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a  b  s  t  r  a  c  t

This  paper  presents  a laboratory  study  of multi-class  classification  problem  for multiple  indoor  air  con-
taminants  which  belongs  to a  completely  linear-inseparable  case.  Six kinds  of indoor  air  contaminations
(formaldehyde,  benzene,  toluene,  carbon  monoxide,  ammonia  and  nitrogen  dioxide)  were  recognized  as
indicators  of air  quality  in  this  project.  The  effectiveness  of  the  proposed  HSVM  model  has  been  rigor-
ously  evaluated  on  the  experimental  E-nose  data  sets.  In addition,  we have  also  compared  it  with  existing
eywords:
lectronic nose
lassification
ulti-class problem
ybrid support vector machine

five  methods  including  Euclidean  distance  to centroids  (EDC),  simplified  fuzzy  ARTMAP  network  (SFAM),
multilayer  perceptron  neural  network  (MLP)  based  on  back-propagation  learning  rule,  individual  FLDA
and  single  SVM.  Experimental  results  have  demonstrated  that  the  HSVM  model  outperforms  other  clas-
sifiers  in  general.  Also,  HSVM  classifier  preliminarily  shows  its  superiority  in solution  to  discrimination
in  various  electronic  nose  applications.
isher linear discrimination analysis

. Introduction

Electronic nose (E-nose) system, which imitates the percep-
ional mechanisms of biological olfactory using a chemical sensor
rray, is designed to detect and discriminate complex odors. The
ensor array in an E-nose system consists of several non-specific
ensors, and when exposed to an odorant stimulus, a character-
stic pattern from the sensor array would be generated. Patterns
rom known odorants are employed to construct a database and
rain a pattern recognition model through some learning rules, so
hat unknown odorants can be classified and discriminated sub-
equently [1].  In recent years, E-nose technology has been widely
mployed in diverse fields such as environmental controls [2–4],
edical areas [5,6], agriculture [7],  food and pharmaceutical indus-

ries [8–10].
Metal oxide semiconductors gas sensors array with cross sen-

itivity toward different components have been widely applied in
-nose system. In pattern analysis, one or more features in steady
tate responses were selected and a vector which can be seemed
s the pattern of one observation was obtained. In discrimination,
 classification model is first developed on the training patterns;
hen, the performance of the model is evaluated by means of the
ndependent testing samples; the final classification accuracy can

∗ Corresponding author. Tel.: +86 13629788369; fax: +86 23 65111745.
E-mail address: leizhang@cqu.edu.cn (L. Zhang).

925-4005/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.snb.2012.07.021
© 2012 Elsevier B.V. All rights reserved.

be calculated by comparing their predicted categories with their
own  true categories. So far, many pattern recognition models based
on intuitive, linear and nonlinear supervised techniques have been
explored in E-nose data. In this paper, E-nose technology was  used
to discriminate six kinds of indoor air contaminants by developing a
hybrid classification model. Compared with those previous studies,
we have systematically studied different linear and nonlinear tools
and try to find an optimal model for gases classification. Among a
large number of classification models, we select five representative
methods for comparisons. They are Euclidean distance to centroids
(EDC) [11], fuzzy ARTMAP network [12,13],  multilayer perceptron
neural network (MLP) [14–16],  fisher linear discrimination analysis
(FLDA) [17], and support vector machine (SVM) [18,19].

EDC, which assigns samples to the class with the minimum
distance, is a very intuitive classification method. For each class
and each variable, the centroid is calculated over all samples in
that class. It is assumed that the distribution of samples around
the centroid is symmetrical in the original variable space for each
class. However, it cannot make use of the full discriminatory power
available in all the variables so that this method actually obtains
worse classification. Artificial neural networks (ANNs), especially
fuzzy ARTMAP and MLP  based on back-propagation learning rule,
have been recognized to be successful in pattern recognition sys-
tem (PARC). Fuzzy ARTMAP is a constructive neural network model

developed upon adaptive resonance theory and fuzzy set the-
ory [20,21]. It allows knowledge to be added during training if
necessary so that it has also been used for pattern recognition.
Back-propagation multilayer perceptron neural network, which is

dx.doi.org/10.1016/j.snb.2012.07.021
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:leizhang@cqu.edu.cn
dx.doi.org/10.1016/j.snb.2012.07.021
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 non-linear, non-parametric and supervised method, performed
ell in a variety of application [22,23]. When it comes to the draw-

acks of MLP, back-propagation algorithm has a limited capability
o compensate for undesirable characteristics of the sensor system
e.g. temperature, humidity variations and drift) and it is trained
off-line” and unable to adapt autonomously to the changing envi-
onment. Consequently, recalibration is still necessary in different
eriods. Although ARTMAP can realize “on-line” training through
esting the new measurements, the problem is that it does not know
he specific component or category in each new measurement. And
lso, the robustness and real-time characteristic of ARTMAP will be
ost when compared with MLP  in real applications. LDA, as a super-
ised method, has been used for feature extraction and variable
election [24] in a dataset like the unsupervised principle compo-
ent analysis (PCA). Both of them extract features by transforming
he original parameter vectors into a new feature space through

 linear projection. Besides, LDA has also been used for discrim-
nation. However, when the actual problem becomes completely
onlinear (e.g. the sensor array system), it will become unquali-
ed. SVM, which was first introduced by Vapnik, is a relatively new
achine learning technique [25,26]. It has been proven advanta-

eous in handling classification tasks with excellent generalization
erformance and robustness. For improvement of SVM, LDA as
eature extraction method has been combined with SVM for fault
iagnosis and hepatitis disease diagnosis [27]. Unfortunately, the
ensor array produces a response vector for each observation, but
ot a matrix or dataset in real-time E-nose monitoring. In other
ords, a certain sampling time for a dataset collection should be
eeded for easy analysis by LDA or PCA which would make an
nline/real-time use of an E-nose impossible. Since the feature
xtraction by LDA or PCA cannot operate in real-time processing,
he hybrid classification model would also become meaningless.

Particularly, most classification models can successfully solve
 simple two-class problem. However, in this paper we devote to
olving a complex multi-class problem. An electronic nose can be

 better alternative to conventional methods for continuous and
eal-time monitoring of air quality indoor in dwellings or in a
ar as a portable E-nose instrument. Four classes of contaminants
physical, chemical, biological and radioactive) were reported in
ndoor air quality standard. Chemical contaminants including sul-
ur dioxide, nitrogen dioxide, carbon monoxide, carbon dioxide,
mmonia, ozone, formaldehyde, benzene, toluene, inhalable par-
icle, and volatile organic compounds were recognized as harmful
ubstances to public health indoor [28]. The common contami-
ants in people’s dwellings which we aim to employ in our project
sing E-nose technology contain formaldehyde, benzene, toluene,
arbon monoxide, ammonia and nitrogen dioxide. These odorants
ave been mostly investigated for their potential harms to public
ealth as pollutants of indoor air quality from numerous studies
28–33]. By conclusions of these publications, we  find that the
xed six gases in our project were widely studied in dwellings.
he emissions from new furniture, oil paint, and building mate-
ials of residuals often contain formaldehyde, benzene, toluene,
nd ammonia [28]. Besides, carbon monoxide and nitrogen dioxide
re often produced from the smoking of cigarettes, wood burning
toves and car exhaust. A detail comparison research of indoor air
ollutants in urban dwellings in Japan and Sweden has been devel-
ped in [29] and provided new data concerning the concentrations
f formaldehyde and nitrogen dioxide.

In this work, we present a laboratory study of a multi-class
roblem for classification of six contaminants using a hybrid dis-
rimination model based on fisher linear discrimination analysis

FLDA) and support vector machine (SVM) for monitoring and real-
zing a real-time gases category decision in people’s dwellings by
n E-nose. The role of FLDA is equivalent to a pre-classification by
ransforming the original data into a new feature space with more
ors B 174 (2012) 114– 125 115

linearly independent variables correlated with each classifier, and
more prior information about each class in the new feature space
would be obtained. Thus, it makes SVM easier for final discrimina-
tion in the new feature space. For clarity, the hybrid model of FLDA
and SVM in this paper is called HSVM. The comparison results with
EDC, simplified fuzzy ARTMAP (SFAM), MLP, individual FLDA and
single SVM demonstrate the potential ability of HSVM in E-nose.

2. Classification methodologies considered

In this section, we  illustrate the basic principle, mathematical
formulas and some important details about the related classifica-
tion methodologies. An in-depth description of the classification
theory is beyond the scope of this paper. For clarity, we  have
referred readers with interest to related references.

2.1. Euclidean distance to centroids (EDC)

EDC is a very intuitive classification method through assigning
the nearest samples with the centroid to the corresponding class
[11]. For each class, the mean (centroid) is calculated over all sam-
ples in that class. The Euclidean distance between sample i and the
class k centroid is calculated as

dik =
√

(xi − x̄k) · (xi − x̄k)T (1)

where xi is the ith sample described by a row vector with n variables
(n denotes the number of sensors), x̄k is the centroid of class k, and
T denotes the transpose of a vector. The sample with the minimum
distance d will be assigned to a specific class.

2.2. Simplified fuzzy ARTMAP network (SFAM)

ARTMAP consists of two  modules (fuzzy ART and inter-ART)
that create stable recognition categories in response to the input
patterns. Fuzzy ART receives a stream of input features represent-
ing the pattern map  to the output classes in the category layer.
Fuzzy ART module has three layers: F0, F1, and F2. Inter ART module
works by increasing the small vigilance parameter ε of fuzzy ART for
updating the prediction error in the output category layer. We  refer
interested readers to [34] for the basic mathematical descriptions
of SFAM.

For parameter settings, the related parameters in [34] such as
vigilance � = 0.9,  ̨ = 0.2, learning rate  ̌ = 1, and ε = 0.001 are used in
this paper; the number of maximum categories and training times
are set to 100, respectively.

2.3. Multilayer perceptron neural network (MLP)

A typical multilayer perceptron consists of an input layer, one
hidden layer and one output layer. The input and output elements
denote the observations composed of six variables (sensor) and the
known category (labels) of each observation. Detailed description
of MLP  is out of the scope of this present study; for that, we refer
the readers to [35]. In this paper, we use three-bit binary codes to
represent the identities of six categories. The identities of formalde-
hyde, benzene, toluene, carbon monoxide, ammonia and nitrogen
dioxide were labeled as (0, 0, 1)T, (0, 1, 0)T, (0, 1, 1)T, (1, 0, 0)T, (1, 0,
1)T and (1, 1, 0)T, respectively. The number of nodes in input layer,
hidden layer and output layer were set as 6, 35 and 3, respectively.
The output value p for each node should be adjusted as if p ≥ 0.5,

p = 1; else p = 0. The activation functions of the hidden layer and
output layer we have used in classification are “logsig” and “pure-
lin”. The training goal and training times are set to 0.05 and 1000,
respectively.
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.4. Fisher linear discrimination analysis (FLDA)

Fisher linear discrimination analysis easily handles the case
here the within-class frequencies are unequal and their per-

ormances have been examined on randomly generated test data.
his method maximizes the ratio of between-class variance to the
ithin-class variance in any particular data set and thereby guaran-

eeing maximum separability and also producing a linear decision
oundary between two classes. A brief mathematical description
or a two-class problem is shown as follows.

Assume we have a set of n-dimensional dataset X = {X1, X2},
here X1 belongs to class 1 which contains N1 column vectors

nd X2 belongs to class 2 which contains N2 column vectors. The
entroid of each class is calculated by

i = 1
Ni

·
∑

Xi, i = 1, 2 (2)

The within-scatter matrix of class i is shown by

i =
Ni∑

j=1

(Xi,j − �i)(Xi,j − �i)
T, i = 1, 2 (3)

Then the within-class scatter matrix Sw and the between-class
catter matrix Sb can be calculated by

w =
2∑

i=1

Si (4)

b =
2∑

i=1

Ni · (�i − X̄) · (�i − X̄)
T

(5)

here X̄ denotes the centroid of the total dataset X.
Finally, the fisher criterion in terms of Sw and Sb is expressed as

(W ) = WT SbW

WT SwW
(6)

here W is the transformation matrix which can be calculated by
olving the eigenvalue problem

∗ = argmax{J(W)} = S−1
w · (�1 − �2) (7)

.5. Support vector machine (SVM)

Support vector machines perform structural risk minimization
n the framework of regularization theory. For linearly insepara-
le cases SVM applies a non-linear kernel function to transform
he input space to a higher dimensional feature space so that the
lasses may  be linearly separable prior to calculate the separating
yperplane. This kernel function can be polynomial, Gaussian radial
asis function (RBF) or sigmoid function. In this work, a linearly

nseparable case is considered, and only Gaussian RBF kernel func-
ion was attempted for classification due to its good generalization
nd without the guidance from those prior experiences. Therefore,
his problem aims to solving a quadratic optimization in a higher
imensional feature space. The Lagrangian function is shown by

LSSVM(˛) =
N∑

i=1

˛i − 1
2 ·

N∑
i,j=1

˛i˛jyiyj�(xi)
T�(xj) (8)

hich needs to be minimized under the constraints: ˛i > 0 and
N

˛ y = 0.
i=1

i i

By introducing a kernel function

(xi, xj) = �(xi)
T�(xj) (9)
ors B 174 (2012) 114– 125

the Lagrangian function can be rewritten by

LLSSVM(˛) =
N∑

i=1

˛i − 1
2 ·

N∑
i,j=1

˛i˛jyiyjK(xi, xj) (10)

The Gaussian RBF kernel function can be represented as

K(xi, xj) = exp

(
−||xi − xj||2

�2

)
(11)

where �2 is the kernel parameter which determines the bandwidth
of RBF. The decision function can be expressed as

f (x) = sgn

(
N∑

i=1

˛iK(xi, x) + b

)
(12)

where  ̨ and b are the optimal decision parameters.

3. Application of classification models to experimental
E-nose data

3.1. The E-nose system with sensor array

The details of the E-nose module have been illustrated in exper-
imental part of our previous publication [36]. Briefly, four metal
oxide semiconductor gas sensors (TGS2602, TGS2620, TGS2201A
and B from Figaro company) and an extra module (HTD2230-I2C)
with two auxiliary sensors for temperature and humidity compen-
sations were used in our E-nose. The sensors were mounted on
a custom designed printed circuit board (PCB), along with associ-
ated electrical components. A 12-bit analog-digital converter (A/D)
is used as interface between the FPGA (Field Programmable Gate
Array) processor and the sensors. The system can be connected
to the PC via a JTAG (Joint Test Action Group) port. The sensor
array will produce a group of odorant pattern with six variables
including temperature, humidity, TGS2620, TGS2602, TGS2201A
and TGS2201B in each observation. The reasons for selection of
these four gas sensors can be concluded as two aspects. First, they
have a good sensitivity to indoor air contaminants. The sensitiv-
ity can be indicated as the ratio of sensor resistance (Rs) at various
concentrations and sensor resistance (Ro) in fresh air or 300 ppm
of ethanol. The corresponding parameters including the basic cir-
cuits, heater voltage, heater current, standard test curves, etc. for
each sensor of this work have been provided with the datasheet
(.pdf) in the supplementary data. The species monitored by the sen-
sor array contain carbon monoxide, nitric oxide, nitrogen dioxide,
ammonia, toluene, ethanol, hydrogen, methane, hydride and VOCs.
Second, they have a long-term stability and good reproducibility.
Also, we refer readers to the sensors’ datasheets available in http://
www.figaro.co.jp/en/product/index.php?mode=search&kbn=1 for
more information on the other TGS sensors. For visualization of
our E-nose system, the experimental platform was simplified and
presented in Fig. 1. From the experimental platform, we can find
that five ports (from port 1 to port 5) are used in the chamber. For
clarity, port 1 is used for injection of contaminants, port 2 is used to
clean the chamber after each experiment through injection of fresh
air (nitrogen), port 3 is set to control the relative humidity in the
chamber by using a humidifier with a valve, port 4 is for data collec-
tion by connecting the PC to the sensor array board with a JTAG and
port 5 is set to sampling by a gas sampler for true concentrations.

3.2. E-nose data
Six familiar chemical contaminants indoor including formalde-
hyde (HCHO), benzene (C6H6), toluene (C7H8), carbon monoxide
(CO), ammonia (NH3) and nitrogen dioxide (NO2) are investigated

http://www.figaro.co.jp/en/product/index.php?mode=search&kbn=1
http://www.figaro.co.jp/en/product/index.php?mode=search&kbn=1
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Fig. 1. Systematic exper

n this work. The experiments were employed by an E-nose in the
onstant temperature and humidity chamber whose type is LRH-
50S. The accuracy for temperature and humidity of the chamber

s ±0.5 ◦C and ±5%. In gases preparation, HCHO, C6H6 and C7H8 are
iquor, and CO, NH3 and NO2 are standard gas. In each gas mea-
urements, a gas bag collected with target gas and nitrogen (N2)
as prepared for injection into the chamber. Note that N2 is used

o dilute the gas concentration in the gas bag, and we  get various
oncentrations by setting different injection times (injection speed
o 5 l/min). The true concentrations for HCHO and NH3 were mea-

ured using spectrophotometer, C6H6 and C7H8 were employed
sing Gas Chromatography, and the true concentrations of CO and
O2 were obtained using the reference instruments whose mea-

urement accuracy are within ±3%. For each experiment, 12 min
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Fig. 2. Response curves of four gas s
al platform in this work.

(e.g. 2 min  for baseline and 10 min  for response) were consumed
and extra 15 min were also needed for cleaning the chamber by
injecting pure air. Totally, 260, 164, 66, 58, 29 and 30 samples with
target temperature, humidity and various concentrations were col-
lected for HCHO, C6H6, C7H8, CO, NH3, and NO2, respectively. These
samples were measured with different combinations of the target
temperatures 15, 25, 30, 35 ◦C and relative humidity (RH) of 40%,
60%, 80% which can approximately simulate the indoor tempera-
ture and humidity for improving the classifier robustness of the
E-nose. The conditions including temperature, humidity and con-

centration of the experimental samples were presented in Table 1.
12 combinations {(15, 60), (15, 80), (20, 40), (20, 80), (25, 40),
(25, 60), (25, 80), (30, 40), (30, 60), (30, 80), (35, 60)} in manner
of (T, RH), in which T denotes temperature and RH (%) denotes
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Table 1
Concentration (ppm) condition of each experimental sample in different combinations (T, RH) in which T denotes temperature and RH (%) denotes relative humidity.

(15, 60) (15, 80) (20, 40) (20, 60) (20, 80) (25, 40) (25, 60) (25, 80) (30, 40) (30, 60) (30, 80) (35, 60)

Conditions of HCHO samples
0.04 0.14 0.07 0.10 0.08 0.13 0.24 0.06 0.23 0.13 0.09 0.04
0.05  0.16 0.07 0.07 0.06 0.45 0.10 0.25 0.39 0.15 0.02 0.09
0.08  0.72 0.16 0.15 0.11 0.31 0.26 1.04 1.37 0.22 0.25 0.81
0.12  0.10 1.32 0.09 0.28 0.52 2.11 0.02 0.58 2.06 0.09 0.16
0.64  0.34 0.60 0.23 1.10 0.22 0.37 0.11 0.52 0.08 0.13 0.58
0.21  1.22 0.61 0.17 0.13 0.49 0.05 0.04 0.02 0.23 0.43 0.04
0.25  0.13 0.16 0.16 0.15 0.07 0.01 0.27 0.09 0.27 0.76 0.12
0.06  0.26 2.62 0.20 0.25 0.30 0.11 0.33 0.12 0.29 1.15 0.45
0.05  0.52 0.45 0.21 0.35 0.26 0.17 0.79 0.56 0.31 2.42 0.39
0.18  0.69 0.05 0.22 0.59 0.23 0.24 1.01 0.68 0.56 2.01 0.61
0.22  2.29 0.08 0.24 1.16 0.04 0.17 1.29 0.92 1.01 2.30 1.62
0.12  2.45 1.16 0.24 1.88 1.01 0.27 1.93 1.31 1.06 0.22
0.19  0.12 3.13 0.60 1.17 1.09 0.12 2.17 2.37 1.65 0.31
0.20  1.06 0.48 0.77 1.83 2.62 0.17 0.26 0.01 1.84 0.32
0.52  1.44 0.60 1.23 0.06 0.24 1.01 0.09 0.08 0.39
–  – – – – – – – – –

Conditions of C6H6 samples
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.28  0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.49  0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
0.91  0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
0.71  0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
0.11  0.06 0.09 0.08 0.20 0.19 0.15 0.15 0.19 0.15 0.20 0.14
0.18  0.20 0.07 0.15 0.06 0.10 0.13 0.06 0.18 0.18 0.13
0.25  0.21 0.25 0.21 0.14 0.21 0.14 0.14 0.08 0.10 0.24
0.18  0.11 0.26 0.36 0.16 0.18 0.19 0.16 0.24 0.19 0.22
0.24  0.30 0.18 0.42 0.21 0.33 0.20 0.16 0.25 0.30
0.32  0.22 0.06 0.43 0.21 0.16 0.10 0.20 0.18 0.41
0.11  0.26 0.11 0.17 0.21 0.24

Conditions of C7H8 samples
0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.08  0.06 0.08 0.06 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.14  0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.06  0.08 0.06 0.08 0.05 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Conditions of CO samples
6 4 6 5 5 6 4 5 5 14 4 5

11 23  12 22 22 24 8 23 8 29 16 13
43  43 41 43 44 46 10 45 23 49 48 20
23  12 22 11 12 14 21 33 37 55 13 29

13  9 20 10 12 48 6 25 16 20

Conditions of NH3 samples
0.10 0.28 0.34 0.80 0.98 0.09 0.33 0.27 0.66 0.79 0.20 0.28
0.50  1.72 0.79 0.44 0.53 0.79 0.73 0.09 0.92 0.36 2.15
0.25  0.80 0.12 0.55 1.18 0.27

Conditions of NO2 samples
0.09 0.03 0.16 0.10 0.12 0.15 0.03 0.21
0.20  × 0.92 0.84 0.54 0.31 0.22 0.05 × 0.61 × ×
1.62  0.77 0.28 0.18 0.20 0.70 0.87 1.36
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s
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0.66  

elative humidity, were employed for covering the indoor condi-
ions. Due to the large data space, we presented the basic data
tructure which can cover a majority of the indoor conditions in
able 1. In visualization of sensor response curve in one measure-
ent, we randomly select one sample in the combination of (15, 60)

or each gas from Table 1 and present the whole sensor response
urves from the baseline to the steady state response (12 min) in
ig. 2. Note that the sensor responses have been normalized, and
he measured concentrations of each selected sample for HCHO,
6H6, C7H8, CO, NH3, and NO2 were 0.18 ppm, 0.28 ppm, 0.14 ppm,
.0 ppm, 0.50 ppm and 1.62 ppm, respectively. The normalization

s that sensor responses were directly divided by 4095. It is worthy

oting that the digit of 4095 (that is, 212 − 1) is the maximum value
f the 12-bit A/D output for each sensor. In feature extraction, one
alue at the steady state response (the 240th point in Fig. 2) for
ach sensor was selected as the corresponding feature in such a
0.02 1.59
0.07
0.17

simple way. Therefore, a vector with 6 variables including temper-
ature and relative humidity is extracted as the feature vector of that
sample for subsequent pattern recognition.

3.3. Multi-class HSVM discrimination of E-nose data

The common used two methods for solving multi-class prob-
lems are “one-against-all” and “one-against-one” [37]. In this
work, the “one-against-one” strategy (OAO) is used in HSVM
to build the k = 6 classes classifier for the recommendation that
it would be a better choice for k ≤ 10 [19]. Thus, this strategy
builds k · (k − 1)/2 = 15 sub-classifiers (FLDA classifier or SVM clas-

sifier) trained using input patterns of two  classes. Consequently, a
complex multi-class problem can be untied through solutions of
multiple two-class classifiers with a voting scheme in decision that
if the indicator function of each sub-classifier says that x belongs to
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Table  2
Distribution of training set and testing set.

Training-testing
proportion (%)

Number of samples in the subset

Training set Testing set

HCHO C6H6 C7H8 CO NH3 NO2 HCHO C6H6 C7H8 CO NH3 NO2
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30–70 78 49 20 18 9 

50–50  130 82 33 29 15 

80–20  208 131 53 46 23 

lass i, then the vote for class i is increased by one, otherwise, the
ote for class j is increased by one.

In terms of OAO strategy, 15 FLDA and 15 SVM classifiers in the
SVM model should be designed separately in a 6-category clas-

ification problem. Here, FLDA transforms the original data into a
ew feature space composed of more linearly independent vari-
bles which can be recognized as the new variables with more
haracteristic of linear separability and prior information of each
ub-classifier which are easier for SVM classification. The imple-
entation process of HSVM in E-nose data can be illustrated as

ollows.
Assume that the number of HCHO, C6H6, C7H8, CO, NH3, and

O2 training samples is n1, n2, n3, n4, n5, and n6, respectively. Thus,
he original training input data matrix Xoriginal can be constructed
n order by

original = {X1, X2, X3, X4, X5, X6} (13)

here the ith matrix Xi is 6 × ni, i = 1, . . .,  6; thus, Xoriginal is a matrix

f 6 ×
∑6

i=1ni, and each column denotes one observation vector.
The training goal (category label) is constructed in order as

abel = {
n1︷  ︸︸  ︷

1, . . . , 1,

n2︷  ︸︸  ︷
2, . . . , 2,

n3︷  ︸︸  ︷
3, . . . , 3,

n4︷  ︸︸  ︷
4, . . . , 4,

n5︷  ︸︸  ︷
5, . . . , 5,

n6︷  ︸︸  ︷
6, . . . , 6}

(14)

Assume that the total transformation matrix of the 15 FLDA
lassifiers is expressed by

 = {w1, w2, . . . , w15} (15)

here wj (j = 1, . . .,  15) is a column vector of 6 × 1 representing the
ransformation of each sub-classifier between two  classes which
an be directly used for classification. Therefore, W is a matrix
ith a size of 6 × 15. Then the input data XHSVM of HSVM can be

econstructed by projection

HSVM = WTXoriginal (16)

Similarly, the original testing input data matrix should also be
econstructed in terms of the principle of training input data. Con-
equently, the training and test input pattern of SVM has now been
orrelated with the initial FLDA classification, and more linearly
ndependent variables correlated with sub-classifiers were pro-
uced through a linear projection without shifting the number of
riginal patterns. The new patterns preprocessed by FLDA will then
e used for SVM classification with structural risk minimization.

.4. Data analysis

The performance of E-nose data classification was assessed in
erms of the classification accuracy of test samples. The classifica-
ion accuracy is defined as a percentage of correct classifications in

ll test samples. Also, the average accuracy of training and test sam-
les were calculated for insight of the whole data. To validate the
obustness and generalization of all classifiers considered in this
ork, three proportions 30–70%, 50–50% and 80–20% of training
9 182 115 46 40 20 21
15 130 82 33 29 14 15
24 52 33 13 12 6 6

and test samples were analyzed, respectively. For selection of train-
ing set in terms of some proportion, a Kennard–Stone sequential
(KSS) algorithm [38] based on the multivariate Euclidean distance
was used, and the remaining samples were recognized as test sam-
ples. The distribution with three proportions of training set and test
set for each class is represented in Table 2.

Note that, all the classification models were only performed
on the training sets, then, the trained parameters were applied
on the testing sets. All algorithms for multi-class discrimination
were implemented in MATLAB 2009a, operating on a laboratory
computer equipped with Inter Core (TM) i3 CPU 530, 2.93 GHz  pro-
cessors and 2 GB of RAM.

4. Results and discussion

4.1. Experimental results

To evaluate the effectiveness of the hybrid model HSVM, the E-
nose data were analyzed by using all the classifiers considered in
our project. We  first presented the PCA (principle component anal-
ysis) results of the original training sets. Fig. 3 illustrates three 2D
scatter sub-plots (PC-1 vs PC-2, PC-1 vs PC-3 and PC-2 vs PC-3) and
a 3D scatter sub-plot of the first three principal components when
perform PCA program on the 80% training set. From the 2D and 3D
PCA plots, we can get that the first three PCs can totally account for
92.59% information of the training data. Obviously, the multi-class
problem in this work belongs to a completely linear-inseparable
case because of the serious overlaps among all classes. Especially,
the patterns of HCHO and C6H6 as indoor air contaminants are com-
pletely inseparable with other gas patterns from the PCA results. It
is noteworthy that PCA is an unsupervised method which trans-
forms the original data into the space of the principal components
through a linear projection. Namely PCA is a multi-dimensional sig-
nal analysis method in statistical learning by projecting correlated
variables into another orthogonal feature space and thus a group
of new variables with the largest variance (global variance maxi-
mization) were obtained [39]. A key feature of PCA is its ability to
reduce large multivariate data to a few orthogonal principal com-
ponents, which still contain the majority of information held in the
raw data. The analysis of the PCA results confirms the necessity
of nonlinear classifiers employment due to that they can make the
linearly inseparable problem separable in a high dimensional space
through a non-linear transform.

To visualize the magnitude and sign of each variable’s con-
tribution to the first two  and three principal components, Fig. 4
illustrates the 2D and 3D PCA results on the 80% training set. From
Fig. 4, we  can find that TGS2620 and TGS2201B have the same direc-
tion and similar contribution. Humidity works in reverse direction
compared with other variables. It means that humidity is a key
variable in data analysis and cannot be neglected in sensor array.
In fact, if one variable has no use in multivariate data, it should be

in the origin point of the PC space in Fig. 4. That also means the
important role of temperature in the sensor array. In addition, we
can also find that humidity shows the significance in PC-2, while
temperature shows the significance in PC-1 and PC-3. Therefore,
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Fig. 3. PCA results with the first three

oth of them integrated together can be more effective for classifi-
ation.

Besides the macro-analysis of the total gases, we  have also
resented the PCA results in Fig. 5 for organic and inorganic con-
aminants, respectively. Seen from the left subfigure, three organic
ontaminants have same direction in the first two  principles, and
hey are crossed with each other; in the right subfigure, we  can
nd the three inorganic gases could be linearly separable with each

ther. The reasons can be concluded in three aspects. First, the pat-
erns of organic gases are similar with each other, but different with
he patterns of inorganic gases because of their different chemical
haracteristics. Second, the selected sensors are more sensitive to
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inorganic gases than organic gases. Third, more sample points of
HCHO, C6H6 and C7H8 will cover a larger PC space which may result
in an easier overlap among them.

Tables 3–5 present the discrimination results of 70%, 50% and
20% of testing samples using the HSVM classification model devel-
oped on the remaining 30%, 50% and 80% of training samples,
respectively. The digits with bold type in diagonal line denote the
number of correctly classified samples, while others denote the

number of misclassified samples.

For quantification of classification accuracy and present the
comparisons with other classification models, Table 6 shows the
classification accuracy including the train set and test set with a
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Table 3
Multi-classification results of N testing samples which occupy 70% of the total samples using HSVM classification method.

Class N Classified as

HCHO C6H6 C7H8 CO NH3 NO2

HCHO 182 166 6 8 1 0 1
C6H6 115 16 80 11 1 7 0
C7H8 46 0 0 46 0 0 0
CO 40  1 3 0 36 0 0
NH3 20 2 0 3 0 15 0
NO2 21 2 0 8 2 1 8

Table 4
Multi-classification results of N testing samples which occupy 50% of the total samples using HSVM classification method.

Class N Classified as

HCHO C6H6 C7H8 CO NH3 NO2

HCHO 130 116 5 6 1 2 0
C6H6 82 9 66 5 1 1 0
C7H8 33 0 0 33 0 0 0
CO  29 0 0 0 29 0 0
NH3 14 0 0 1 0 13 0
NO2 15 2 5 0 0 0 8

Table 5
Multi-classification results of N testing samples which occupy 20% of the total samples using HSVM classification method.

Class N Classified as

HCHO C6H6 C7H8 CO NH3 NO2

HCHO 52 49 3 0 0 0 0
C6H6 33 5 28 0 0 0 0
C7H8 13 0 0 13 0 0 0
CO  12 0 0 0 12 0 0
NH3 6 0 0 0 0 6 0
NO2 6 0 0 1 0 0 5

Table 6
Classification accuracy with the proportion 30–70% of training and testing samples.

Class Classification accuracy (%)

Train set Test set

EDC SFAM MLP  FLDA SVM HSVM EDC SFAM MLP  FLDA SVM HSVM

HCHO 17.95 100.0 89.31 69.23 83.33 96.15 23.63 65.38 84.62 66.48 84.07 91.21
C6H6 48.98 100.0 89.80 67.35 65.31 97.96 71.30 57.39 75.65 72.17 72.17 69.57
C7H8 60.00 100.0 80.00 85.00 90.00 95.00 54.35 86.96 89.13 93.48 89.13 100.0
CO  66.67 100.0 77.78 88.89 77.78 77.78 70.00 60.00 87.50 97.50 70.00 90.00
NH3 55.56 100.0 77.78 77.78 77.78 100.0 70.00 50.00 35.00 65.00 60.00 75.00
NO2 38.09 100.0 66.67 88.89 55.56 66.67 38.09 33.33 57.38 52.38 47.62 38.10
Mean 47.88 100.0 80.22 79.52 74.96 88.93 

Total  38.49 100.0 85.61 73.77 77.05 93.44 
54.56 58.84 71.55 74.50 70.49 77.31
47.17 62.73 79.26 73.11 77.12 82.79
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Table 7
Classification accuracy with the proportion 50–50% of training and testing samples.

Class Classification accuracy (%)

Train set Test set

EDC SFAM MLP  FLDA SVM HSVM EDC SFAM MLP  FLDA SVM HSVM

HCHO 17.69 100.0 93.08 71.54 98.41 100.0 15.38 69.23 91.54 71.54 86.92 89.23
C6H6 42.68 100.0 80.49 64.63 93.90 100.0 57.32 71.95 69.51 79.27 82.93 80.48
C7H8 69.70 100.0 90.91 90.91 96.67 96.97 54.55 69.70 90.91 93.94 96.97 100.0
CO 68.97  100.0 82.76 89.66 86.21 89.66 65.52 79.31 86.21 100.0 89.66 100.0
NH3 66.67 100.0 66.67 73.33 93.33 93.33 78.57 57.14 50.00 71.43 71.43 92.86
NO2 26.67 100.0 73.33 86.67 86.67 86.67 26.67 80.00 46.67 46.67 66.67 53.33

Mean  48.73 100.0 81.21 79.46 92.53 94.44 49.67 71.22 72.47 77.14 82.43 85.98
Total  37.83 100.0 86.19 74.34 95.01 97.70 39.27 70.96 80.86 77.56 85.47 87.46

Table 8
Classification accuracy with the proportion 80–20% of training and testing samples.

Class Classification accuracy (%)

Train set Test set

EDC SFAM MLP  FLDA SVM HSVM EDC SFAM MLP  FLDA SVM HSVM

HCHO 25.96 100.0 90.87 73.56 95.40 98.07 7.69 78.85 86.54 67.31 90.38 94.23
C6H6 51.91 100.0 81.68 70.99 91.30 98.47 69.70 69.70 78.79 72.73 90.91 84.85
C7H8 69.81 100.0 90.57 88.68 95.65 96.23 38.46 69.23 92.31 100.0 100.0 100.0
CO  71.74 100.0 84.78 91.30 86.96 100.0 75.00 75.00 83.33 100.0 91.67 100.0
NH3 73.91 100.0 78.26 82.61 95.00 95.65 66.67 83.33 33.33 33.33 83.33 100.0
NO2 50.00 100.0 58.33 70.83 90.00 91.67 50.00 66.67 50.00 50.00 66.67 83.33
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nition for improving the classification performance of E-nose. From
the datasheets of the sensors, we can also find that temperature and
humidity have a great influence to the sensitivity of metal oxide
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Mean  57.22 100.0 80.75 79.66 92.39 9
Total  45.57 100.0 85.60 76.49 93.23 9

roportion of 30–70%. The average accuracy of the 6 classes for
ach model and the classification accuracy for the total train set and
est set separately are also given. Similarly, Tables 7 and 8 present
he classification accuracy with proportion of 50–50% and 80–20%,
espectively.

From Tables 6–8,  we can clearly find that with the increasing
umber of training samples, the classification accuracy increases
lso. For each model, the discrimination of NO2 was  not that suc-
essful, two reasons may  explain it. The first one is the smaller
umber of samples. Totally, 30 samples were collected, and unbal-
nced samples may  also influence the classification. Second, the
ensitivity of gas sensors to NO2 (oxidizing gas) is negative which
s contrary to other five contaminants. The sample of NO2 is easier
o be classified as HCHO and C6H6 from Table 4. Concluded from the
igits in bold in Tables 6–8,  the HSVM classification with FLDA is
lways better than other models for HCHO, C7H8, NH3 and CO. The
00% classification accuracy of C7H8, NH3 and CO can be obtained
n the testing samples by using the HSVM model. Also, the highest
4.23% classification accuracy of HCHO on the testing samples is
btained.

For visualization, Fig. 6 illustrates the classification accuracy of
he test samples with three different proportions based on the pre-
ented 6 classifiers. We  can see that HSVM model performs the
est multi-class discrimination. Note that each node (from number

 to 6) in Fig. 6 denotes one kind of classifier and three kinds of
ymbols (“square”, “circle” and “triangle”) represent three differ-
nt proportions, respectively. The single SVM classifier performs
he second best when the training-testing proportion is 50–50%
nd 80–20%. However, with 30% training samples SVM performs
orse than SFAM, MLP  and FLDA models. While HSVM is obviously

uperior to all the models considered. It also confirms that with
mall number of samples HSVM can still show the best classification

erformance.

To study the classification performance of different models
sing only four metal oxide semiconductor gas sensors with-
ut considering temperature and humidity in feature space, we
51.25 73.80 70.72 70.56 87.16 93.74
39.34 74.59 80.33 72.95 90.16 92.62

perform all the classification procedure on the features with only
four variables on the training and testing samples with proportion
of 80–20%. Table 9 presents the classification accuracy of training
and testing samples separately without temperature and humidity
integration. We  can find that HSVM still performs the best discrim-
ination. Another finding is that the accuracy of C6H6 decreased for
all the models, which means that temperature and humidity are
also important as classification features of C6H6. Fig. 4 also demon-
strates that temperature and humidity play an important role in gas
sensor array from the first three principal components. Therefore,
both temperature and humidity are key features in pattern recog-
Class ifiers

Fig. 6. Total classification accuracy on test samples with three proportions using six
classifiers labeled as EDC, SFAM, MLP, FLDA, SVM and HSVM (from number 1 to 6).
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Table  9
Classification accuracy of the train and test set without temperature and humidity integration.

Class Classification accuracy (%)

Train set Test set

EDC SFAM MLP  FLDA SVM HSVM EDC SFAM MLP  FLDA SVM HSVM

HCHO 21.63 100.0 88.94 61.54 90.53 94.37 28.84 86.53 94.06 69.23 92.47 94.23
C6H6 45.03 100.0 78.63 60.30 65.65 63.71 51.51 75.75 49.77 66.67 64.35 69.69
C7H8 75.47 100.0 92.45 94.34 98.11 100.0 38.46 84.61 96.15 100.0 96.09 100.0
CO 78.26  100.0 80.43 73.91 93.47 100.0 91.67 91.67 97.77 91.67 95.53 100.0
NH3 56.52 100.0 73.91 78.26 78.26 87.00 60.00 84.00 92.89 88.00 87.94 96.00
NO2 50.00 100.0 95.83 62.50 95.83 81.40 50.00 66.67 66.57 66.67 67.02 100.0

Mean 54.49 100.0 85.03 71.81 86.97 87.75 53.41 81.54 82.87 80.37 83.90 93.32
6.25 

s
f
f

4

n
h
p
s
s
p
c
W
d
t
t
d
t
P
i
a
h
t
s
m
p
f
t
c
t
m
e
p
c
S
f
s
a
m
k
t
t
c
a
S
i
u
b

Total  42.26 100.0 85.36 66.80 84.60 8

emiconductor sensors as the key environmental elements. There-
ore, it is better to integrate both two variables in data treatments
or classification.

.2. Discussion

This paper mainly investigated a multi-class problem of E-
ose data using linear and nonlinear classification methods. In the
ybrid HSVM discrimination model, the FLDA is developed as a
re-classification which uses a transformation matrix to recon-
truct new patterns with more variables associated with each
ub-classifier while not for dimension reduction referred in the
revious study. Concretely, this work aims to obtain variables
orrelated with each sub-classifier through a projection matrix

6×15 of FLDA, where 6 denotes the number of variables and 15
enotes the number of sub-classifiers in a six-classes classifica-
ion problem in terms of “one-against-one” strategy. Note that
he projection matrix W should be obtained through the original
ata set beforehand, thus, the pre-classification cannot influence
he characteristic of real-time classification. From the results of
CA (see Fig. 3), we know that the E-nose data of contaminants
n our project belongs to a linearly inseparable case. The HCHO
nd C6H6 data have completely overlapped in the data space and
ardly been discriminated with other odorants. Unlike a simple
wo-class problem, a linear decision method may  be enough to
olve a practical classification. Therefore, we believe that nonlinear
ethod like SVM should be considered in complex discrimination

roblems and employ gases classification in a higher dimensional
eature space transformed by a nonlinear kernel function. Due to
he correlations among the variables in original data space, the
lassification task will also become difficult, thus, FLDA was used
o project the original data space onto a new feature space with

ore linear independent variables related with each classifier and
nhance the discriminatory power. Consequently, the linearly inde-
endent variables in the new data space after projection on the 15
lassifiers can help to implement better classification of multi-class
VM. From the results of the six classifiers considered, EDC per-
orms badly, which is consistent with its principle that the nearest
ample vector apart from the centroid of class k was  automatically
ssigned to this class, in which the centroid of each class is the
ean of all training vectors in that class. Seen from Fig. 3 we can

now that the high misclassification rate is believable because of
he completely confused E-nose data sets. That is, Euclidean dis-
ance cannot effectively differentiate two odorants in such data
onfusion without using modern pattern recognition methods,
nd false discrimination become possible. As we  thought before,

FAM performs perfectly in the training process, but unpromising
n the testing process. During SFAM training, the weights w are
pdated in terms of the new training samples, and the w would
e well fitted with the training samples. However, when a new test
46.81 82.97 82.83 76.60 84.60 90.07

sample was  tested on the well trained weights, the weights may  not
be fitted with the new sample (the value of the matching function
is less than the vigilance parameter �) because the new sample
is not trained, and thus gives a false discrimination. In addition,
SFAM was developed mostly for a fast on-line training based on
a vigilance parameter which controls the update of weights w. In
real-time application, this method should be developed further for
online use in the future. With knowledge that even though MLP
neural network based on BP learning rule performs better, it also
has the risk of overfitting for its empirical risk minimum criterion.
In MLP  classification, we use binary codes (0, 0, 1)T, (0, 1, 0)T, (0, 1,
1)T, (1, 0, 0)T, (1, 0, 1)T and (1, 1, 0)T with 3 bits to represent the label
of each gas and expect to achieve a much better recognition perfor-
mance than simple representation of decimal numbers from 1 to 6.
Note that the results using latter decimal way  were not presented
because it was not the key study of this paper.

From the chemical characteristic of gases, HCHO, C6H6, and
C7H8 belong to the organic class, CO, NH3, and NO2 belong to the
inorganic class, and the three inorganic gases can be linearly sep-
arable from the PCA results (see Fig. 5) which is superior to the
organic class. The reasons have been concluded from two  angles:
chemical properties of the odorants and the sensor selection. The
used sensors are more sensitivity to CO, NH3 and NO2. The sen-
sor selection plays an important role in classification of E-nose
data. However, unlike electrochemical sensor, metal oxide semi-
conductor sensor has weak selectivity and is widely used based
on the cross-sensitivity of the sensor array combined with modern
pattern recognition techniques. For classification of the six contam-
inants indoor, simple or single pattern recognition methods will
result in high misclassification rate because of the serious overlap-
ping between the organic and inorganic classes. Besides, seen from
Tables 3 and 4, the inorganic gases are easily misclassified as organic
classes. The tendency of classification may  result from the uneven
samples for organic and inorganic classes. That is, the class with
fewer samples is easier to be discriminated as the class with more
samples. The solution of uneven samples in classification should
also be employed in the future.

Thus, nonlinear discrimination method such as SVM is very
necessary for solution of a complex multi-class problem in E-
nose application for its structural risk minimization principle. Even
though the sensor selection may  help E-nose to realize accurate
classification, a good pattern recognition method would also be
necessary due to the cost of sensor array in the future applica-
tion. It is noteworthy that in the training process of SVM, the
parameter optimization (e.g. regularization and kernel parameters)
adopts LOO-CV cross-validation by using a grid-searching method

for model selection in this paper. For uniformity of comparison, we
adopt the common used grid-search method in SVM and the HSVM.
Here, we refer interested readers to the LS-SVMlab Toolbox version
1.8 for study including its details [40].
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. Conclusions

In this paper, we studied the potential applicability of an E-
ose in classification of air contaminants indoor using different
ata treatment methods. Six classification models including the
DC, SFAM, MLP, individual FLDA, single SVM and the HSVM model
ave been developed on experimental electronic nose data sets
easured using six kinds of air contaminations indoor including

ormaldehyde, benzene, toluene, carbon monoxide, ammonia and
itrogen dioxide. The experimental results demonstrate that HSVM
as the best classification performance in terms of three different
raining-testing proportions (30–70%, 50–50% and 80–20%) com-
ared with other classifiers in detection of indoor air contaminants.
ake proportion of 80–20% as an example, the average and total test
ccuracy for classification of the six contaminants achieves 93.74%
nd 92.62% which are higher than 87.16% and 90.16% obtained
sing SVM, respectively.

The results of this study demonstrate that the HSVM model has
etter performance than the ordinary methods in classification.
SVM model may  be more effective and applicable in indoor air
ontaminants monitoring by an E-nose in the future.
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