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a  b  s  t  r  a  c  t

By  virtue  of  an  electronic  nose,  detection  and  concentration  estimation  of harmful  gases indoor  become
feasible  by  using  a multi-sensor  system.  The  estimation  accuracy  in  actual  application  is constantly
aspired  by  manufactures  and  researchers.  This  paper  analyzes  the  application  of  different  bio-inspired
and  heuristic  techniques  to the  problem  of concentration  estimation  in  experimental  electronic  nose
application.  In  this  paper,  seven  different  particle  swarm  optimization  models  are  considered  including
six models  used  before  in  numerical  function  optimization,  and  a novel  hybrid  model  of particle  swarm
eywords:
article swarm optimization
daptive genetic strategy
ack-propagation multilayer perceptron
eural network
lectronic nose

optimization  and  adaptive  genetic  algorithm,  for optimizing  back-propagation  multilayer  perceptron
neural  network.  We  describe  the  performance  of  a particle  swarm  optimization  technique,  an  adaptive
genetic  strategy  and  a back-propagation  artificial  neural  network  approach  to perform  concentration
estimation  of  chemical  gases  and  improve  the intelligence  of  an  E-nose.

© 2011 Elsevier B.V. All rights reserved.

oncentration estimation

. Introduction

Electronic noses (E-noses) employ an array of chemical gas sen-
ors and have been widely used for the analysis of volatile organic
ompounds [1] and vapor chemicals [2].  Pattern recognition pro-
ides a higher degree of selectivity and reversibility to the system,
eading to an extensive range of applications. An E-nose is an instru-

ent consisting of an array of reversible, but only semi-selective
as sensors coupled to a pattern recognition algorithm [3] and the
ormal structure of an electronic nose system has also been intro-
uced. An excellent overview of the electronic nose technology is
ontained in Gardner and Bartlett [4] and techniques for processing
he sensor responses were reviewed by Jurs [5] and Gutierrez-
suna [6].  Data acquisition is the first step for data analysis. Sensors
ollect the data and convert it into an electrical signal pattern that
s more suitable for computer analysis [3].  The output of each sen-
or is a pattern vector in the pattern space. Then, the pattern vector
s passed into the second stage, feature selection. Feature selection
s the process of identifying the most effective subset of the origi-
al features for obtaining the smallest classification error. The data
roduced by an electronic nose can be classified into two kinds: a

et of semi-independent variables (the sensor array outputs) and

 set of dependent variables (gases concentrations). Related appli-
ations of electronic nose technique have been researched [7–10].

∗ Corresponding author. Tel.: +86 13 629788369; fax: +86 23 65103544.
E-mail address: leizhang@cqu.edu.cn (L. Zhang).

925-4005/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2011.08.060
The selectivity of the instrument is achieved through the applica-
tion of pattern recognition methods to responses of the sensor array
[11,12]. Regarding the neural network training, back-propagation
neural network (BP-MLP-NN) which is a gradient based method,
has been widely used to classify nonlinearly separable patterns
in real application for its strong ability in recognition [13]. How-
ever, BP neural network still posses some inherent problems. First,
BP model can easily get trapped in local minima for the problems
of pattern recognition and complex functions approximation [14],
so that a local optimal solution is obtained. Second, the solutions
are different for every train with the random initial weights. Thus,
neural network optimization algorithms have been proposed by
researchers to improve the ability of finding global minima of BP
by using genetic algorithm (GA) [15–18].

In this paper, we describe the application of several heuris-
tics and bio-inspired optimization models for multidimensional
nonlinear concentration estimation problems in experimental
electronic nose applications. Similar heuristics and bio-inspired
optimization model was  also used for curve fitting in chemistry
[19]. Particle swarm optimization (PSO) algorithm, which was orig-
inally developed by Kennedy and Eberhart, is an optimization
method based on social behavior simulations [20], used to visualize
the movements of a flock of birds which has the superior dynamic
characteristics. Currently, a number of improved PSO models using

different strategies have been investigated by researchers, such
as inertia weight approach (IWA) [21], adaptive PSO (APSO) [13],
attractive and repulsive PSO (ARPSO) [22], particle swarm opti-
mization based on diffusion and repulsion (DRPSO) [23] and PSO

dx.doi.org/10.1016/j.snb.2011.08.060
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:leizhang@cqu.edu.cn
dx.doi.org/10.1016/j.snb.2011.08.060
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ybrid model based on bacterial chemotaxis (PSOBC) [24]. PSO has
een widely used in many fields [25–28].  It has attracted atten-
ion in recent years because of its simplicity and high performance
n searching global optima. Similar to genetic algorithm, the PSO
lgorithm is also an optimization tool based on population which
s initialized with a population of random solutions and search for
ptimum by continuous updating of generations. With the intro-
uction of inertia weights w first proposed, the performance of the
SO algorithm has been improved significantly.

The genetic algorithm (GA) is a global search procedure that
earches from one population of points to another. Sexton and
upta demonstrated that the GA significantly outperforms BP in
ptimizing neural network for a set of computer generated data
18]. Genetic algorithm is first used by choosing an objective func-
ion for optimizing the network. The objective function values are
hen used to assign probabilities for each point of the population,
nd points generating the lowest error are the most likely to be
epresented in the new population. The points forming this new
opulation are then randomly paired for the crossover operation.
his crossover operation results in each new point having informa-
ion from both parent points. In addition, each point has a small
robability of being replaced with a value randomly chosen from
he parameter space. This operation is named as mutation. The
enetic algorithm has been applied to particle swarm optimization
or radial basic function (RBF) network [17] and order clustering
28].

In this paper, considering the fast convergence velocity with
trong ability to find the global best solution of PSO and so many
irections that genetic algorithm can also search in, an improved
SO optimization neural network based on adaptive genetic strat-
gy (PSOAGS) has been proposed. We  take three harmful gases
formaldehyde, CO and NO2) for experiments, through analysis
f simple approaches such as principle component regression
PCR), partial least square (PLS), a third-order polynomial fitting
ased nonlinear least square (NLS) and seven optimized neural

etwork models, results demonstrate that the proposed heuristics
nd bio-inspired optimization neural network model can signif-
cantly improve the ability of global search for optimum, and it
an more accurately estimate the concentrations of gases by an
lectronic nose.

. Particle swarm optimization models considered

.1. Standard particle swarm optimization (SPSO)

In this standard PSO system, a number of particles cooperate
o search for the best solutions by simulating the movement and
ocking of birds. These particles fly with a certain velocity and find
he global best position after certain generations. At each genera-
ion t, the velocity is updated and the particle is moved to a new
osition. This new position is simply calculated as the sum of the
revious position and the new velocity. The mathematical notation
f PSO is defined as follows.

Supposing the dimension for a searching space is D, the total
umber of particles is N, the position of the ith particle can be

w =

⎧⎨
⎩

wstart − we

maxg

(wstart − wend
xpressed as vector Xi = (xi1, xi2,. . .,  xiD); the best position of the ith
article searching until now is Pi = (pi1, pi2,. . .,  piD); the best posi-
ion of all the particles searching until now is Pg = (pg1, pg2,. . .,  pgD);
he velocity of the ith particle is represented as Vi = (vi1,vi2,. . .,viD),
tors B 160 (2011) 760– 770 761

then the standard PSO can be illustrated as:

vid(t + 1) = w · vid(t) + c1 · rp
1i

(t) · [pid(t) − xid(t)]

+ c2 · rp
2i

(t) · [pgd(t) − xid(t)] (1)

xid(t + 1) = xid(t) + vid(t + 1),  1 ≤ i ≤ N, 1 ≤ d ≤ D (2)

where c1, c2 are the acceleration constants with positive values; w
is called inertia factor.

rp
1i

(t) ← U(0, 1),  rp
2i

(t) ← U(0, 1) (3)

Noteworthy is that, placing a limit on the velocity vmax and
adjusting the inertia weight w,  the PSO can achieve better search
performance.

vi
p(t + 1) =

{
vi

max, vi
p(t + 1) > vi

max
−vi

max, vi
p(t + 1) < −vi

max
vi

p(k + 1),  otherwise
(4)

Further, the inertia weight approach (IWA-PSO), in which a lin-
ear reduction from a large value to a small value during the search
has been proposed [21]. The w is updated by:

w(t) = wstart − (wstart − wend) · t

tmax
(5)

where tmax is the maximum generations, wstart is the initial value,
and wend is the terminal value.

2.2. Adaptive particle swarm optimization (APSO)

The adaptive particle swarm optimization (APSO) algorithm
which is based on the standard PSO, was firstly proposed [21]. The
APSO is called adaptive PSO for its new inertial weight improved
by [13].

· gen, 1 ≤ gen ≤ maxgen1

p
[

maxgen1 − gen

k

]
, maxgen1 ≤ gen ≤ maxgen2

(6)

where wstart is the initial inertial weight, wend is the ending inertial
weight of linear section, max  gen2 is the total searching genera-
tions, max  gen1 is the used generations that inertial weight reduced
linearly, and k should be adjusted for the best solution. In the exper-
iment, we  set k to 2.

2.3. Attractive and repulsive particle swarm optimization
(ARPSO)

The attractive and repulsive PSO (ARPSO) was introduced to
overcome the problem of premature convergence [22]. It uses a
diversity measure to control the swarm. This algorithm is based on
the phases between attraction and repulsion. The velocity update
formula of the particles based on the SPSO was  described as:

vid(t + 1) = w · vid(t) + dir · c1 · [pid(t) − xid(t)]

+ dir · c2 · [pgd(t) − xid(t)] (7)

where dir is the coefficient (with value of 1 or −1) which decides
whether the particles attract or repel each other, c1 and c2 are the
random number in the range of [0,2]. The dir can be determined by:
if (dir > 0 and diversity < dlow), then dir = −1 (8a)

if (dir < 0 and diversity > dhigh), then dir = 1 (8b)
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here dlow denotes the low diversity, dhigh denotes the high diver-
ity. The diversity can be calculated using the following formula
24]:

iversity(S) = 1∣∣S∣∣ · ∣∣L∣∣ ·
|S|∑
i=1

√√√√ n∑
j=1

(pij − p̄j)
2 (9)

here S is the swarm, |S| is the size of the swarm, |L| is the length of
he longest diagonal in the search space S, n is the dimensionality of
he problem, pij is the jth value of the ith particle. p̄j is the jth value
f the average points p̄.  The attractive phase is also defined as the
PSO, while the individual particle is repelled by the best known
article position in the repulsion phase.

.4. Particle swarm optimization based on diffusion and
epulsion (DRPSO)

The diffusion repellent PSO model, in which particle swarm is
ot only attracted by the region of the best solution but also carry
ut diffusion repellent movement by the region of the worst solu-
ion for the potentially dangerous property premature of PSO, was
roposed by [23].

The velocity updating formula of DRPSO based on the SPSO
odel is given by:

id(t + 1) = −w · f (vid(t), �) − c1 · rand · [Wid(t) − xid(t)]

− c2 · rand · [Wgd(t) − xid(t)] (10)

here Wid is the worst previous particle, Wgd is the worst parti-
le among all the particles, and f(vid(t), �) is vid(t) after clockwise
otation in a certain random angle � [0◦,360◦].

.5. Particle swarm optimization based on bacterial chemotaxis
PSOBC)

This PSO is a hybrid model based on bacterial chemotaxis, and
roposed by [24]. In this model, the particle swarm is not only
ttracted by the regions where the best results were found, but
lso repelled by the regions where the worst results were found.
n PSOBC model, the location of the worst point found so far and
ocation of the worst point found by the total particles are added to
he SPSO algorithm, the velocity updating formula is illustrated as
ollows:

id(t + 1) = w · vid(t) − c1 · rand(·) · [Wid(t) − xid(t)]

− c2 · rand(·) · [Wgd(t) − xid(t)] (11)

here Wid is the worst previous particle, Wgd is the worst particle
mong the total particles. In this model, the same diversity guided
ethod as the ARPSO and the DRPSO model was also employed and

he individual particle was no longer attracted, but repelled by the
orst known particle position and its own previous worst position.

. Hybrid evolutionary algorithm

In this section, considering the fact that PSO has potential dan-
erous properties such as premature convergence and stagnation,

 hybrid evolutionary algorithm based on an improved PSO and
daptive genetic strategy (PSOAGS) is presented. In actual applica-
ions, large number of samples and the characteristic of real time
re necessary; thus, it is meaningful and important to find the best
lobal solution in a fast converging velocity as soon as possible,

iming at reducing the search generations. This section describes
he strategies of inertial weight, acceleration constant based on
osine mechanism. Also, an improved GA with adaptive probability
ariation is presented.
tors B 160 (2011) 760– 770

3.1. PSO algorithm using cosine mechanism

Through the analysis in Section 2, the inertial weight and accel-
eration constants influence the convergence of PSO in searching the
global best solution. The linear reduction and exponent reduction
of inertial weight can play a good role in finding the optimum, but
it is easy to trap into the local minimum [13]; thus, a regular form
of cosine wave is presented in this PSOAGS model. The strategies
of inertial weight and acceleration constants based on the cosine
mechanism are illustrated as follows:

w(t) = a + b · cos
(

t

A
× �

)
(12)

where parameters a and b can be adjusted according to the bound-
ary of wmax and wmin.

For parameters setup of inertial weight w, a suitable value for
the inertia weight w usually provides balance between global and
local exploration abilities and consequently results in a reduction of
the number of generations required to locate the optimum solution.
We determine the wmin as 0.4 and the wmax as 0.9 which are recom-
mended in PSO literatures [13,21–24].  After the fixed minimum and
maximum of w, we  can derive that a = 0.65, and b = 0.25 through Eq.
(12). For the acceleration coefficients, c1 = c2 = 2 were proposed as
default values in the previous literatures, but experimental results
indicate that it can provide better results when acceleration coef-
ficients c1 and c2 were described in a similar form with Eq. (12).
We set the cmin to 0.6 and the cmax to 1.5 for both c1 and c2, so that
a = 1.05 and b = 0.45. The value of A controls the frequency of cosine
function, which also denotes the velocity of changing w; through
experimental simulations, we finally provide A with 20 which can
be a good choice.

3.2. Adaptive genetic strategy (AGS)

The crossover probability and mutation probability are the
important parameters in genetic algorithm, for that the two proba-
bilities decide the quality of population. It has been well established
in GA literature that moderately large values of the crossover prob-
ability pc (0.5 < pc < 1) and small values of the mutation probability
pm (0.001 < pm < 0.05) are essential for the successful working of
GAs [29–31].  And GA has also been used to architecture optimiza-
tion of neural network [32]. In this paper, we make the crossover
and mutation probability varied adaptively with the Euclidean dis-
tances between individuals of the whole population. It is known
that the Euclidean distances will be smaller and smaller with the
continue search evolutions. We  define the distance vector between
individuals of each generation t as follows:

�d = (d(t)
1 , d(t)

2 , . . . , d(t)
J ) (13)

where J denotes the possible combinations among individuals,
which can be calculated as:

J = PopSize × PopSize − 1
2

(14)

where PopSize denotes the number of the total particles (Pop-
Size = 50, in this paper). Then the adaptive crossover probability of
each generation t is shown as:

probabilitycrossover =
�d(t)

max − �d(t)
average

�d(t)
max − �d(t)

min

(15)

The adaptive mutation probability of each generation is shown

as

probabilitymutation =
�d(t)

average

�d(t)
max

(16)
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Fig. 1. Structure with two-layered feed-forward ANN.

Through Eqs. (15) and (16), we can see that the probability can be
daptively changed according to the whole population; when the
A converges to a local optimum, pc and pm have to be increased.

Combined with the adaptive GA operators such as selection,
rossover, and mutation, the repetitive search guideline is used for
mproving the PSO. For each particle, the fitness values in solu-
ion searching are evaluated from the PSO and AGS, respectively.
ote that, the genetic operators only perform on the positions of
ach particle. If the best fitness of PSO is superior to that of AGS,
eep the best particle of PSO; otherwise, the best particle of AGS
s used in the next generation instead. In addition, to prevent the
est solution from trapping into the local optimal, we  present the

daptive mutation of the best particle according to the best fitness
alue. If the best fitness is invariable with the maximum number
f tolerated generations, the best particle so far will be randomly
utated according to the following formula:

best = Xbest + R × (Xworst − Xbest) (17)

here R ← U(0,1), Xbest is the best particle so far, Xworst is the worst
article so far; the purpose is to change Xbest in the range of Xbest
nd Xworst.

. Concentration estimation algorithm

Through the analysis above, we have made a significant investi-
ation on the heuristics and bio-inspired optimization algorithms
onsidered. In this section, we aim to apply the PSO based tech-
iques and genetic algorithm to optimize feed forward artificial
eural network based on error back-propagation for gases concen-
ration estimation by an electronic nose and verify the effectiveness
f these evolutionary algorithms in concentration estimation.

.1. Back-propagation multilayer perceptron neural network
BP-MLP-NN)

The back-propagation algorithm (BP) based on gradient
escending was proposed by [33]. Rumelhart further formulated
he standard back propagation algorithm (BPA) for multilayered
erceptrons. The architecture of simple multilayered perceptron

x1, x2, . . . , xm×h︸  ︷︷  ︸
W1

, xm×h+1, . .︸  ︷︷
B1
eural network is shown in Fig. 1 which presents a two layered
eural network. BP algorithm has been improved by several adap-
ive back-propagation algorithms for its inherent disadvantages
13,17,18,34]. BP network based on a gradient descend, has been
tors B 160 (2011) 760– 770 763

widely used to classify nonlinearly separable patterns in real appli-
cation for its strong ability in recognition [13]. However, BP neural
network still posses some inherent problems. First, BP model can
easily get trapped in local minima for the problems of pattern recog-
nition [33], and fail to find the global optimal solution. Second, the
initial weight matrix W and bias vectors B of back-propagation neu-
ral network are randomly produced for training so that different
weights and biases would produce different trained neural net-
works. Thus, obtaining the global minimum of regression error by
only using back propagation neural network becomes little imprac-
tical.

4.2. Hybrid BP-MLP-NN and optimization algorithms

During weights optimization, the first step is to determine the
encoding strategy. In this paper, each particle is encoded as a vector
with real values. For the neural network structure, each parti-
cle should represent all weights of the whole network structure.
According to the subsection mentioned above, the structure of BP-
MLP-NN is m-h-o consisted of one hidden layer, then the total
number of weights can be calculated as m ×h + h + h × o + o; thus,
the dimension of each particle is shown as

n = m × h + h + h × o + o (18)

where m,  h, and o denote the number of input neurons, hidden
neurons and output neurons, respectively. To the BP-MLP-NN with
three layers (one input layer, one hidden layer and one output
layer), the weight matrix W1 (m × h), W2 (h × o) and the bias vectors
B1 (h × 1), B2 (o × 1) can be obtained from each particle x using the
following decoding rule:

×h+h︸, xm×h+h+1, . . . , xm×h+h+h×o︸  ︷︷  ︸
W2

, xm×h+h+h×o+1, . . . , xn︸ ︷︷  ︸
B2

(19)

The active functions of the hidden layer and output layer are
selected as log sigmoid and pure linear function. The output of the
jth hidden node is:

f (nodej) = 1

1 + e
−
(∑m

i=1
wij ·si−bj

) , j = 1, . . . , h (20)

where wij (one element of W1) is the connection weight from the
ith node of input layer to the jth node of hidden layer, and bj (one
element of B1) is the bias of the jth hidden layer.

The output of the kth output node is:

yk =
h∑

j=1

Wkj · f (nodej) − bk, k = 1, . . . , o (21)

where wkj (one element of W2) is the connection weight from the
jth hidden node to the kth output node, bk (one element of B2) is
the bias of the kth output layer.

Considering the robustness of BP-MLP-NN, to avoid big differ-
ence between train error and test error and overfitting in training,
the objective function of PSO is selected as the maximum between
the relative validation errors and the relative training error to
improve the robustness of NN, which is shown by:

F = max

⎧⎨
⎩ 1

N1
·

N1∑
i=1

∣∣∣∣Ytr
i
− Ttr

i

Ttr
i

∣∣∣∣ ,
1

N2
·

N2∑
j=1

∣∣∣∣Ycv
j
− Tcv

j

Tcv
j

∣∣∣∣
⎫⎬
⎭ (22)
where N1 denotes the number of training samples, N2 denotes
the number of cross-validation samples, Ytr and Ttr represent
the estimated and target concentrations of train samples, Ycv

and Tcv represent the estimated and target concentrations of
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1,    rando mly ini tialize the positions  and  velocit ies of th e to tal part icles;   

2,     fo r i=1 to  nu mber of  parti cles 

3,          Evaluates eac h in itialized parti cles us ing  BP-M LP-N N train and  test, th rough  Eq.(22) ; 

4,    end for;

5,     set Generatio n=0; 

6,     whil e Generatio n <Maximum  generation s 

7,            Generatio n=Generation+1; 

8,            Upd ate the best fitness , the pos itions , and  the velocities us ing  Eq.(1, 2) und er the strategies based 

on th e cosin e mech anis m; 

9,            for i=1 to number of  particles 

10,               evalu ates each upd ated parti cle us ing  BP-MLP-NN  and ob tain  the best fit ness  PS Obest; 

11,              update the pos itions  us ing  AGS;  

12,               evaluates  each upd ated  particle   from AG S using   BP-M LP- NN  and ob tain th e  best fitn ess  

AGSbest; 

13,           end  fo r; 

14,          if  PS Obest < AG Sbest 

15,            ke eps th e best parti cle from PS O and  the wor st part icle from AGS, go  to  the next  generation ; 

16,           else the best particle fr om AG S and  the worst parti cle  from PS O are kept to the next generation; 

17,           end  if; 

18,          if  the best  fit ness  is  unchang ed during  th e maximum tol erated generation s 

19,             Mutated the best parti cle  us ing  Eq.(1 7); 

20,           end  if; 

21,     end whil e;
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Fig. 2. Pseudo-code implementa

ross-validation samples. The detailed evolutionary pseudo-codes
f the PSOAGS model are illustrated as Fig. 2.

. Applications to electronic nose

In this section, the presented heuristics and bio-inspired algo-
ithms are applied to concentration estimation problems for an
lectronic nose. The experimental design by an electronic nose sys-
em is illustrated including the experimental platform, sensor array
n the printed circuit board of an electronic nose. Three chemical
ases are measured using a devised electronic nose system to esti-
ate the unknown concentration of chemical analytes through the

xtrapolation ability of optimized BP-MLP-NN.

.1. Experimental setup

Our sensor array in E-nose system consists of six different
ypes of gas sensors: four from the TGS series (TGS2602, TGS2620,
GS2201A and TGS2201B), an oxygen sensor (O2A2, type of elec-
rochemical), and one GSBT11 sensor of Ogam Technology in Korea.
n addition, a module (SHT2230 of Sensirion in Switzerland) with
wo auxiliary sensors for the temperature (T) and humidity (H) are
lso used for compensation. The sensors were mounted on a custom
esigned printed circuit board (PCB), along with associated electri-
al components. An analog–digital converter is used as interface

etween the field programmable gate array (FPGA) processor and
he sensors. FPGA can be used for data collection, storage and pro-
essing. The E-nose system is connected to a personal computer
PC) via a joint test action group (JTAG) port which can be used
r the developed PSOAGS model.

to transfer data and debug programs. An additional flash mem-
ory is used to save the embedded neural network as well as the
weights and biases of the neural network trained on the PC. The
data sets for these gases are made up of samples in R8 space, it just
means that an input vector with 8 variables can be obtained in each
observation; the multidimensional response data set denotes the
nonlinear relation with the gas concentration. The gases measure-
ments are implemented by an E-nose in the constant temperature
and humidity chamber whose type is LRH-150S in which the tem-
perature and humidity can be effectively controlled in terms of the
target temperatures and humidity.

5.2. Gas data sets for train and test

In this paper, for validation of the proposed model, we measured
three harmful gases: formaldehyde, carbon monoxide (CO), and
nitrogen dioxide (NO2). Each of the three candidates should be pre-
sented in the E-nose in many different concentrations, respectively,
and the responses of the sensor array are saved on PC. Totally, 186
samples (dataset) include 68 formaldehyde samples, 47 CO sam-
ples and 71 NO2 samples are measured within one month, and each
sample corresponds to different concentrations and environment;
the total measurement cycle time for one single measurement was
set to 20 min, i.e. 2 min  for reference air (baseline), 8 min  for gas
sampling and 10 min  cleaning the chamber through injecting clean

air before the next experiment begins. These samples are mea-
sured at the target temperatures of 15, 25, 30 and 35 ◦C and target
humidity of 40%, 60%, 80% RH, through different combinations
of these target temperatures and humidity. The precisions of the
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Table 1
Target concentrations of 124 training samples.

Formaldehyde (ppm) CO (ppm) NO2 (ppm)

0.01 0.08 0.02 1 6 5 45 45 49
0.11  0.12 0.15 5.6 1 15 63 65 71
0.13  0.48 0.23 1 5 25 5 5
0.9 1.03 0.55 5 1 45 30 15
0.04 0.03 0.9 1 5 65 47 32
0.05 0.13 0.08 5 1.4 5 65 66
0.09 0.4 0.16 1 6 15 6 5
0.92 0.53 1.5 1.5 1.6 30 15 15
0.04 0.9 0.02 5 6 60 46 49
0.1 0.04 0.1 1 0.8 3 66 71
0.25 0.39 0.4 2 5 6 5 6
0.79 0.9 1.01 3 23 32 17
0.02 0.03 0.05 5 45 46 50
0.1 0.15 0.13 1.3 65 61 68
L. Zhang et al. / Sensors and

hamber for temperature and humidity are ±0.1 ◦C and ±5% RH.
nd in each group of fixed temperature and humidity (e.g. 25 ◦C,
0% RH), the samples were measured at growing concentrations
ithin desired range. In our experiments, there was  little sensor
rift in a short term of one month; thus, drift was  not considered.
esides, we can find good reproducibility of the sensors through
he repeated experiments under almost the same environment; the
ery little response difference of each sensor between almost the
ame two experiments can be neglected. The experimental sample
ollections were developed in the chamber. The basic experimental
latform illustrated in Fig. 3 is the whole experimental process in
his work. The part within the dashed lines shows the preparation
or formaldehyde gas, and the part within the solid lines illustrates
he preparation for CO or NO2 gas. For the formaldehyde exper-
ments, a gas header is necessary to store the formaldehyde gas
nd inject into the chamber by a pump, and the rough concentra-
ions are controlled through the time interval of gas exhaust. For CO
nd NO2 experiments, standard CO gas and NO2 gas are prepared
or the chamber with desired concentration range, and their con-
entrations depend on the volume of injected target gas. We  can
ee that a reference meter which can measure the concentration of
ases roughly is needed in the process for that we  can have a con-
entration comparison with the reference meter. Note also that the
rue concentrations of formaldehyde were obtained by GC analysis
sing spectrophotometer.

To validate the effectiveness of all the models, the training and
esting samples are randomly classified, 2/3 of the total samples are
sed as training and cross-validation samples, and the remaining
/3 as test samples. The training dataset including cross-validation
as constructed of 124 measurements. There are 47 formaldehyde

amples, 27 CO samples and 50 NO2 samples in which 10 formalde-
yde samples, 10 CO samples and 10 NO2 samples are recognized
s cross-validation samples. The target concentrations of the train-
ng samples are shown in Table 1. The remaining 62 measurements

ncluding 21 formaldehyde samples, 20 CO samples and 21 NO2
amples are used as test dataset, to evaluate the robust perfor-
ance of the neural network optimization model. Table 2 presents

he target concentrations of the testing samples.

Fig. 3. Experimental platform for gases sample
0.5 0.3 0.65 5 5 5 18
0.64 0.99 1.3 15 15 34

5.3. Concentration estimation and data analysis

In this work, the steady state values in the response of each sam-
ple as our features for algorithm analysis. Thus, for each sample, a
vector of eight feature values (8 sensors) is selected as one obser-
vation. Assuming the number of samples is S, we will get a matrix
X with 8 row vectors having S columns. This feature matrix X is
the input matrix of BP-MLP-NN which will be analyzed using our
proposed model. The targets of the BP-MLP-NN are the target con-
centrations of the corresponding gas samples. The matrix of sensor
responses can be normalized as [0,1] using the following formula:

X ′ij =
Xij

Xmax
, i = 1, . . . , 8; j = 1, . . . , S (23)

where Xmax is the maximum saturation value 4095 of each sen-
sor and S is the number of total samples. Based on the input

responses X and the target concentrations T, the nonlinear rela-
tion between sensors responses and the concentrations can be
determined through W1, W2, B1 and B2 which are obtained by back-
propagation algorithm learning based on heuristic and bio-inspired

s collection by an electronic nose system.
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Table 2
Target concentrateions of 62 testing samples.

Formaldehyde (ppm) CO (ppm) NO2 (ppm)

0.31 0.42 3 2.5 30 15
0.32  0.15 3 4 45 17
0.52  0.33 2.5 2.8 15 50
0.48  0.30 3.5 6 35 45
0.18  0.17 4 4 30 30
0.10  0.15 2.8 3.5 15 32
0.15  0.22 4 2.8 32 16
0.4  0.35 3 2.5 15 6
0.2  0.34 3 30 15
0.36 3 46
0.49 3.5 30
0.15 2.8 34
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target matrix; Yte and Tte denote the test output matrix and test
target matrix; Nl and Ml denote the number of training samples
and test samples of gas l. Note that N−1 = N0 = 0, M−1 = M0 = 0. Then
0.34 3.5 6

ptimization models. Assume the number of samples for each gas
s set to n1, n2, and n3, respectively. The training input data matrix

 and training targets matrix T of neural network are described as
he following forms:

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

gas 1︷  ︸︸  ︷
S1,1 S1,2 · · · S1,n1
S2,1 S2,2 · · · S2,n1

...
...

...
...

S8,1 S8,2 · · · S8,n1

gas 2︷  ︸︸  ︷
S1,n1+1 S1,n1+2 · · · S1,n1+n2
S2,n1+1 S2,n1+2 · · · S2,n1+n2

...
...

...
...

S8,n1+1 S8,n1+2 · · · S8,n1+n2

︷ 

S1,n1+n2
S2,n1+n2

...
S8,n1+n2

 =

⎡
⎢⎢⎢⎢⎣

gas 1︷  ︸︸  ︷
t1,1 t1,2 · · · t1,n1
0 0 · · · 0
0 0 · · · 0

gas 2︷  ︸︸  ︷
0 0 · · · 0

t2,n1+1 t2,n1+2 · · · t2,n1+n2
0 0 · · · 0

︷  

0 

0 

t3,n1+n2+1

here Si,j (i = 1,.  . .,8, j = 1,. . .,n1 + n2 + n3) is the selected feature
t the steady state sensor response of one measurement, t1,k
k = 1,. . .,n1) are the actual concentrations of gas 1 for the n1 times of

easurements, and t2,k (k = n1 + 1,. . .,  n1 + n2) are actual concentra-
ions of gas 2 for n2 times of measurements; the same meaning to
as 3. The values of zero concentration (0 ppm) denote the absence
f the corresponding gas components. The arrangement order of
as in the input data matrix P is formaldehyde (gas 1), CO (gas 2) and
O2 (gas 3), respectively. In this case, the outputs of network are

ust the estimated concentrations. In one observation, the output is
 vector with three values corresponding to concentrations of the
hree known gas components. The test samples are also arranged as
he similar form (24) and (25). In this paper, n1 = 37, n2 = 17, n3 = 40
or training samples; n1 = 10, n2 = 10, n3 = 10 for cross-validation
amples; n1 = 21, n2 = 20, n3 = 21 for test samples.

Training was carried out with a sum squared output error goal of
.005 up to a maximum of 2000 iterations. Sometimes the network
id not reach the goal after 2000 iterations and the sum squared
rror was still higher than 0.005. The objective function used in PSO
ptimization procedure is shown in Eq. (22). The output matrix Y
f neural network should be the predicted concentration matrix
hown as:⎡

⎢ gas 1︷  ︸︸  ︷ gas 2︷  ︸︸  ︷︷  
 =
⎢⎢⎢⎣

y1,1 y1,2 · · · y1,n1
− −  · · · −
− − · · · −

y2,n1+1 − · · · −
− y2,n1+2 · · · y2,n1+n2
− − · · · −

−
−

y3,n1+n2+1
as 3︸︸  ︷
 · · S1,n1+n2+n3
 · · S2,n1+n2+n3
...

...
 · · S8,n1+n2+n3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(24)

3
 ︷

 0
 0
 t3,n1+n2+n3

⎤
⎥⎥⎥⎥⎦ (25)

Fig. 4. Normalized gas sensor responses when exposed to formaldehyde with
concentration 0.42 ppm under the conditions of temperature = 15 ◦C, and humid-
ity  = 60% RH.

where the diagonal elements are the predicted concentrations of
gas 1, gas 2 and gas 3; the values in the positions with ‘–’ which are
very close to zero, can be neglected.

In this work, to evaluate the final estimation model, the relative
estimation error (train error and test error) of gas l (l = 1, 2, 3) are
shown as follows:

TRE = 1
Nl
·

Nl∑
i=1

∣∣∣∣∣Ytr
l,i+Nl−1+Nl−2

− Ttr
l,i+Nl−1+Nl−2

Ttr
l,i+Nl−1+Nl−2

∣∣∣∣∣ (27)

TEE = 1
Nl
·

Ml∑
j=1

∣∣∣∣∣Yte
l,j+Ml−1+Ml−2

− Tte
l,j+Ml−1+Ml−2

Tte
l,j+Ml−1+Ml−2

∣∣∣∣∣ (28)

where Ytr and Ttr denote the training output matrix and training
·  · · −
·  · · −
· · · y3,n1+n2+n3

⎥⎥⎥⎦ (26)
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Table 3
Relative estimation error of chemical gases concentration using PCR, PLS, NLS and optimized BP-MLP-NNs.

Concentration estimation methods Relative estimation error of chemical gases (%)

Formaldehyde CO NO2 Average

TRE TEE TRE TEE TRE TEE TRE TEE

PCR 73.1578 105.4032 52.1022 66.3210 53.0121 62.2314 59.4240 77.9852
PLS  61.5431 79.5882 42.4425 50.5120 40.4178 51.2125 48.1345 60.4376
NLS  50.2152 58.0233 29.2412 38.5022 28.1586 36.5401 35.8717 44.3552
Single  BP 35.7356 28.3328 10.7721 20.0285 12.9313 13.4460 19.813 20.6024
SPSO-BP 25.3224 19.7514 7.5381 9.4957 8.8106 11.8477 13.8904 13.6982
IWAPSO-BP 19.2493 22.8549 6.8687 10.1758 7.0175 7.7730 11.0602 13.6012
APSO-BP 37.8276 25.2891 7.2265 8.7764 6.3244 5.9902 17.1262 13.3519
DRPSO-BP 25.4639 22.1065 6.2033 9.1402 10.1575 10.3230 13.9416 13.8566
ARPSO-BP 20.5874 20.4023 5.8827 11.1103 11.3025 6.6240 12.5909 12.7122
SGA-BP 32.5937 18.8185 6.5593 8.4941 10.0178 6.6698 16.3903 11.3275
PSOBC-BP 31.3325 21.5227 6.1899 8.5397 8.2748 9.5581 15.2657 13.2068
PSOAGS-BP 16.3536 17.5681 5.0970 7.8017 5.1787 5.4962 8.8764 10.2887
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Fig. 5. Principal component score plots of original data set.

he correct estimation rates (CER) can be calculated as follows:

ER = 100 − TRE + TEE
2

(29)

It is worthy noting that the zero concentration should be
eglected when calculate TRE and TEE using Eqs. (27) and (28) for
hat infinite great would be obtained as the denominator is zero
nd the diagonal elements are only considered.

.4. Results and discussion

.4.1. Experimental results
The steady-state responses of sensors when exposed to analytes

ere used as features for concentration estimation. Fig. 4 illustrates
he normalized gas sensor responses, and the selected steady-state
esponse points with humidity, temperature and oxygen at the
ame position are recognized as features for each measurement.
he structure of the BP-MLP-NN is consisted of three layers (one
nput layer, one hidden layer, and one output layer) which is set
s 8-16-3 (8 input neurons, 16 hidden neurons and 3 output neu-
ons); hence, the dimension of each particle is 303, calculated from
q. (18). The eight input neurons denote the number of sensors and
he three output neurons correspond to three measured chemical

ases. For description of the responses of sensors in the original
ata set, a principle component analysis (PCA) result is obtained
rom the covariance of mean-centered data matrix. Fig. 5 shows
CA result of the original data set. The scores of three families are
Fig. 6. Results of PCA for the 8-element sensor array showing the loadings of each
sensor for principal components 1 and 2.

plotted for principal component 1st versus principal component
2nd. A PCA result can give the most information of raw response
matrix. From this figure, the CO family can be separated quite well,
but the other two families overlap. Besides, it can be seen that CO
occupy relatively larger region of the PC space. In Fig. 6, the loadings
of first two  principal components are shown, indicating the contri-
bution of each sensor to the analysis. We  can obviously see that
humidity sensor and temperature sensor, particularly the humid-
ity, have a significant contribution to our problem and they are far
from the gas sensors. And the distribution of the five gas sensors
except the oxygen is dispersive so that they have no collinearity
in the response matrix. Apparently, the oxygen sensor plays lit-
tle role. Thus, we can speculate that the linear approaches would
fail to solve the problem of concentration estimation effectively in
our project because the responses of harmful gas sensors would
be affected by both concentration and other environmental fac-
tors (e.g. temperature and humidity). However, for quantification
comparisons of the problem, we first attempt to use two simple lin-
ear methods including PCR (principle component regression) [35]
and PLS (partial least square) [35,36] to estimate concentrations
of gases. Besides, a nonlinear least square (NLS) [37] third-order
polynomial fitting is also used to estimate gas concentration.

Then, PSO optimization multilayer perceptron neural networks
with back-propagation algorithm learning are used to validate the

improved PSO model. Considering the instability of BP-MLP-NN
resulted from randomly initialized particles, we run each PSO based
concentration estimation program for 20 times, and 50 generations
for each time. The average best fitness values including train error
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Table 4
Correct estimation rates of chemical gases by using PCR, PLS, NLS and optimized
BP-MLP-NNs.

Concentration Correct estimation rates (CER) of chemical gases (%)

Estimation
methods

CO NO2 Average

PCR 10.7195 40.7884 42.3783 31.2954
PLS 29.4343 53.5228 54.1848 45.7140
NLS  45.8870 66.1283 67.6506 59.8886
Single BP 67.9658 84.5997 86.8114 79.7923
SPSO-BP 77.4631 91.4831 89.6709 86.2057
IWAPSO-BP 78.9479 91.4778 92.6047 87.6693
APSO-BP 68.4417 91.9985 93.8427 84.7609
DRPSO-BP 76.2148 92.3282 89.7597 86.1009
ARPSO-BP 79.5052 91.5035 91.0367 87.3485
SGA-BP 74.2939 92.4733 91.6562 86.1411
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PSOBC-BP 73.5724 92.6352 91.0836 85.7638
PSOAGS-BP 83.0392 93.5507 94.6625 90.4175

TRE) and test error (TEE) of the 20 runs are recognized to evaluate
ach model.

Table 3 demonstrates the best train error and test error of each
easured gas calculated by Eqs. (26) and (27). Table 4 presents the

orrect estimation rates (CER) calculated as Eq. (28).
Through Table 3, we can find that the simple linear methods

ncluding PCR and PLS obtain very big TREs and TEEs for each
as. Obviously, their correct estimation rates are also low with
nly average 31.2954% and 45.714% (see Table 4). When the NLS
ethod by a third-order polynomial fitting is used, the concentra-

ion estimation performance has been improved a little and average
9.8886% of correct estimation rate is obtained.

When compared with neural network methods, we  can see that
he linear methods are far inferior to single BP approach. This also
emonstrates that the responses of multidimensional MOS  sen-
or array are strongly nonlinear with gas concentrations, because
f their high sensitivities to temperature and humidity. For com-
aring the PSO based optimization models, we analyze the results
or each gas separately. For formaldehyde gas, compared with sin-
le BP, the estimation errors including TRE (35.7356%) and TEE
28.3328%) are larger than the BP with the best PSOAGS optimiza-
ion algorithm (16.3536% of TRE and 17.5681% of TEE). For CO gas,
0.7721% of TRE and 20.0285% TEE with single BP, while 5.0970%
nd 7.8017% are obtained using the best PSOAGS. For NO2 gas,
2.9313% train error and 13.4460% test error were obtained by sin-
le BP, 5.1787% train error and 5.4962% test error were obtained
y the best PSOAGS model. The CER of optimized methods shown

n Table 4 are evidently higher than single BP. Further, the per-
ormance of E-nose has been improved 10% of the average CER
ompared the PSOAGS model (90.4175%) and single BP algorithm
79.7923%). Other PSO based optimization models present similar
ERs according to Table 4. IWAPSO-BP and ARPSO-BP give higher
verage CERs (87.6693%, 87.3485%) than SPSO-BP and DRPSO-BP
86.2057%, 86.1009%). While APSO-BP and PSOBC-BP present rel-
tively lower average CERs (84.7609%, 85.7638%). In visual, for
iewing the process during searching for the best solution using
ptimization algorithms, we present Fig. 7 which describes the
onvergence curves with generations of the average concentra-
ion estimation error of the three chemical gases by using each
ptimization model. At the 8th generations, the best solution has
een found out using PSOAGS model while PSOBC and ARPSO
btain the solutions at the 33rd generations. It can be seen from
ables 3 and 4 that the optimization algorithms are indispensable
n E-nose application for accurate concentration estimation. Note

hat the estimation error is taken into consideration as the aver-
ge best fitness (see Eq. (22)). The proposed PSOAGS model can
nd the best solution in a fastest converging velocity and reduce
he run time of optimization algorithm. The SGA model is inferior
Generations

Fig. 7. The convergence curves of the average concentration estimation error of the
three pollutant gases using BP-MLP-NN with different optimization models.

to the method in this work. Note also that each curve is obtained
from the average results of 20 runs.

5.4.2. Evaluation of complexity
We have developed these algorithms to run on programs writ-

ten by us in MATLAB 2009a, operating on a laboratory computer
equipped with Inter Core (TM) i3 CPU 530, 2.93 GHz processors
and 2 GB of RAM. Through experimental results, we can find that the
problem of concentration estimation in this paper cannot be solved
by simple linear methods or nonlinear least square polynomial
fitting due to that the MOS  gas sensors would be disturbed by tem-
perature and humidity. This also demonstrates the strong nonlinear
relation between responses of sensors and gas concentration. When
we use optimized ANN to build the multidimensional nonlinear
relation, the complexity of algorithm should be considered. First,
we should note that the neural network training is employed on PC
but not the E-nose itself. Second, the well trained hyper-parameters
(weight matrices and biases) should be saved on the E-nose system
for real time concentration estimation. At the first step, the neural
network optimization process by heuristic and bio-inspired algo-
rithm would increase the calculation complexity because of the
maximum evolving generations and populations (PopSize) in opti-
mization. In our optimization, the optimization time will depend
on the maximum generations and populations. In this paper, we
set both the maximum generations and the number of populations
as 50, then the total training times should be 2550 according to
the pseudo-codes shown in Fig. 2, and about average 4.899 s were
consumed for each training. Thus, the whole neural network opti-
mization process would consume about 3.47 h. Fast convergence
velocity for the best solution would reduce the optimization time;
while it will take several minutes even less than 1 min  to find the
estimation parameters of PCR, PLS, NLS. At the second step for real
time concentration estimation using the well trained neural net-
work parameters obtained at the first step, it only takes 0.0138 s
to calculate the concentration of one sampling and it can meet the
property of real time. Similarly, 0.0020, 0.0206 and 0.0093 s would
be consumed for PCR, PLS and NLS, respectively. So, for accurate
concentration estimation of harmful gases by an E-nose, the CPU
time for searching a better estimation model is worthy sacrificing
on PC with the fast development of computer.
5.4.3. Discussion
This paper describes many methods that can be used to esti-

mate gas concentration by an E-nose. First, we present the simple
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ethods (PCR, PLS and NLS) with low complexity during the pro-
ess of parameters searching. But the results demonstrate the
ailure of these simple approaches. As we know, a relation of log-
rithm or exponent function between the responses of MOS  gas
ensors and the corresponding concentrations exists under a fixed
emperature and humidity. So, many published literatures have
sed simple linear or nonlinear method to solve the problem of
oncentration estimation. However, it is reasonable to believe the
ogarithm or exponent relation may  be lost when the temperature
nd humidity changed and the relations should become a family of
ogarithm or exponent functions with many combinations of tem-
erature and humidity. In this case, artificial neural network would
e a better choice for nonlinear regression with high dimension
f data set. The temperature and humidity are recognized as two
nputs of ANN for compensations.

In PSO, the number of variables in each particle is calculated
sing Eq. (18), which is directly decided by the architecture of
he BP neural network. Thus, to problems with high dimension,
uch as prediction in multi-sensor system (E-nose), study of nonlin-
ar optimized models becomes necessary. Compared with genetic
lgorithm, we can find the superior performance of particle swarm
ptimization in nonlinear system. All the considered optimization
lgorithms adopt the same real-value encoding strategy for neu-
al network weights and bias optimization. Also, PSO can optimize
he sensor array or selection of sample subsets or the structure
nd related parameters of neural network for improving the per-
ormance of an E-nose. In the improvement of PSO, the convergence
erformance would be paid more attention for actual engineering
pplications. The TER, TRE and CER analysis of each optimization
odel in E-nose application demonstrate the PSOAGS model can

nd the best optimum in a fastest convergence velocity. Therefore,
he time complexity can be reduced significantly on PC.

To avoid obtaining local solution, an adaptive genetic algorithm
s presented for improving the solutions searching ability of par-
icle swarm optimization. This adaptive characteristic of crossover
nd mutation probability improves the performance of particles
n searching according to the distances among all the particles.
t also prevents the particles from being trapped into local opti-

al. The improved strategy of PSO which is based on the cosine
unction still contains the adaptive characteristic. However, this
daptive cosine strategy will not make the particles diffused with-
ut any limitation because of the boundary [−1, 1] of cosine
unction.

Through the comparisons with simple linear approaches and
olynomial regression, we believe that the heuristic and bio-

nspired optimization neural network models are necessary for
olution of concentration estimation problem in the future E-nose
esearches. The apparent advantages of optimized neural network
re better robustness, ability of anti-noise and long-term stability
ompared with those simple approaches. As we know, the sensor
rift and the reproducibility should also be considered for long term
ases when using simple methods. However, they can be neglected
hen using the proposed methods in this paper for slight drifts

nd response variations. Even though complex algorithm would
ncrease complexity, it is only wasted in the hyper-parameters
earning of neural network on PC but not in our E-nose system.

ith the fast development of computer, the complexity of algo-
ithm may  be tolerated and accepted. The proposed PSOAGS model
ould consume a little more computer resource for considering

he crossover and mutation operations of genetic algorithm. How-
ver, in current electronic nose application, especially the harmful
ases detection indoor, high correct prediction rates and real-time

roperty are necessary. From the angle of optimization, almost all
ptimization models cannot assure the global optimum so that the
otential to optimize multi-sensor system for nonlinear problems
ecomes endless.

[

[

tors B 160 (2011) 760– 770 769

6.  Conclusions

In this paper, we addressed the issues of gases concentration
estimation in electronic nose. Through the analysis of the sim-
ple linear methods (PCR, PLS) and a polynomial based nonlinear
least square (NLS), we failed to obtain an accurate concentra-
tion estimation model using approaches of low complexity for the
multidimensional nonlinear problem in E-nose. Then, for develop-
ment of the estimation problem in E-nose, we  have analyzed the
performance of several heuristics and bio-inspired optimization
algorithms in the problems of concentration estimation. Specifi-
cally, we  have studied the performance of SPSO, IWA-PSO, APSO,
DRPSO, ARPSO, PSOBC and standard genetic algorithm (SGA),
optimizing the back-propagation neural network for gases quan-
tification. Moreover, a hybrid evolutionary algorithm PSOAGS is
also proposed for improving the intelligence of electronic nose fur-
ther. A large number of experiments have also been carried out
for traversing concentrations in different environments (temper-
ature and humidity) by an electronic nose. We  have shown that
all the compared approaches provide better estimation accuracy
than single BP-MLP-NN, but the PSOAGS outperforms other consid-
ered algorithms. In this work, we  demonstrated that the heuristics
and bio-inspired optimization algorithms are robust and effective
approaches in terms of the intelligence of an electronic nose.
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