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Abstract. A prevailing problem in many machine learning tasks is that
the training and test data have different distribution (non i.i.d). Pre-
vious methods to solve this problem are called Transfer Learning (TL)
or Domain Adaptation (DA), which belong to one stage models. In this
paper, we propose a new, simple but effective paradigm, Guided Learning
(GL), for multi-stage progressive training. This new paradigm is moti-
vated by the “tutor guides student” learning mode in human world. Fur-
ther, under the framework of GL, a Guided Subspace Learning (GSL)
method is proposed for domain disparity reduction, which aims to learn
an optimal, invariant and discriminative subspace through the guided
learning strategy. Extensive experiments on various databases show that
our method outperforms many state-of-the-art TL/DA methods.
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1 Introduction

Conventional machine learning algorithms are based on the assumption that the
training and test data lie in the same feature space with the same distribution.
However, this assumption may not hold in many real-world scenarios. Especially
in the field of computer vision owing to various factors such as different camera
devices, illuminations, background, etc. Fig. 1 shows some images of different
distributions. When the disparity exists between the training and test data,
the classification accuracy dropped dramatically [5]. However, retraining a new
classifier often requires a large amount of labeled training data of the same
distribution (i.i.d), which consumes a lot of human resources and is not realistic
with the explosive growth of unlabeled data. TL/DA methods have been used
to solve this problem [9]. They aim to transfer well-learned knowledge from
the source domain (training set) to the target domain (test set). In this paper,
we introduce a new paradigm, Guided Learning (GL), for solving such domain
mismatch problem.
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Fig. 1. Some examples from different domains. (a) 4DA: Each column represents the
data of Amazon, DSLR, Caltech and Webcam, respectively. (b) MSRC (left) and
VOC2007 (right). (c) CMU PIE: The first two rows indicate different illuminations
and poses, the last row indicates different expressions and glass occlusion.

Conventional TL/DA methods can be divided into classifier-based methods
and representation-based methods [9,10]. The classifier-based methods tend to
solve the domain disparity problem by adapting the existing classifiers to the
data with different distributions, such as A-SVM [16]. However, they may not
utilize the intrinsic information of the data, and it strongly depends on the
specific classifier. Further, the representation-based methods tend to learn a
better representation for classification, such as RDALR [4], TSL [11], LTSL [10],
LSDT [17] and DTSL [15]. However, most of them only consider the domain
adaptation at the data level, which ignore the global information of domains.
SA [2] and CORAL [12] stand in another perspective, which tend to align the
first-order and second-order statistical global features (e.g. PCA subspace and
feature for domain discrepancy reduction at subspace level). Additionally, the
TL/DA tends to find a classifier or transformation in one stage, which may not
work when domain disparity is large.

Therefore, we propose a new GL paradigm for domain disparity reduction
through a progressive, guided, and multi-stage strategy. The GL paradigm is
relevant but different from TL/DA methods that it is established upon the main
idea of “tutor guides student” mode in human world. Tutor-students’ teaching
mode is general route in human learning process. In general, the tutor not only
transfers expert knowledge to the students at a time, but to progressively guide
the students achieving a certain learning purpose through the tutor’s learning
experience. Therefore, considering the domain difference between source and
target domains, we propose a Guided Subspace Learning (GSL) method, which
tends to progressively learn an optimal target subspace guided by source domain.
The key contributions of this work are three-folds:

(1) Inspired by the “tutor guides student” learning mode in human world, we
propose a new learning paradigm called Guided Learning (GL), which can
achieve knowledge transfer in a progressive guided manner.

(2) Under the GL framework, we propose a Guided Subspace Learning (GSL)
method for solving domain mismatch. Compared with the TL/DA methods,
the concept of progressive guiding in GL makes the model more robust.
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(3) The GSL method can simultaneously eliminate domain disparity at data
level and subspace level. Finally, an optimal, invariant and discriminative
target subspace can be achieved through subspace, data and label guidance.

2 Related Work

According to the objective of this paper, we present a overview of TL/DA
methods from data and subspace level, respectively.

2.1 Data Level Approach

As mentioned before, this type of methods learn better feature representation
from the data level. RDALR [4] presented a low-rank reconstruction constraint
to reduce the domain shift, which can capture the intrinsic relationship in data.
It assumes that the transformed source samples can be linearly reconstructed
by target samples. TSL [11] solved the problem by minimizing Bregman diver-
gence between the distribution of domains in a common subspace. LTSL [10] also
used the reconstruction matrix and derived a generalized framework. LSDT [17]
further presented sparse reconstruction constraint and generalized model into a
kernel-based linear/nolinear framework. DTSL [15] imposed low-rank and sparse
constraints on the reconstruction matrix to guarantee the global and local prop-
erty. Then, it obtained a linear classifier by learning a non-negative label relax-
ation matrix. Obviously, those approaches heavily depend on the well-designed
reconstruction matrices and sensitive to noise.

2.2 Subspace Level Approach

It is not enough to get robust representation for classification by only exploiting
the data level information of two domains. Subspace level approach can align
the statistical features of two domains. SA [2] seeks a domain invariant feature
space by learning a linear mapping which aligns subspaces spanned by eigen-
vectors (obtained by PCA). This kind of statistical features have global domain
information, so that the subspace level approaches are more robust to noise and
outliers that are irrelevant to the target domain. It is worth mentioning that SA
can be explained by the manifold learning perspective. SDA [13] considered the
distribution difference in the subspace, and proved that SA can be extended to
GFK [3] in the case of an infinite subspaces distribution alignment.

3 Proposed Method

3.1 Mathematical Notation

We first clarify the definition of terminologies. Given the source domain
S = {Xs, ys} and target domain T = {Xt, yt}, where Xs ∈ R

D×ns and
Xt ∈ R

D×nt are samples, ys and yt are labels (note that yt is only used during
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testing step). D is the dimensionality of the original samples, and ns and nt

indicate the number of samples in source and target domain, respectively. Let
Ps ∈ R

D×d and Pt ∈ R
D×d be the projection of the source domain and target

domain, respectively, where d is the dimensionality of the invariant subspace.
Define Z ∈ R

ns×nt as the reconstruction matrix.

3.2 Problem Formulation

As mentioned above, GSL can reduce the distribution mismatch by learning a
target subspace. To sum up, GSL can be composed of three parts: (1) subspace
guidance; (2) data guidance; (3) label guidance.

(1) Subspace Guidance: We first guide the target subspace Pt by the source
subspace Ps. Similar to SA, we expect that the subspaces of the two domains
can be aligned to reduce the domain disparity. It can be easily achieved by mini-
mizing the following Frobenius norm, instead of learning an additional mapping
function:

min
Ps,Pt

‖Ps − Pt‖2F (1)

It treats two subspaces equally and may extremely preserve the useful infor-
mation of the two data sets. Moreover, the subspaces of the two domains are
adjusted at the same time, which encourages to seek a better Pt under the
guidance of Ps.

(2) Data Guidance: Second, we expect to use the intrinsic information of
data to guide the learning of Pt. For data guidance, we tend to seek an invari-
ant subspace by forcing the target data linearly combined by source data. For
revealing the underlying structure of source and target data, we constrain that
each target data can be reconstructed by the neighbors of the source data. Math-
ematically, we can achieve this purpose by placing a low-rank constraint on the
reconstruction matrix Z. Actually, this constraint has been extensively discussed
in machine learning field due to its impact on subspace recovery [14]. This can
be formulated as:

min
Ps,Pt,Z

∥
∥PT

t Xt − PT
s XsZ

∥
∥
2

F
+ α ‖Z‖∗ (2)

By using term (2) together with (1), an invariant target subspace where the
domain disparity has been largely reduced can be obtained.

(3) Label Guidance: Although an invariant subspace has been found, the dis-
crimination of such invariant subspace is not enough for classification problems.
Additionally, a large amount of label information of source domain is neglected.
So, we further introduce label guidance strategy in both domains to improve the
subspace discriminability. Firstly, we expect that the learned projections can
serve as classifier, which can be achieved by forcing PT

t Xt close to the pseudo
label matrix Ŷt ∈ R

d×nt (d ≥ c, and c indicates the number of classes) with
category information. Unfortunately, the pseudo label information of the target
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domain is not accurate. Therefore, we propose to use the existing classifiers (e.g.
SVM) to generate pseudo labels and then learn a discriminative target subspace
alternatively, under the label guidance. Inspired by EDA [6], we introduce a
relaxation matrix M to alleviate this effect while increasing the robustness of
the framework. Secondly, to make full use of the known labels in the source
domain and improve the accuracy of this strategy, we define the constructed
label matrix Y =

[

Ys, Ŷt

]

∈ R
d×n (n = ns + nt indicates the total number of

samples in both domains) as:

Y {i, j} =
{

1, if xj ∈ ci
−1, otherwise

(3)

The purpose of label guidance strategy is to seek a discriminative Pt, which
also approximates the common subspace between domains, formulated as:

min
Pt,M

∥
∥PT

t X − Y ◦ M
∥
∥
2

F
s.t. M � 0 (4)

where X = [Xs,Xt] ∈ R
D×n. M ∈ R

D×n represents the relaxation matrix. ◦ is
a hadamard product operator.

We can obtain the following ultimate objection function by incorporating the
above three Eqs. (1), (2) and (4) as:

min
Ps,Pt,M,Z

β ‖Ps − Pt‖2
F +

∥
∥PT

t Xt − PT
s XsZ

∥
∥
2

F
+ α ‖Z‖∗ + 1

2

∥
∥PT

t X − Y ◦ M
∥
∥
2

F

s.t. M � 0
(5)

where β and α are trade-off parameters to balance the constraints. We iteratively
update the pseudo labels of target domain data using the learned invariant and
discriminative target subspace. Finally, an optimal, invariant, and discriminative
target subspace Pt can be achieved in a progressive manner.

3.3 Optimization

It can be seen from problem (5) that four variables are involved when Y is fixed.
To solve the problem, an inexact augmented Lagrange multiplier method (IALM)
[14] is used. With an auxiliary variable L, the problem (5) can be converted into:

min
Ps,Pt,M,Z,L

β ‖Ps − Pt‖2
F +

∥
∥PT

t Xt − PT
s XsZ

∥
∥
2

F
+ α ‖L‖∗ + 1

2

∥
∥PT

t X − Y ◦ M
∥
∥
2

F

s.t. M � 0, Z = L

(6)
Then, by using variables alternating strategy, we can derive the solution of

each variable in IALM algorithm:

Pt = (2βI + 2XtX
T
t + XXT )−1(2βPs + 2XtZ

TXT
s Ps + X(Y ◦ M)T ) (7)

Ps = (2βI + 2XsZZTXT
s )−1(2βPt + 2XsZXT

t Pt) (8)

Z = (2XsTPsP
T
s Xs + μI)−1(2XsTPsP

T
t Xt + μ(L − Y1/μ)) (9)
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L = arg min
L

α ‖L‖∗ +
μ

2
‖Z − L + Y1/μ‖2F (10)

M = arg min
M

1
2

∥
∥PT

t X − Y ◦ M
∥
∥
2

F
(11)

where Y1 is a Langrange multiplier, μ > 0 is a penalty parameter and I is identity
matrix. The optimal solution of formula (10) can be computed via the singular
value thresholding (SVT) algorithm [1]. Problem (11) can be similarly solved by
[15]. Then multiplier Y1 and iteration step-size ρ (ρ > 1) are updated by:

{
Y1 = Y1 + μ(Z − L)
μ = min(ρμ, μmax) (12)

Once the guided Pt is obtained through the IALM algorithm, then an
existing classifier can be used to get better pseudo-target-labels (also a bet-
ter Ŷt) based on the optimal representation. To check the convergence, we define
�Pt =

∥
∥
∥P

(t+1)
t − P

(t)
t

∥
∥
∥
F

/
∥
∥
∥P

(t)
t

∥
∥
∥
F

, where t indicates iteration. Convergence is
achieved when �Pt < ε, where ε indicates a very small positive number.

4 Experiment

In this section, extensive experiments are conducted to justify the effectiveness of
our method. The experiments on three different benchmark DA tasks, including
4DA object data set [3], MSRC-VOC2007 data set [8] and CMU PIE face data
set [7]. Some examples are illustrated in Fig. 1.

Experimental Setting: In all experiments, we use SVM to progressively gen-
erate pseudo target labels. The dimensionality d of the invariant subspace is set
as c (the number of classes) in each data set.

(1) 4DA Data Set: 4DA consists of Office and Caltech-256. Office contains
three real-world object domains, Amazon, Webcam and DSLR. 4DA is formu-
lated with 10 shared categories of the two data sets. We use the same SURF
features as [3]. Therefore, 4 domains: A (Amazon), C (Caltech-256), D (DSLR)
and W (Webcam) are exploited. By deploying two different domains as the source
domain and target domain alternatively, we construct 12 cross-domain tasks.

(2) MSRC and VOC2007 Data Set: MSRC contains 4,323 images of 18
classes, which was released by Microsoft Research Cambridge. VOC2007 contains
5011 images of 20 classes. 6 shared semantic classes: aeroplane, bicycle, bird, car,
cow, sheep are formulated. Following the experimental setting as [15], two cross-
domain tasks are constructed: MSRC vs VOC2007 and VOC2007 vs MSRC.

(3) CMU PIE Face Data Set: PIE contains 68 individuals with 41,368 face
images of size 32 × 32. PIE1 (C05, left pose), PIE2 (C07, upward pose), PIE3
(C09, downward pose), PIE4 (C27, frontal pose), PIE5 (C29, right pose). The
face images were captured by 13 different poses and 21 different illuminations
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Table 1. Accuracy (%) On 3 types data sets. NA denotes no adaptation.

Data Set Compared transfer learning methods

NA SA JDA [7] TSL RDALR LTSL DTSL GSL

C→A(1) 50.09 48.02 51.46 52.30 52.51 24.11 53.34 56.68

C→W(2) 43.05 31.86 41.36 40.34 40.68 22.93 45.76 47.12

C→D(3) 47.77 42.68 46.50 49.04 45.22 14.58 50.96 49.04

A→C(4) 42.79 34.37 43.90 43.28 43.63 21.36 44.70 45.24

A→W(5) 37.03 33.90 33.90 34.58 35.93 18.17 38.31 39.32

A→D(6) 37.22 38.85 33.76 38.85 36.94 22.29 39.49 43.95

W→C(7) 29.47 30.01 31.17 31.43 28.05 34.64 30.28 32.24

W→A(8) 34.15 32.15 36.33 34.66 31.21 39.46 34.66 38.94

W→D(9) 80.62 83.44 77.71 79.62 83.44 72.61 82.80 85.99

D→C(10) 30.11 32.24 31.43 33.13 32.32 35.35 30.72 31.70

D→A(11) 32.05 33.40 38.41 32.57 33.72 39.35 33.19 36.95

D→W(12) 72.20 70.51 75.59 72.54 72.54 74.92 76.61 79.32

MSRC→VOC2007(1) 37.12 31.76 38.17 32.35 37.45 38.04 38.04 41.76

VOC2007→MSRC(2) 55.48 46.02 59.26 43.18 62.33 67.06 56.42 61.54

PIE1→PIE4(1) 51.76 42.75 25.14 46.68 41.66 20.01 81.29 84.77

PIE4→PIE4(2) 65.88 51.41 33.76 59.15 48.11 52.79 79.71 83.85

PIE4→PIE5(3) 51.96 47.92 29.47 45.22 48.84 47.00 71.02 71.75

PIE5→PIE4(4) 53.41 43.11 25.38 53.08 44.46 23.61 66.09 63.17

Average 47.33 43.02 41.82 45.67 45.50 37.13 52.96 55.19

and/or expressions. Alternatively, we constructed 4 cross-domain tasks: PIE1 vs
PIE4, PIE4 vs PIE1, PIE4 vs PIE5, and PIE5 vs PIE4.

Specifically, the experimental results on the three datasets are shown in
Table 1, from which we can observe that our GSL method outperforms other
TL/DA methods in most tasks. The average classification performance of GSL
shows significant improvement than others.

5 Conclusion

We firstly propose a new learning paradigm called Guided Learning (GL), which
is inspired by the “tutor guides student” learning mode in human world. In
order to solve the problem of domain mismatch in multi-task classification,
we further proposed a Guided Subspace Learning (GSL) method, which aims
to progressively seek an optimal target subspace through the GL paradigm.
The proposed GSL is imposed the optimality, invariance, and discrimination
by proposing three strategies, including subspace guidance, data guidance and
label guidance. Notably, the label guidance strategy is constructed by formulat-
ing label relaxation and progressive target pseudo target label pre-computing
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method. The proposed GL provides a new learning mechanism for multi-task
classification as TL/DA methods do. Experimental results demonstrate that our
method outperforms many state-of-the-art TL/DA methods.

Acknowledgements. This work was supported by the National Science Fund of
China under Grants (61771079).
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