
IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, DEC 2017 1

Taste Recognition in E-Tongue using Local
Discriminant Preservation Projection
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Abstract—Electronic tongue (E-Tongue), as a novel taste anal-
ysis tool, shows a promising perspective for taste recognition. In
this paper, we constructed a voltammetric E-Tongue system and
measured 13 different kinds of liquid samples, such as tea, wine,
beverage, functional materials, etc. Owing to the noise of system
and a variety of environmental conditions, the acquired E-Tongue
data shows inseparable patterns. To this end, from the viewpoint
of algorithm, we propose a local discriminant preservation
projection (LDPP) model, an under-studied subspace learning
algorithm, that concerns the local discrimination and neighbor-
hood structure preservation. In contrast with other conventional
subspace projection methods, LDPP has two merits. On one hand,
with local discrimination it has a higher tolerance to abnormal
data or outliers. On the other hand, it can project the data to a
more separable space with local structure preservation. Further,
support vector machine (SVM), extreme learning machine (ELM)
and kernelized extreme learning machine (KELM) have been
used as classifiers for taste recognition in E-Tongue. Experimental
results demonstrate that the proposed E-Tongue is effective for
multiple tastes recognition in both efficiency and effectiveness.
Particularly, the proposed LDPP based KELM classifier model
achieves the best taste recognition performance of 98%. The
developed benchmark data sets and codes will be released and
downloaded in http://www.leizhang.tk/tempcode.html

Index Terms—Electronic tongue, taste recognition, subspace
learning, extreme learning machine.

I. INTRODUCTION

IN recent years, electronic tongue (E-Tongue), as a kind
of promising bionic systems for five basic biological tastes

including sourness, saltiness, bitterness, sweetness and umami,
is playing an increasingly important role in automatic food and
pharmaceutical assessment, etc. E-Tongue owns some inherent
merits such as easy measurement procedure, low cost and
portability. The E-Tongue system was defined by Vlasov et
al. [1] as a multi-sensor system, consisting of an array of
nonspecific, low selective and high cross-sensitive sensors and
a multivariate data analysis module.

A. Development in Application Level

The applications of E-Tongue have pervaded in many areas,
such as food analysis [2]–[10], pharmaceutical manufacture
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Abstract—Electronic tongue (E-Tongue) as a novel taste 

analysis tool shows a promising perspective for various detections 
in industry. Following the state-of-the-art technology, we 
constructed our voltammetric E-Tongue system and measured 13 
different kinds of liquid samples including tea, wine, beverage 
and functional materials. Subject to the noise in the system and 
variety of environmental conditions, the original E-Tongue data 
are inseparable. To enhance the performance of our system, we 
proposed the local discriminant preservation projection (LDPP), 
a supervised subspace learning algorithm concerning the local 
discriminant and neighborhood structure preservation. In 
contrast with other classical subspace learning methods, LDPP 
has two merits: First, it has a higher tolerance of abnormal or 
outlier values; Second, it can project the data to a more separable 
space. Experimental results show that LDPP is an excellent 
method for tastes recognition.  
 

Index Terms—Electronic tongue, taste recognition, subspace 
learning.  
 

I. INTRODUCTION 
s further research of the biotic taste and olfaction, the dire 
need in quick and accurate assessment of food, 

pharmaceuticals and environment, the taste or olfaction sensor 
systems as promising tools have developed rapidly in recent 
years. Due to the easier perceptibility of the odor, the research 
of the electronic nose (E-Nose) is much earlier than the 
electronic tongue (E-Tongue). At the basis of the E-nose and 
taste sensation rationale, later the E-Tongue has grown 
considerably. E-Tongue shared merits of E-Nose, with easy 
measurement procedure, low cost and availability, also having 
good performance in taste recognition for detecting the five 
basis tastes: sourness, saltiness, bitterness, sweetness and 
umami. The definition of E-Tongue system given by Vlasov et 
al. [1] is a multi-sensor system, which consists of an array of 
nonspecific, low selective and high cross-sensitive sensors, 
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using advanced mathematical procedures for data processing 
based on the pattern recognition or multivariate analysis.   

Sensors based on various sensing principles can be 
employed in the design of electronic tongues: electrochemical 
(potentiometric, voltammetric), optical, acoustic or enzymatic 
sensors (biosensors) [2]. The E-Tongue system based on 
potentiometric sensors was first proposed by ToKo et al. [3]. 
With advantages of small data amount and conveniently 
corresponding detection results with taste properties, the   
potentiometric E-Tongue is one of most popular category. 
Voltammetric sensors are also widely used in E-Tongue 
systems [4], because of its high sensitivity, versatility, 
simplicity and robustness. In the experiment, we used the 
multi-frequency large amplitude pulse voltammetry (MLAPV) 
for E-Tongue system proposed by Tian et al. [5], which can 
obtain more electrochemical information of components in 
measurement. Fig. 1 shows the framework of a MLAPV 
E-Tongue system, mainly including four parts: excitation 
signal, sensor array, acquisition module and data analysis. 

 

 
Fig.1  The framework of a MLAPV E-Tongue system 

 
Due to the random perturbation of electronic devices, the 

variety of surrounding environment or wrongly marking the 
taste samples by accident, data usually contains a certain 
degree of noise and distortion, which causes the clutter and 
inseparability. On the other hand, in case of the number of 
features is much larger than the number of samples, feature 
reduction is quite necessary. To solve these problems, the 
improvement of feature-level data processing is worthy to do. 
 There are a lot of feature-level process methods, such as 
principal component analysis (PCA) [6], linear discriminant 
analysis (LDA) [7] and locality preserving projections (LPP) 
[8]. All they are the very popular subspace learning methods. 
PCA is an unsupervised learning algorithm, which aims to 
maximize the information of the data. But it does not present 
that the projected space is the optimal classification space. 
LDA is a supervised learning algorithm, which aims to 
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Fig. 1. The framework of a MLAPV E-Tongue system, which includes pulse
signal input, electrodes sensor array, data acquisition module and data analysis.

[11]–[14] and environmental monitoring [15], [16]. For food
analysis, there are numerous research work in automatic
recognition of tea [2], beer [3], [4], wine [5], [6], milk [7]
and olive oil [8]. Besides, Kutyła et al. [9] proposed to analyze
extracts obtained from raw and dried apples. Apetrei et al. [10]
proposed to discriminate and evaluate freshness of beef. For
pharmaceutical manufacture, Eckert et al. [11] proposed to
control quality of complex herbal mixture. Ciosek et al. [12]
proposed to differentiate pharmaceutical samples. Yaroshenko
et al. [13] proposed to explore bitterness in traditional Chinese
herbal medicine. Wesoły et al. [14] proposed to assess drug
dissolution profiles and detect modified release effect. For
environmental monitoring, Kirsanov et al. [15] proposed to
assess toxicity in urban waters. Facure et al. [16] proposed
to detect concentrations of organophosphate pesticides. Other
applications are referred as protein biosynthesis control [17],
explosives detection [18] and medical diagnosis [19], etc.

B. Development in System Level

Different sensing principles can be exploited in different E-
tongue systems, such as potentiometric E-Tongue [20], voltam-
metric E-Tongue [21], [22], etc. The E-Tongue system based
on potentiometric sensor is one of the most popular system.
ToKo et al. [20] first proposed the taste sensor composed of
potentiometric electrodes with lipid-polymeric membranes in
1989. Also, voltammetric sensor, owing to its high sensitivity,
versatility, simplicity and robustness, is also widely used in
E-Tongue systems. The first type of voltammetric E-Tongue
proposed by Winquist et al. [21] employed an array of
noble metal working electrodes with small amplitude pulse
voltammetry (SAPV) or large amplitude pulse voltammetry
(LAPV). Tian et al. [22] developed a voltammetric E-Tongue
system by combining working electrodes with multifrequency
large amplitude pulse. Other electrochemical sensors applied
in E-Tongue include acoustic sensors [23] and bioelectronic
sensors [24]. A review of the existing E-Tongue work is
referred as [25]. In this paper, we integrate the multifrequency
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large amplitude pulse voltammetry (MLAPV) in our E-Tongue
system. Fig. 1 shows a general framework of the MLAPV E-
Tongue system, which mainly includes four parts: pulse signal,
sensor array, data acquisition module and data analysis.

C. Development in Algorithm Level

The multivariate data analysis module is composed of data
processing, analysis and recognition. Generally, due to the ran-
dom perturbation of electronic devices, the acquired sensing
data usually contains noise and distortion, that causes clutter
background and inseparability. Therefore, subspace projection
methods, such as principal component analysis (PCA) [26],
linear discriminant analysis (LDA) [27], locality preserving
projections (LPP) [28], locality preserving discriminant projec-
tions (LPDP) [29] and other subspace learning models [30],
[31], have been widely studied for feature abstract. PCA is
an unsupervised statistical learning algorithm, which aims to
maximize the information of the data with dominate principal
components. LDA is a supervised learning algorithm, which
aims to maximize the separability between classes and the
compactness within classes. LPP is an unsupervised neigh-
borhood structure preservation algorithm based on manifold
assumption, which supposes that neighborhood data should
be with similar class. LPDP was proposed with manifold
and Fisher criterion which was an intuitive combination of
LDA and LPP. However, LPDP only considers the global
discrimination, which is easily distorted by local outliers.

To this end, to overcome the noise caused by implicit
outliers in E-Tongue data, in this paper, a local discriminant
preservation projection (LDPP) model is proposed, in which
the local between-class separability, local within-class com-
pactness and local structure preservation are simultaneously
exploited. Additionally, classifiers in LDPP subspace should be
learned for taste recognition. In view of the high scalability and
low computational complexity of extreme learning machine
(ELM) proposed by Huang, et al. [32], [33], ELM plus LDPP
is intuitively utilized for taste recognition. Briefly, ELM is
a fast learning algorithm for single-hidden layer feedforward
neural network (SLFN), which tends to achieve the smallest
training error as well as the smallest norm of prediction
weights. Other improved versions of ELM for odor recogni-
tion, image recognition, and robotics are referred as [34]–[48].
To the best of our knowledge, there are few report of ELM
application for taste recognition in E-Tongue systems.

D. Paper Contribution

In terms of the descriptions above, the contributions of the
paper can be summarized as four folds:
- A feasible E-Tongue system is designed based on inert

metal electrode sensors, aiming at implementing bionic taste
recognition. The E-Tongue system is constructed with high
efficiency, high effectiveness, high portability and low-cost.

- A benchmark dataset of 114 samples of tea, wine, beverage
and functional materials collected by our E-Tongue system
will be shared around the world, which, to our best knowl-
edge, is the first released dataset in E-Tongue.

- A novel local discriminant preservation projection (LDP-
P) model by maximizing the local separability and local
compactness is proposed for discriminative feature subspace
learning. The taste recognition performance achieves 98%,
which is greatly improved over state-of-the-arts.

- Extreme learning machine, to our best knowledge, is the first
attempt for taste recognition in E-Tongue field and achieves
the best performance, which provides new application per-
spectives and insights for ELM community.

E. Paper Organization

The rest of this paper is organized as follows. Section
II enumerates the related work of algorithms in E-Tongue.
Section III illustrates the preliminary of our E-Tongue system.
Section IV describes the model formulation and optimization
of the proposed LDPP model. Section V introduces the briefs
of SVM, ELM and KELM classifiers in this paper. The
experiments and results are presented in Section VI and
further discussion is given in Section VII. Finally, Section VIII
concludes this paper.

II. RELATED WORKS

In E-Tongue community, the data analysis algorithms are
generally divided into two categories: feature extraction and
pattern recognition, which are summarized as follows.

A. Feature Extraction Algorithms

In E-Tongue applications, the subspace learning methods for
dimensionality reduction are widely used. The most popular
ones are PCA and LDA. Lenik et al. [49] employed PCA
to evaluate taste masking effect of diclofenac with a poten-
tiometric E-Tongue. Also, Wesoły et al. [50] proposed an E-
Tongue system to analyze taste masking effects in pharmacy
with PCA. Nery et al. [51] applied PCA to discriminate and
analyze beer and wine samples measured by the paper-based
potentiometric E-Tongue. Queiroz et al. [52] utilized PCA
to treat the capacitance data for discriminating ethanol/water
mixtures. Buratti et al. [53] classified Barbera wines based
on the E-Tongue and LDA. Ceto el al. [54] used LDA
to discriminate the geographical region of wine based on
voltammetric E-Tongue. Veloso et al. [55] classified olive
oils based on a potentiometric E-Tongue and LDA. Panchuk
et al. [56] developed a potentiometric E-Tongue with LDA
to analyze microcystins in water samples. Ítala et al. [57]
applied LDA to verify the performance of the potentiometric
E-Tongue for distinguishing aqueous standard solutions. To
our best knowledge, LPP has never been reported in E-Tongue
application, which also demonstrates the novelty of our LDPP
for taste recognition.

B. Pattern Recognition Algorithms

Classifiers are commonly used to recognize or classify taste
samples. In E-Tongue analysis, the most popular classification
methods are support vector machine (SVM), artificial neural
networks (ANN) and partial least squares regression (PLS).
Dominguez et al. [58] developed a voltammetric E-Tongue to
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Fig. 2. The platform of our E-Tongue system, in which the MCU is the
central processing unit, the Power is for electricity supply, the Blue Tooth is
for data transfer, the Electrodes denote the sensor array, the Electrochemical
cell is the liquid container, and the PC is for data acquisition and analysis.

recognize distinctive features of coffee samples by using SVM.
Teye et al. [59] applied the E-Tongue and SVM to discriminate
seven categories of cocoa beans from Ghana. Cartas et al. [60]
proposed an E-Tongue system based on ANN for quantifying
the electroactive substances. Gil-Sánchez et al. [61] applied
ANN to analyze salt samples obtained by an E-Tongue.
Gonzalez-Calabuig et al. [62] constructed a voltammetric E-
Tongue with ANN to determine nitro-containing and peroxide-
based explosive compounds. Kang et al. [63] designed an E-
Tongue system to differentiate Korean rice wines brewed from
nine cultivars of rice by using PLS method. Lin et al. [64] also
evaluated the bitterness of Traditional Chinese Medicines with
the E-Tongue and PLS. Pérez-Ràfols et al. [65] analyzed the
mixture of the metal ions by a screen-printed voltammetric E-
Tongue with process of PLS. To our best knowledge, there are
few report of ELM application in E-Tongue field. Therefore,
inspired by existing works mentioned above, in this paper,
PLS, SVM and ELMs are chosen as classifiers, and their
performance in taste recognition are compared.

III. OUR E-TONGUE SYSTEM PRELIMINARY

The E-Tongue system used in our experiment is designed
based on the MLAPV (multi-frequency large amplitude pulse
voltammetry) principle. The experimental platform including
E-Tongue system, personal computer (PC), and electrochem-
ical cell is shown in Fig. 2. The pulse signal excitation and
acquisition modules are controlled by a microcontroller unit.
The response (perception) signal (output) is then transmitted
to the computer by a blue-tooth module.

A. Electrodes Setup

Electrodes, as sensor array of E-Tongue, play a key role
for taste recognition. By following the electrodes setup as
Tian et al. [5], in our E-Tongue, five electrodes, such as the
gold, platinum, palladium, tungsten and silver, are chosen as
working electrodes. The pillar platinum is used as the auxiliary
electrode and the Ag/AgCl is used as the reference electrode.

Fig. 3. The electrodes used in this work, in which 5 working electrodes and
1 auxiliary electrode are included.
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Fig. 4. Multifrequency large amplitude pulse signal, which contains three
frequencies, i.e. 1 Hz, 3 Hz, 5 Hz.

The electrodes selected in our E-Tongue system are shown
in Fig. 3. The experiments indicate that the electrodes sensor
array shows different patterns to different kinds of substances
in the electrochemical cell, which preliminarily shows the
feasibility of our E-Tongue.

B. Multi-frequency Large Amplitude Pulse Signal Setup

MLAPV is adopted as the measuring technique in our
system. The multiple frequency pulse signal used in our E-
Tongue is shown in Fig. 4. The pulse signal (excitation)
comprises of three individual frequencies: 1 Hz, 3 Hz and 5
Hz, and five amplitudes of voltage: 4.10V, 3.85V, 3.60V, 3.35
and 3.10V for each frequency. Thus, the system is termed as
multi-frequency large amplitude pulse voltammetry (MLAPV)
based E-Tongue.
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IV. THE PROPOSED LOCAL DISCRIMINANT PRESERVATION
PROJECTION MODEL

A. Notations

In this paper, the data matrix is denoted as X =
[x1, x2, . . . , xN ] ∈ <D×N , where D is the dimensionality,
N = N1 + N2 + · · · + NC is the number of samples, C
is the number of classes. The label vector of data is denoted
as y = [y1, y2, . . . , yN ]T ∈ <N . Let W = [w1,w2, . . . ,wd] ∈
<D×d represent the projection matrix that maps the original
data from the space <D to a new lower-dimensional subspace
<d. The symbol ‖·‖F and ‖·‖2 denotes the Frobenius norm
and l2-norm respectively. Tr(·) denotes the trace operator and
Nk(·) denotes the k nearest neighbors operator. Throughout
this paper, matrix is written in capital bold face, vector is
shown in lower bold face, and variable is written in italics.

B. Linear Discriminant Analysis

The main idea of LDA [27] is to enhance the global
class discrimination after projection, hence it maximizes the
between-classes separability and within-class compactness.
The objective function of LDA can be formulated as

max
W

Tr
(
WTSBW

)
Tr (WTSWW)

(1)

where SB is the between-class scatter matrix and SW is the
within-class scatter matrix. The model pursuits for a discrim-
inative subspace projection W that can maximize the trace of
between-class scatter matrix and simultaneously minimize the
trace of within-class scatter matrix.

C. Locality Preserving Projections

With the manifold assumption, LPP [28] aims to optimally
preserve the neighborhood structure of data. Generally, the
LPP model can be formulated as

min
W

Tr
(
WTXLXTW

)
s.t WTXDXTW = I

(2)

where L = D−A is the Laplacian matrix, Dii =
∑
j Aij is a

diagonal matrix, and A ∈ <N×N is the sparse affinity matrix,
and Aij = 0 only if xi and xj are not adjacent. By learning
a projection W, the objective function minimizes the distance
between those data points with neighborhood relation in the
raw data space (i.e. locality preservation).

D. Locality Preserving Discriminant Projections

LPDP [29] inherits the characters of locality preservation
and global discrimination. The LPDP model is formulated as

min
W

Tr
(
WTXLXTW

)
−
(
Tr
(
WTSBW

)
− µ · Tr

(
WTSWW

))
s.t WTXDXTW = I

(3)

where µ is the regularization (trade-off) coefficient. This model
can be viewed as a combination of LDA and LPP.
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Fig. 5. Illustration of the proposed LDPP model. The circles denote the local
part of each class, which show the between-class overlap and within-class
outliers. After LDPP, the local discrimination with implicit outliers excluded
and the locality structure preservation are expected to be achieved.

E. The Proposed LDPP: Formulation and Optimization

The proposed LDPP pursues neighborhood structure p-
reservation and local discrimination. The former inherits the
manifold assumption that neighbor data points are with similar
labels and tends to find an low-dimensional affinity structure
embedded in the raw data space. The latter aims to enhance the
local discriminative property which is not sensitive to implicit
outliers. The model is motivated by two intuitions: geometric
intuition and attribution intuition. Geometric intuition is that if
the interior data can be distinguished well, exterior data should
be naturally distinguished. Attribution intuition is that exterior
data has a higher probability to be abnormal or outlier data.
Therefore, we modify the Fisher criterion by imposing locality
constraint which is important for small size E-Tongue data.
Additionally, manifold regularization is also used for local
similarity preservation. The main idea of the model is shown
in Fig. 5, in which the data points with lighter color represents
the local part for between-class matrix, and the data points in
the dashed blue, green and orange circles represent the local
part of three classes for within-class matrix.

We construct the local between-class scatter matrix SLB
with the km nearest neighbors to the center m, and the
local within-class scatter matrix SLW with the kmc nearest
neighbors to the class center mc. The local numbers km and
kmc can be determined as

km = [rb ·N ] (4)
kmc = [rw ·Nc] (5)

where rb and rw are local ratio coefficients. N and Nc are
the number of samples. [·] is the rounding operator. The SLW
and SLB are defined as

SLB =

C∑
c=1

Nlc(mlbc −mlb)(mlbc −mlb)
T (6)

SLW =

C∑
c=1

kmc∑
i=1,

x∈Nkmc (mc)

(
x(c)i −mlwc

)(
x(c)
i −mlwc

)
T (7)

where mlb = 1
km

∑km
i=1,x∈Nkm (m) xi is the center of local

part for SLB computation, mlbc = 1
Nlc

∑Nlc

i=1,x∈Nkm (m) x(c)i is
the center of the c-th class in local part for SLB computa-
tion, Nlc is the number of the c-th class in local part, and
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mlwc = 1
kmc

∑kmc

i=1,x(c)∈Nkmc (mc)
x(c)i is the center of the c-th

local class for SLW computation.
Additionally, the locality preservation regularization term is

shown as follows.

min
W

N∑
i=1

N∑
j=1

Aij
∥∥WTxi −WTxj

∥∥2
=Tr

WT
N∑
i=1

N∑
j=1

Aij(xi − xj)(xi − xj)TW


⇔Tr

WT
N∑
i=1

N∑
j=1

Aij
(
xixTi − xixT

j

)
W


=Tr

WT

 N∑
i=1

DiixixTi −
N∑
i=1

N∑
j=1

AijxixTj

W


=Tr

(
WT

(
XDXT − XAXT

)
W
)

=Tr
(
WTXLXTW

)

(8)

where L is the Laplacian matrix defined as L = D− A. D is
diagonal matrix with entries Dii =

∑
j Aij . A is the affinity

matrix, calculated in the following two manners [66].
1) Simple-minded (S):

Aij =

{
1, if xi ∈ Nk(xj)||xj ∈ Nk(xi)
0, others

(9)

2) Heat kernel (H):

Aij =

{
e−
‖xi−xj‖2

t , if xi ∈ Nk(xj)||xj ∈ Nk(xi)
0, others

(10)
where t is the kernel parameter. Aij will be assigned a large
value if xi is the neighborhood of xj .

With Eqs.(6), (7), and (8), the proposed LDPP model can
be formulated as

max
W

Tr
(
WTSLBW

)
− µ · Tr

(
WTSLWW

)
− γ · Tr

(
WTXLXTW

) (11)

where µ and γ represent the regularization (trade-off) coeffi-
cients. It can be seen that LDPP aims to maximize the trace
of local between-class scatter matrix and minimize the trace
of the local within-class scatter matrix, and simultaneously,
the local preservation is exploited. With equality constraint,
Eq.(11) can be further transformed into the following problem,

max
W

Tr
(
WTSLBW

)
s.t. µ ·WTSLWW + γ ·WTXLXTW = η · I

(12)

where η is a constant, and the equality constraint can ensure
the unique solution of W. By introducing Lagrange multiplier
λ, the objective function of model (12) can be written as

L(W, λ) = WTSLBW
− λ ·

(
µ ·WTSLWW + γ ·WTXLXTW− η · I

) (13)

By computing the partial derivative of L(W, λ) with respect
to W, and let it be zero, there is

Algorithm 1. The proposed LDPP

Input: The data matrix X ∈ <D×N , the regularization
coefficients µ and γ, the local ratio coefficient rb and rw,
the dimension d of the new subspace.

Procedure:
1. Compute the center m and mc;
2. Compute the local numbers km and kmc via (4) and (5);
3. Compute the local center mlb of the x ∈ Nkm(m);
4. Compute the center of the c-th local class mlbc of the

x(c) ∈ Nkm(m) and mlwc of the x(c) ∈ Nkmc
(mc);

5. Compute the local between-class scatter matrix SLB and
the local within-class scatter matrix SLW via (6) and (7);

6. Construct the affinity matrix A via (9) or (10);
7. Compute the diagonal matrix D, Dii =

∑
j Aij ;

8. Compute the Laplacian matrix L, L = D− A;
9. Solve the projection matrix W via the eigenvalue de-

composition problem (14);
Output: The projection matrix W ∈ <D×d.

(
µ · SLW + γ · XLXT

)−1 SLBW = λ ·W (14)

where the projection matrix W that maximizes the objective
function can be easily computed as the eigenvectors corre-
sponding to the first d maximum eigenvalues λ1, λ2,..., λd,
by solving the above generalized eigenvalue problem Eq.(14).

Actually, the W is spanned by the eigenvectors. For easy
following the proposed LDPP model in implementation, the
algorithm is summarized in Algorithm 1.

V. CLASSIFICATION MODELS

Subspace learning methods merely map the data to a more
separable space, to achieve the final taste recognition task,
classifier learning is necessary. In this paper, as described
above, off-the-shelf classifiers such as SVM, ELM and KELM
are used after LDPP. For readers’ convenience, the principle
of ELM is briefly introduced in the following sections.

A. Extreme Learning Machine

1) Basic case: ELM [32], as a single layer feed-forward
neural network, is solved by minimizing the squared loss of
prediction and the norm of the output weights for classification
and regression. The hidden layer output matrix H with L
hidden neurons can be computed as

H =
h(wT

1 x1 + b1) h(wT
2 x1 + b2) · · · h(wT

Lx1 + bL)
h(wT

1 x2 + b1) h(wT
2 x2 + b2) · · · h(wT

Lx2 + bL)
...

...
. . .

...
h(wT

1 xN + b1) h(wT
2 xN + b2) · · · h(wT

LxN + bL)


(15)

where h(·) is the activation function of hidden layer, such as
sigmoid function. W = [w1,w2, . . . ,wL] ∈ <d×L and b =
[b1,b2, . . . ,bL]T ∈ <L are randomly generated input weights
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and bias, respectively. With such a hidden layer output matrix
H, ELM model can be formulated as follows.

min
β∈<L×C

1

2
‖β‖2 + τ · 1

2

N∑
i=1

‖ξi‖2

s.t. h(xi)β = tTi − ξTi , i = 1, 2, . . . , N

(16)

where the label ti ∈ <C . Note that if xi belongs to the c-th
class, only the c-th element of ti is 1, others are set to 0.
β ∈ <L×C denotes the output weights between hidden layer
and output layer. ξi = [ξi1, ξi2, . . . , ξiC ]T is the training error
vector, and τ is a penalty constant on the training errors.

The closed-form solution of β is shown as follows.

β∗ =


(

HTH + IL×L

τ

)−1
HTT, if N ≥ L

HT
(

HTH + IN×N

τ

)−1
T, if N < L

(17)

where label matrix T = [tT1 ; tT2 ; . . . ; tTN ] ∈ <N×C .
Then the output function of ELM can be computed as

f(x) = h(x)β∗ (18)

2) Kernel case: The kernel matrix of ELM [33] is defined
as Ω = HHT, where Ωij = h(xi) ·h(xj) = k(xi, xj) and k(·)
is the kernel function. Generally, radial basis function (RBF)
is used as kernel function, where k(u, v) = e−

‖u−v‖2
t . Then

the Kernelized ELM (KELM) output can be computed as

y = h(x)β∗

= h(x)HT

(
HTH +

IN×N
τ

)−1
T

=

k(x, x1)
...

k(x, xN )

(Ω +
IN×N
τ

)−1
T

(19)

Owing to the kernel matrix Ω ∈ <N×N , the number L of
hidden neurons is not explicit in KELM.

B. Classification

After projecting the data X to the new subspace Z by LDPP,
the classifier is trained on the projected data Z and label Y.
The classification procedure is summarized in Algorithm 2.
An overview of the taste recognition paradigm is shown in
Fig. 6. The training and test phases in our E-Tongue system
are described in two branches, respectively, including data
preprocessing, feature selection, subspace learning (projection
by W), and classifier learning (decision by f(·)).

VI. EXPERIMENTS

A. Experimental Setup

1) Data Measurement: The data measurement process in-
cludes sample preparation, signal perception, signal acqui-
sition and electrodes cleaning. All the measurements were
performed at room temperature (25 ± 1◦C) and the elec-
trochemical cell was exposed to ambient air without any
treatment. The experimental steps are presented as follows.

Algorithm 2. Classification

Input: The data matrix X ∈ <D×N , the label Y, the
projection matrix W ∈ <D×d.

Procedure:
1. Compute the projected data Z = WTX ∈ <d×N ;
2. Train a classifier using {Z,Y};
Output: the classification model.

Step 1: Liquid sample preparation. The solid state analytes are
dissolved in distilled water. Then, the prepared liquid
sample is placed in the electrochemical cell.

Step 2: Electrodes pre-cleaning. Clean the electrodes by using
polishing cloth and polishing powder until the elec-
trodes surface becomes mirror-polished, then clean the
electrodes with distilled water.

Step 3: Signal perception. Place the electrodes in the elec-
trochemical cell, then exert the multi-frequency large
amplitude pulse to the electrodes for taste signal.

Step 4: Signal acquisition. The signal is transmitted to the
personal computer by a blue tooth module.

Step 5: Electrodes post-cleaning. Repeat Step 2, and then dry
the electrodes by the filter paper.

Step 6: Dilute the liquid sample with distilled water to obtain
a different concentration, then repeat Step 3-5.

2) Feature Selection: As described, each liquid sample is
measured by the E-Tongue system with 5 electrode sensors.
For each sensor, 2050 points are observed, and results in a
5 × 2050 data matrix for each observation. The raw signal
of 5 sensors is shown in Fig. 7(a). For further denoising, in
this paper, a sliding window based smooth filter is considered.
The filtered signal of 5 sensors is shown in Fig. 7(b). The
signal fragment with respect to three frequencies is shown in
blue boxes in Fig. 7(a). Each frequency has five sub-pluses of
different amplitudes. For feature selection, the maximum and
minimum values in the 1st filtered sub-pluse indicated by red
circles in Fig. 7(b) are extracted. Therefore, 5× 2× 3× 5 =
30×5 = 150 points are extracted as features for each sample.
Totally, 114 samples of 13 kinds of liquid including beer, red
wine, white spirit, black tea, Mao Feng tea, Pu’er tea, oolong
tea, coffee, milk, cola, vinegar, medicine and salt are acquired.
The detail of 5-fold sample partition is presented in Table I.

3) Cross-Validation: To evaluate the taste recognition abil-
ity of our E-Tongue system, in our experiment, 5-fold cross-
validation (CV) strategy is used. 4 folds are used as training
set and the remaining 1 fold is used as test set. The average
accuracy of the five folds is reported. Specifically, the 5-fold
CV strategy is illustrated in Fig. 8.

B. Parameter Setting

In LDPP model, to achieve the optimal performance, the
kernel parameter t for constructing the affinity matrix A is
tuned from the given set {10−4, 10−3, . . . , 104}; the subspace
dimension d is tuned from the given set {20, 25, . . . , 150}; the
regularization coefficients µ and γ are adjusted from the given
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Fig. 7. The illustration of feature selection. (a) denotes the raw signal of 5 sensors (gold, platinum, palladium, tungsten, and silver); (b) denotes the filter
signal from which 10 features in red circles of the 1st frequency are selected, and totally 30 features (10×3) are obtained for each electrode sensor.

set {10−4, 10−3, . . . , 104}; the local ratio coefficients rb and
rw are empirically set as 0.9 in this paper.

In classifier learning, empirically, the penalty coefficient τ
of all classifiers (SVM/ELM/KELM) is set as 105, the hidden
neurons L of ELM is set as 5000 and sigmoid function is
used for the hidden layer activation. For KELM, RBF function
is used as the kernel function and the kernel parameter t is
set as 100. For SVM, both linear/RBF kernel is considered.
Note that, for each method, the best performance is tuned and
reported. Further, the discussion of parameter sensitivity in
LDPP and classifiers is presented in the Section VII.

C. Compared Methods

To evaluate the recognition performance of proposed LDPP
based classifier models, we compare our model with the off-

the-shelf subspace learning methods such as PCA, KPCA,
LPP, LDA and LPDP. Additionally, the performance of differ-
ent baseline classifiers such as PLS, SVM, ELM and KELM
with different subspace learning methods is also compared.
Notably, for our LDPP model, LDPP-S and LDPP-H are
differentiated, where -S and -H denotes that the affinity matrix
A is constructed with the simple-minded rule in Eq.(9) and the
heat kernel rule in Eq.(10), respectively.

D. Experimental Results

With the experimental setup and parameter setting men-
tioned above, the average recognition accuracy of 5-fold cross-
validation for all methods are reported in Table II, Table III
and Table IV, respectively. In Table II, III and IV, PLS, SVM,
ELM, and KELM denote the classifier learning on the raw
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TABLE II
RECOGNITION ACCURACY (%) OF DIFFERENT SUBSPACE PROJECTION METHODS BASED ON SVM CLASSIFIER. ”RAW” DENOTES THE RAW DATA SPACE

Class PLS
(raw)

SVM
(raw)

PCA KPCA LPP-S LPP-H LDA LPDP-S LPDP-H LDPP-S LDPP-
H

Beer 85 90 90 88.33 90 90 90 95 95 95 95
Red wine 100 100 100 100 100 100 100 100 100 100 100

White spirit 100 100 100 100 100 100 100 100 100 100 100
Black tea 70 80 80 70 80 80 80 80 80 80 80

Mao Feng tea 80 80 80 70 80 100 100 100 100 100 100
Pu’er tea 80 90 90 80 90 90 100 100 100 90 100

Oolong tea 20 90 90 100 100 100 90 100 100 100 100
Coffee 60 80 80 70 80 80 80 80 100 100 100
Milk 100 100 100 90 100 100 100 100 100 100 100
Cola 60 90 90 100 90 90 90 90 90 100 100

Vinegar 90 100 100 80 100 100 100 100 100 100 100
Medicine 70 100 100 100 100 100 100 100 100 100 100

Salt 100 100 100 100 100 100 100 100 100 100 100

Average 77.27 93.00 93.00 89.49 93.87 94.74 94.74 96.48 97.35 97.35 98.22

TABLE III
RECOGNITION ACCURACY (%) OF DIFFERENT SUBSPACE PROJECTION METHODS BASED ON ELM CLASSIFIER. ”RAW” DENOTES THE RAW DATA SPACE

Class ELM
(raw)

PCA KPCA LPP-S LPP-H LDA LPDP-S LPDP-H LDPP-S LDPP-H

Beer 97.5 93.5 84 97 98.5 94.5 99 100 98.5 100
Red wine 100 100 100 100 100 100 100 100 100 100

White spirit 100 100 99 100 100 100 100 100 100 100
Black tea 74 70 70 82 80 80 98 86 88 88

Mao Feng tea 100 100 90 100 100 100 100 90 100 100
Pu’er tea 97 99 100 100 98 97 96 100 100 100

Oolong tea 79 80 90 80 78 79 80 92 84 88
Coffee 84 87 80 90 88 90 96 98 96 98
Milk 98 96 90 98 96 99 100 94 99 100
Cola 100 100 98 100 100 100 90 100 100 100

Vinegar 90 86 80 88 98 96 80 86 94 94
Medicine 100 100 70 100 100 100 100 100 100 100

Salt 100 100 80 100 100 100 100 100 100 100

Average 94.05 93.18 87.35 94.94 94.84 94.50 95.48 96.51 96.69 97.56

data without subspace projection. For other subspace based
classifier methods, such as PCA, KPCA, LDA, LPP, LPDP,
and LDPP, SVM/ELM/KELM are used as the off-the-shelf
classifiers. From these Tables, we observe that:

• In Table II, the average accuracy of our LDPP model
reaches 98.22%, which is significantly higher than PLS
(77.27%) and SVM (93.00%). The importance of sub-
space learning is well shown. Notably, PLS obtains the
lowest accuracy. One reason might be that PLS is a proba-
bilistic classier which is more suitable for the task of large
amount of samples. Another reason is that PLS is a linear
regression model which may perform well when variables
and observations are with linear relationship. Additional-
ly, the proposed LDPP based SVM method outperforms
other popular subspace projection based SVM classifiers
(e.g. LPDP with 97.35% ranks the second best) about 1%.

This demonstrates the effectiveness of the LDPP model.
• In Table III, with the ELM as the generic classifier, the

proposed LDPP model still achieves the best average
accuracy of 97.56%, which is also 1% higher than the
second best LPDP method (96.51%). Similarly, after sub-
space projection, the performance is significantly better
than ELM (94.05%). Note that considering the random
generation of input weights and biases in ELM, the results
in Table III is the average of 10 times runs.

• In Table IV, with KELM as the generic classifier, sim-
ilar findings can be concluded that the proposed LDPP
based classifier also turns out to be the best recognition
performance (98.22%), which is always 1% higher than
the second best LPDP method (97.35%). Another finding
is that the recognition performance of other methods is
also upgraded with KELM classifier. The superiority of
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TABLE IV
RECOGNITION ACCURACY (%) OF SUBSPACE PROJECTION METHODS BASED ON KELM CLASSIFIER. ”RAW” DENOTES THE RAW DATA SPACE

Class KELM
(raw)

PCA KPCA LPP-S LPP-H LDA LPDP-S LPDP-H LDPP-S LDPP-H

Beer 95 100 83.33 95 95 100 95 100 100 100
Red wine 100 100 100 100 100 100 100 100 100 100

White spirit 100 100 100 100 100 100 100 100 100 100
Black tea 80 80 70 80 80 80 70 80 80 80

Mao Feng tea 100 100 100 100 100 100 100 100 100 100
Pu’er tea 100 100 100 100 100 100 100 100 100 100

Oolong tea 90 90 100 80 90 90 90 80 90 90
Coffee 80 90 60 90 80 90 100 100 100 100
Milk 100 90 100 100 100 100 100 100 100 100
Cola 100 100 90 100 100 100 100 100 100 100

Vinegar 100 100 80 100 100 100 100 100 100 100
Medicine 100 100 100 100 100 100 100 100 100 100

Salt 100 100 100 100 100 100 100 100 100 100

Average 95.61 96.48 91.23 95.61 95.61 97.35 96.48 97.35 98.22 98.22

TABLE I
EXPERIMENTAL DATA PARTITION OF 5-FOLDS

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Beer 4 3 4 4 4 19

Red wine 1 2 2 2 1 8

White spirit 1 1 1 2 1 6

Black tea 1 2 2 2 2 9

Mao Feng tea 2 1 2 2 2 9

Pu’er tea 2 2 1 2 2 9

Oolong tea 2 2 2 1 2 9

Coffee 2 2 2 1 2 9

Milk 2 2 1 2 2 9

Cola 1 1 2 1 1 6

Vinegar 2 1 2 2 2 9

Medicine 1 2 1 1 1 6

Salt 2 1 1 1 1 6
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Fig. 8. 5-fold cross-validation for taste samples.

KELM is demonstrated by comparing to SVM and ELM.
• By comparing the Table II, Table III and Table IV, ELM

achieves 94.05% that is better than SVM (93.0%), but
becomes worse than SVM when subspace projection is
used. The overall performance of KELM is better than
both SVM and ELM. Additionally, the proposed LDPP
based methods always show the best taste recognition
performance by comparing to other methods. Another
observation is that KPCA shows worse results than other
linear subspace projection methods, and the reason may
be that with nonlinear kernel transformation, the data is
distorted. Therefore, linear subspace projection is benefi-
cial to taste recognition.

• We have also done the statistical test based on Table II,
Table III and Table IV by using the popular Friedman
test method which is a non-parametric statistical test
method. The significance level is set as 0.05. Based
on the Friedman principle, the calculated p-value in
Friedman’s ANOVA for each test on the results is low-
er than 0.05, which clearly demonstrates the statistical
significance of the classification results.

Further, for visualization of the projected data based on
different subspace learning methods, the 2D scatter points of
the first two dominates in training set and test set are shown in
Fig. 9(a) and Fig. 9(b), respectively. From the Fig. 9(a), we can
observe that the scatter points based on the proposed LDPP
model are more separable with clearer clusters. The projected
data based on LDA and LPDP shows a similar distribution
with LDPP, but more overlaps can be clearly observed. From
the test data shown in Fig. 9(b), the LDPP model shows
more significant clusters than that of LDA and LPDP methods.
Therefore, the properties of locality, discrimination and affinity
preservation of the proposed LDPP can better promote the
taste recognition performance.
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Fig. 9. The scatter points of the first two components for all methods.
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Fig. 10. Parameter sensitivity analysis of LDPP-H.

VII. DISCUSSION

A. Analysis of LDPP Parameters
The proposed LDPP-H has four parameters: the new sub-

space dimension d, the kernel parameter t and the regular-

ization coefficients µ and γ. For observing the performance
variation with respect to these parameters, the sensitivity of
which has been shown in Fig. 10 (a), (b), and (c), respectively.
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First, with the increase of the dimension d, the accuracy has a
rising trends and then becomes stable. In experiments, when
d = 60, the performance of LDPP achieves the best. Second,
the kernel parameter t is closely related to the affinity matrix
in local manifold preservation. Specially, when t approaches
infinity, the LDPP-H model degenerates into the LDPP-S
model. For different tasks, the parameter t can be tuned for
better performance. The regularization coefficients µ and γ
provide a trade-off between the local discrimination term and
the manifold preservation term, which can be easily tuned via
an alternative strategy. In experiments, when µ = 0.1 and
γ = 100, the optimal performance can be achieved.

B. Analysis of Classifier Parameters

For SVM/ELM/KELM, the performance with penalty coef-
ficient τ is shown in Fig. 11(a), from which we can see that
with the increase of τ , the performance is improved. Therefore,
τ = 105 is set for each classifier.

For ELM classifier, the number of hidden neurons L is
an important parameter. For better insight of the L, we have
presented the performance variation w.r.t. L for each method
in Fig. 11(b). We observe that a larger L can help improve the
recognition performance. Therefore, after a trade-off between
accuracy and time, L = 5000 is set in this work. The
computational time analysis of ELM w.r.t. L is discussed later.

For KELM classifier, the performance with kernel parameter
t is shown in Fig. 11(c), from which the optimal t is clearly
observed. Therefore, t = 100 is empirically set.

C. Analysis of Computational Time

First, we present the computational time analysis of ELM
in Fig. 12 by increasing the number of hidden neurons L. We
can observe that when L is larger than 10000, the running
time of ELM is dramatically increased. By joint analysis of
Fig. 12 and Fig. 11(b), there is an easy trade-off between time
and accuracy, and L = 5000 is picked for ELM.

Further, the average computational time of training and test
for 5 folds by using different classifiers is provided in Table V.
We can observe that KELM classifier is several times faster
than both ELM and SVM. Therefore, KELM shows better
efficiency and effectiveness in our E-Tongue system.

From the perspective of subspace learning methods, we can
observe that the running time of classifiers with subspace
learning methods seems to be shorter than that of basic
classifier. This demonstrates that subspace learning not only
improves the recognition ability of classifier, but also speed up
the training process for classifiers. Notably, all the procedures
are implemented in a MacBook Air computer of Intel Core i5
CPU, 1.3GHz, and 4GB RAM.

D. Further Discussion of the LDPP

From the above comparisons with other popular methods
in recognition accuracy and computational time, our proposed
LDPP model shows excellent performance for taste recogni-
tion. The superiority and importance of LDPP that suit for the
E-Tongue data analysis can be summarized as follows.
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Fig. 12. Time analysis with increasing number L of hidden neurons in ELM.

• The regularization coefficients of LDPP play an important
role in learning process. For different datasets, the local
between-class scatter matrix, the local within-class scatter
matrix and the neighborhood affinity preservation show
different contribution, which is geometric distribution
specific. Therefore, by introducing the regularization, the
model flexibility as well as scalability is improved.

• The presence of outliers may cause the computational
bias of the between-class and within-class scatter matrix.
Therefore, the Fisher criterion with locality constraint
is first formulated. Then the potential abnormal samples
(outliers) can be automatically excluded, and the class
discrimination is improved. Note that, the locality ra-
tio is a tunable parameter, which may be different for
distinctive recognition tasks. The possible reason is that
the number of outliers in real application is different. It
denotes that the ratio of the locality is problem specific.

• Actually, the provided E-Tongue benchmark dataset in
this work is small sized. Due to the cost-ineffectiveness,
collecting a very number of data by using one E-Tongue
system may not be realistic, especially for labeled data.
The local manifold structure constraint preserves the
affinity of the possible similar data, which can be easily
extended to semi-supervised learning scenarios in E-
Tongue. Also, based on the local regularization in LDPP,
overfitting is avoided.

• The proposed LDPP is specially formulated for taste
recognition in E-Tongue. First, the size of E-Tongue data
cannot be very large due to the cost-ineffective essence,
and therefore simple but effective algorithm is necessary.
Second, the labeled data acquisition is time consuming,
and locality constrained discriminant model is needed.
Third, feature extraction is another important aspect in
bionic data analysis, and feature learning is important.
Fourth, the outliers can be easily implied in E-Tongue
data due to manual operation in experiment, and local
data construction can effectively achieve outlier removal.
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Fig. 11. Parameter sensitivity analysis of classifiers.

TABLE V
COMPARISON OF COMPUTATIONAL TIME (×10−3S)

Classifier None PCA KPCA LPP-S LPP-H LDA LPDP-S LPDP-H LDPP-S LDPP-H

SVM 10.66 8.63 5.927 19.36 18.18 24.46 26.82 25.91 28.79 25.85
ELM 53.57 39.15 40.30 49.64 48.49 49.92 39.97 40.14 44.59 46.30

KELM 1.820 1.145 1.279 1.215 1.205 1.388 1.613 1.255 1.178 1.044

VIII. CONCLUSION

In this paper, we have designed an E-Tongue system and a
novel local discriminant preservation projection (LDPP) model
for bionic taste recognition. The LDPP aims at enhancing
the tolerance to abnormal samples or implicit outliers from
E-Tongue system. Therefore, the locality constraint for dis-
crimination and the local structure preservation are integrated.
For taste recognition, off-the-shelf classifiers such as SVM,
ELM and KELM are exploited. Finally, 98.22% recognition
accuracy on 13 kinds of liquids is achieved and it outperforms
other popular methods in E-Tongue community.
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X. Cetó, and M. D. Valle, “Hybrid electronic tongue based on multisen-
sor data fusion for discrimination of beers,” Sens. Actuators B, Chem.,
vol. 177, no. 1, pp. 989–996, 2013.

[5] G. Manuel, L. Andreu, I. Andrey, V. P. Jordi, M. Santiago, D. Stefanie,
B. Stephanus, C. Fina, D. Carme, and J. J. Cecilia, “Application of an
e-tongue to the analysis of monovarietal and blends of white wines,”
Sensors, vol. 11, no. 5, pp. 4840–4857, 2011.
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