection. To this end, the empirical 

selection of the parameters is summarized in Table VII.  

F. Time Analysis 

We present the time analysis on the first two datasets, 

respectively. The training time in seconds for the methods 

(baselines and the state-of-the-arts) is reported in Table VIII 

and Table IX, respectively. We observe that the proposed EDA 

shows very competitive time cost compared with others. 

G. Convergence 

In Theorem 1 and 2, we have theoretically proved that EDA 

with single or multiple views is jointly convex w.r.t.  ,  , and 

  . We have shown the convergence of the objective function 

and the variation ‖       ‖  of the classifier   in Fig.6, in 

which three datasets are conducted based on the proposed EDA. 

Note that Fig.6(a, d) is obtained with 3 labeled training samples 

per category from target domain based on SIFT+ST features by 

using the proposed EDA method. Fig.6(b, e) is obtained by 

referring webcam as source domain and dslr as target domain. 

Fig.6(c, f) is an example that refers amazon as source domain 

and dslr as target domain, i.e., A→D. As can be seen from the 

convergence behavior shown in Fig.6(a)~(c), we find that EDA 

can converge to a stable point after several iterations and the 

convergence is demonstrated. 

TABLE VIII 

TRAINING TIME (S) ON THE YOUTUBE & CONSUMER VIDEOS DATA 

 SVM_T SVM_ST FR MKL DTMKL AMKL EDA 

Time 18.03 34.4 70.3 98.1 179.39 194.3 36.4 

TABLE IX 

TRAINING TIME (S) ON THE 3DA OFFICE DATA 

 SVM_T HeMap DAMA ARC-t TSVM HFA SHFA EDA 

Time 0.06 1.92 48.86 11.88 124.2 19.0 216.7 5.4 

 
Fig. 6. Convergence of EDA for three datasets: (a, d) Consumer & YouTube 

Videos; (b, e) 3DA Office dataset: webcam→dslr; (c, f) 4DA Extended Office 
dataset: amazon→dslr 

VI. CONCLUSION AND FUTURE WORK 

A new cross-domain learning method called Extreme 

Learning Machine based Domain Adaptation (EDA) is 

proposed in this paper. Specifically, we simultaneously learn a 

network classifier and a category transformation by using 

labeled source data, a limited number of target data and 

unlabeled target data. Additionally, we extend EDA to a joint 

learning framework of multiple views for structural 

information sharing of multiple local features with different 

feature representations. Promising results and theoretical 

proofs guarantee and demonstrate the efficacy of EDA for 

visual recognition.  

Cross-domain learning is still a challenging research topic of 

computer vision. The problem addressed in this paper supposes 

that the categories from both domains are weakly similar, 

which may not hold in real-world scenarios. The problems 

provided that new classes are generated in target are noticed. 

APPENDIX 

Proofs of claims 1~5 are referred as Supplementary Material.  
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Supplementary Material 
 

(1) Proof of Claim 1 in Lemma 2 (EDA): 

Define  (        ) as the joint objective function at iteration 

t. When fix   , there is 
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Note that with fixed   , the model form a   -norm based least 

square problem with respect to  , which is always 

monotonically non-increasing. So, the inequality (3.1) holds. 
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According to Lemma 1, we know that 
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Therefore, combine (3.2) with (3.3), we can obtain that 

 (        )   (            )                             (3.4) 

Then, Claim 1 is proven.  

Note that    is completely determined when fix    according 

to (15), thus      is also determined when      is fixed. 

 

 

(2) Proof of Claim 2 in Lemma 2 (EDA): 

When fix     ,      is also fixed, and the objective function is 

convex with respect to  . As can be seen from (18), the update 

rule of   can be obtained by setting 
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  , then 
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Therefore, from (3.5) the update rule of   is obtained as 
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Additionally, since the second order derivative of the objective 

function with respect to   is 
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From (3.7), we know that the objective function is convex with 

respect to  , so the update rule (3.6) can minimize the objective 

function, there is 
 (            )   (              )                        (3.8) 

Then, Claim 2 is proven. 

 

 

(3) Proof of Claim 3 in Lemma 2 (MvEDA): 

The proof of Claim 3 is similar with the proof of Claim 1, which 

is shown as follows. 

Define  (  
    

    
    

 ) as the joint objective function at 

iteration t. When fix   
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Note that with fixed   
 ,   

 , the model form a   -norm based 

least square problem with respect to  , which is always 

monotonically non-increasing. So, the inequality (4.1) holds. 
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According to Lemma 1, we know that 
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Therefore, combine (4.2) with (4.3), we can obtain that 
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Then, Claim 3 is proven.  

Note that   
  is completely determined when fix   

  according 

to (15), thus   
    is also determined when   

    is fixed. 

 

 

(4) Proof of Claim 4 in Lemma 2 (MvEDA): 

The proof of Claim 4 is similar with the proof of Claim 2. 

When fix   
   ,   

    is also fixed, and the objective function is 

convex with respect to   . As can be seen from (29), the update 

rule of    can be obtained by setting 
  (  
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then there is  
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Therefore, from (3.5) the update rule of    is obtained as 
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Additionally, since the second order derivative of the objective 
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respect to  , so the update rule (4.6) can minimize the objective 

function, there is 
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Then, Claim 4 is proven. 

 

 

(5) Proof of Claim 5 in Lemma 3 (MvEDA). 

As can be seen from (31), the update rule of    is obtained by 

setting  
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Therefore, we know that the objective function is convex with 

respect to   , there is 
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Then, Claim 5 is proven.  

 
 
 


