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Abstract—The 2009 influenza pandemic teaches us how fast
the influenza virus could spread globally within a short period
of time. To address the challenge of timely global influenza
surveillance, this paper presents a spatial-temporal method that
incorporates heterogeneous data collected from the Internet to
detect influenza epidemics in real time. Specifically, the influenza
morbidity data, the influenza-related Google query data and news
data, and the international air transportation data are integrated
in a multivariate hidden Markov model, which is designed to
describe the intrinsic temporal-geographical correlation of in-
fluenza transmission for surveillance purpose. Respective models
are built for 106 countries and regions in the world. Despite
that the WHO morbidity data are not always available for
most countries, the proposed method achieves 90.26% to 97.10%
accuracy on average for real-time detection of global influenza
epidemics during the period from January 2005 to December
2015. Moreover, experiment shows that, the proposed method
could even predict an influenza epidemic before it occurs with
89.20% accuracy on average. Timely international surveillance
results may help the authorities to prevent and control the
influenza disease at the early stage of a global influenza pandemic.

Index Terms—Spatial temporal method, multivariate hidden
Markov model, Google trends, Internet news, international air
transportation, global influenza surveillance

I. INTRODUCTION

THE Global Influenza Surveillance Network (GISN) of the
World Health Organization (WHO) is an essential foun-

dation for monitoring influenza pandemics [1]. For now, the
GISN is collecting and examining influenza virological data
at the global scale, which comprises 136 national influenza
centers in 106 countries and regions [2]. The GISN system has
been proven to be valuable, but among the covered countries
and regions, only 21 countries have national surveillance
networks, which allow them to report the surveillance data in
a standard form [3]. However, for most countries and regions,
the surveillance data are not always available.
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To improve the coverage, timeliness and sensitivity of global
influenza surveillance, Internet technology has become integral
to public health surveillance over the past a few years. Novel
syndromic surveillance systems like the Google Flu have been
developed to estimate the timing and location of influenza
epidemics at the global scale [4]–[9]. The search engine based
approaches generally assume that the volume of influenza-
related queries is correlated with the actual influenza morbidity
trend. However, recent researches indicate that, people’s web
search behaviors are affected by the reports of events which
are not related to local infections of the influenza disease [7].
For example, at the early stage of the 2009 influenza A(H1N1)
pandemic, the news reports of the epidemic outbreak in Mexi-
co caused a global panic and a dramatic increase in influenza-
related searches in the countries where few infections had
occurred. As a result, the search-based surveillance systems
might suffer from relatively low reliability and false epidemic
alerts [10]–[12].

One way to improve the robustness of syndromic surveil-
lance is to incorporate other influenza-related data sources.
Recently, the advent of openly available news aggregators has
made it possible to use the Internet news data for influenza
surveillance. Since the outbreaks of influenza epidemics are
usually reported online, novel systems like the HealthMap
use the data extracted from news reports to produce a global
view of ongoing infectious disease threats [13]. We found in
our previous research that incorporating the news data source
might reduce the media effect of the search-based surveillance
systems [7]. Therefore, this paper examines the number of
Internet news reports containing ‘influenza’ or ‘flu’ (in native
languages, see Table I) as a complementary data source.

Though the Google Flu model could provide timely global
surveillance results using daily-updated query data, research
indicated that it suffered from inadequate sensitivity at the
early stage of an influenza pandemic [10], e.g. it missed
the first wave of the 2009 influenza A(H1N1) pandemic in
the United States [11]. Recent research indicated that, the
transmission patterns of the influenza virus across different
countries were strongly correlated with the volume of in-
ternational air transportation [14]. By taking advantage of
the air-transportation data collected from the International
Air Transport Association (IATA) website [15], our method
estimated the number of passengers infected with the influenza
disease, and used the estimates to improve the sensitivity for
detecting potential influenza epidemics.

Since the 2009 influenza pandemic, analyzing the spatial-
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TABLE I
KEYWORDS USED TO EXTRACT THE QUERY VOLUME DATA AND THE NEWS COUNT DATA 1

1. All keywords used are translations of influenza or flu in native languages.

temporal risk of the influenza disease for surveillance purpose
has become an important goal of statistical and epidemiol-
ogy researches [16]. Previous spatial-temporal methods, also
known as the space-time methods, usually focus on a study
area made up of smaller, non-overlapping sub-regions where
cases of disease are being monitored. For global influenza
surveillance, we examine totally 106 countries and regions for
the purpose of detecting influenza epidemics in real time. The
key variable under influenza surveillance is the binary state, i.e.
one for epidemic and zero for non-epidemic, which is usually
estimated using the influenza morbidity data. Statistical tests
are generally applied in spatial-temporal surveillance systems
to determine whether the disease incidences in a country are
unusual compared to the baseline [17]–[19]. Recently, model
based approaches have attracted a lot of interest because they
can include other variables like syndromic indicators into the
surveillance system. These model based methods have roughly
three classes: linear regression based models [4], [5], [20],
Bayes models [21], [22], and the models of specific space-
time processes [23]–[26]. More recently, the hidden Markov
models (HMM) are developed to take advantage of advanced
computing power and novel data sources [7], [27], [28]. The
hidden Markov model with time-correlated states can capture
the temporal correlation of influenza transmission, which
makes it an effective tool for detecting epidemics in a city
or a country [26]; however, besides the temporal correlation,
in a global pandemic, the transmission of the influenza virus
is also geographically correlated among different countries
and regions, which requires extra variables to incorporate the
spatial correlation into the model for the purpose of influenza
surveillance at the global scale.

To address the challenge of real-time epidemic detection at
the global scale [1], this paper presents a multivariate hidden
Markov model (MHMM) to estimate the timing and location
of influenza epidemics using heterogeneous data collected
from the Internet. Inspired by Khan’s observation [14], we as-

sume that the present epidemic risk state of the target country
is not only related to earlier epidemic states, but it is also relat-
ed to the epidemic risks of other countries which are connected
with the target country by international airlines. In this paper,
a discrete-time Markov chain of bivariate latent states, i.e. the
national-epidemic-risk states and the imported-epidemic-risk
states, is built for each country and region. At each week,
we assume that the present numbers of search queries and
news reports containing ‘influenza’ or ‘flu’ in native languages
are correlated with the current epidemic state; therefore, one
could estimate the present epidemic state using these daily-
updated Internet data. On the other hand, the international
air transportation data are used to describe the geographical
correlation of disease transmission. By taking advantage of the
intrinsic spatial-temporal correlation of influenza transmission
learned by the multivariate Markov process, the proposed
method could sensitively detect a potential epidemic even
before it occurs.

Compared with the famous Google Flu model, our method
shows higher surveillance accuracy and sensitivity mainly
for three reasons. (1) Instead of assessing the search data
directly, our method considers the temporal correlation of
disease transmission, which makes it more robust against the
irrelevant searches; (2) The proposed method also considers
the spatial correlation of disease transmission and incorporates
the international air transportation data, which increases the
sensitivity to detect an epidemic at the early stage. Further-
more, for countries lacking the virological surveillance data,
the epidemic information of their airline-connected countries
could provide valuable indicators of potential epidemics. (3)
By incorporating the news data source, our method may relieve
the media effect of the search based surveillance systems.

The rest of this paper is organized as follows. Section II
briefly introduces the data used to build and evaluate the
model. Section III describes the multivariate hidden Markov
model and the surveillance method. Section IV presents the
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experiment results. Further discussion and conclusion are
given in Section V.

II. DATA SOURCES

A. Influenza Morbidity Data

The influenza morbidity data of 106 countries and regions
were gathered from the WHO FluNet [3]. The morbidity data
were of weekly resolution and last from January 2004 to
December 2015. Fig. 1 shows an example of the influenza
morbidity data for the country of Belarus, which are normal-
ized between zero and one hundred. It is worth noting that,
the WHO influenza morbidity data are not always available for
most countries. As shown in Fig. 1, the influenza morbidity
data were missing for Belarus during the period from the
15th week of 2009 to the 39th week of 2010. At the global
scale, the average missing rate of the WHO morbidity data
was over 35% for the examined 106 countries and regions.
The missing rates for Asian and African countries, where
most influenza epidemics were reported, were significantly
higher than average, making the influenza surveillance more
challenging.

For the purpose of detecting influenza epidemics, the WHO
morbidity data were used to calculate the ground-truth indi-
cators of epidemics. As previous epidemiology studies [17]–
[19] did, the national epidemic risk state of each week was
determined by comparing the influenza morbidity with a
baseline. Fig. 1 shows an example of the national epidemic risk
states for Belarus (subgraph a). Since the morbidity data were
missing from time to time, the unknown national epidemic risk
states were treated as hidden states in our research. Detailed
method to estimate and predict the national epidemic risk
states are described in the next section.

B. Air Transportation Data

The volume data of international flight itineraries for all
passengers arriving at commercial airports between January
2004 and December 2015 were gathered from the International
Air Transport Association (IATA) [15]. The IATA data account
for more than 95% of all passenger trips worldwide via
commercial airlines, they include information on the flight
origins and destinations of actual passengers.

For each examined country, we aggregated the arrival flights
and the number of passengers on a weekly basis. By multi-
plying the number of passengers and the morbidity rate of
the departure countries, we estimated the weekly number of
arrival passengers infected with influenza. Fig. 1 shows the es-
timated number of infected passengers to Belarus by airplane,
which is normalized between zero and one hundred (imported
infections, subgraph b). The estimates of imported infections
reflect the risk that the influenza virus may transmit from other
countries to the target country. Therefore, a supplementary
epidemic indicator, i.e. the imported epidemic risk state, is
defined to describe the geographical correlation of influenza
transmission between different countries and regions. As an
example, the high-lighted area in Fig 1.b shows the imported
epidemic risk states calculated by comparing the estimated
number of infected passengers with the baseline.

Our research assumes that the national-epidemic-risk s-
tates are correlated with the imported-epidemic-risk states. As
shown in Fig. 1, the national-epidemic-risk states (subgraph
a) and the imported-epidemic-risk states (subgraph b) show
similar yearly pattern for Belarus, yet they may differentiate
from time to time. Our method manages to improve the sensi-
tivity and accuracy of the estimation of national-epidemic-risk
states by considering the geographical correlation of disease
transmission and incorporating the second variable of imported
epidemic risk states in a multivariate Markov model.

C. Google Trend Data

The Google trend data of the examined countries and
regions were gathered from publicly-accessible Google Trend
website [29]. The daily-updated search volume of the query
‘influenza’ or ‘flu’ in native languages (Table 1) were collected
from January 2004 to December 2015. The search volume was
calculated by aggregating the searches submitted in a country
or a region. For each query, the volume data were normalized
from zero to one hundred (Fig. 1).

To reduce the noise, the search trend data were quantized
as three-level data Gt ∈ {1, 2, 3}. Specifically, we assumed
that the search volume belonged to the Gaussian distribution,
and each of the three levels shared the same probability of 1/3.
After fitting the Gaussian model using the search volume data,
one could transform the query-volume data to the query-level
data Gt, which were used to estimate contemporary national
epidemic risk states.

D. Internet News Trend

Recently, the Google Trends service began to provide the
news trend data associated with different keywords. Google
news database is generally built using documents collected
by robot programs. It selects the important and trustworthy
websites as news sources, including national and local news
websites, and networks for government health department,
health care organizations, and traditional media companies.
Given a keyword and a monitored country or region, the
Google Trends service provides the count number of news
documents containing the keyword. For the purpose of surveil-
lance, the count number of news containing ‘flu’ or ‘influenza’
in native languages were examined (see Table I).

Similar to the search volume data, we also quantized the
news count data with three levels of equal probability. After
fitting the Gaussian model using the news count data, one
could calculate the threshold to transform the news count data
to the news-level data Nt ∈ {1, 2, 3}, which were also used
to estimate contemporary national epidemic risk states.

III. METHOD
One challenge for global influenza surveillance is to catch

up with the virus which disseminates worldwide quickly via
international airlines in the early stage of a pandemic [30].
Since the transmission of the virus is geographically and
temporally correlated, we build a multivariate discrete-state
hidden Markov model (MHMM) to estimate and even predict
the national epidemic risk states in real time.



(c) 2016 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2017.2690631, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

20

40

60

80

100

N
or

m
al

iz
ed

 tr
en

ds

(a)

 

 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

20

40

60

80

100

Years

N
or

m
al

iz
ed

 tr
en

ds

(b)

 

 

National epidemic risk states
Influenza mobidity
Influenza related queries
Baseline

Imported epidemic risk states
Imported infections
Influenza related news
Baseline

Fig. 1. Data examined for monitoring influenza epidemics in Belarus during the period from year 2004 to 2015. Four types of heterogeneous data are
examined, including the influenza morbidity data, the Google search trend of ‘flu’ (in Russian), the number of news containing ‘flu’ (in Russian) and the
international air transportation data. The highlighted area in subgraph (a) indicates the ground truth of national-epidemic-risk states calculated based on the
morbidity data. The highlighted area in subgraph (b) indicates the imported-epidemic-risk states calculated based on the estimated volume of arrival aeroplane
passengers infected with influenza. The goal of this paper is to predict the national epidemic risk states whose ground truth are not always available for most
countries. As an example, the influenza morbidity data for Belarus are mostly missing for year 2009 and 2010.

A. Influenza Epidemic Risk States

At the tth week, the proposed MHMM model has two corre-
lated latent variables, i.e. the national epidemic risk state St,1

and the imported epidemic risk state St,2. Ideally, the ground-
truth value of St,1 should be determined by contemporary
morbidity data mt. Suppose the influenza epidemics occur with
a relatively small probability σ in a country or region, then
a baseline b1 can be calculated to determine the ground-truth
value of national epidemic risk states as

St,1 =

{
0 when mt ≤ b1

1 when mt > b1

where zero stands for non-epidemic and one stands for epi-
demic. Since the morbidity data published by the WHO are
often missing, the unknown national epidemic risk state St,1

is treated as a hidden variable in the MHMM model, which
attempts to estimate and predict the weekly-updated St,1 using
data collected from the Internet.

To take advantage of the geographical correlation of in-
fluenza transmission, a second variable St,2 is defined based
on the number of arrival aeroplane passengers at the tth
week. Intuitively, the latent variable St,2, i.e. the imported
epidemic risk state, reflects the risk that an influenza epidemic
could transmit to the target country via infected aeroplane
passengers. Given a target country, suppose cit and mit are
the passenger number and the influenza morbidity of its ith
origin country. Suppose the ith origin country’s population is
pi, and γit is the morbidity rate. Then the number of arrival
passengers infected with influenza can be estimated as

dt =
∑

i
citγit and γit =

mit

pi

Fig. 2. The multivariate hidden Markov model built for surveillance purpose.
The latent variable St,1 is the national epidemic risk state defined to detect
epidemics, and the St,2 is the imported epidemic risk state which reflects
the risk to import an epidemic from airline-connected countries. At the week
t+1, the proposed model calculates the real-time epidemic indicator St+1,1

based on the query volume level Gt+1, the news count level Nt+1 and the
previous epidemic risk states (St,1 , St,2).

Similar to the definition of St,1, we assume that an imported
epidemic occurs with a small probability σ, then the baseline
value b2 can be calculated for each country to determine the
ground-truth value of St,2 as

St,2 =

{
0 when dt ≤ b2

1 when dt > b2

Since the definition of St,2 depends on the morbidity data
which are missing from time to time, it is also treated as a
hidden variable in the MHMM model.

In our research, the latent national epidemic risk state St,1 is
defined as the indicator of the epidemic occurs at the tth week.
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To incorporate the geographical correlation in our model, we
assume that the epidemic indicator St,1 is correlated with
the imported epidemic risk variable St,2. This assumption is
coherent with the finding that, the actual influenza morbidity
mt and the number of imported infections dt are generally
correlated, with positive average correlation among the exam-
ined 106 countries and regions (Pearson correlation coefficient
r = 0.41).

B. Multivariate Hidden Markov Model

Fig. 2 illustrates the spatial-temporal MHMM model built
for influenza surveillance, where the connection between the
two variables St,1 and St,2 reflects the geographically correla-
tion between airline-connected countries, and the connection
between the epidemic risk states of continuous time step-
s reflects the temporal correlation of disease transmission.
Formally, in the multivariate HMM process, the temporal
evolution of epidemic risk states are driven by a latent Markov
chain, which can be conveniently described as a multinomial
process in discrete time. Accordingly, we introduce a sequence
S0:T = (St, t = 0, ..., T ) of multinomial variables St = (St,1,
St,2), whose binary components are the national epidemic risk
state and the imported epidemic risk state. The state entered
at each step depends on two initial probabilities and four state
transition probabilities as π1 = P (S0,1 = 1), π2 = P (S0,2 =
1) and πh,k = P (St,k = 1|St−1,h = 1), h, k = 1, 2. Similar
to the standard Markov model, we assume the sequence of
epidemic risk states S0:T occurs with a probability

p(S0:T ;π) = π
S0,1

1 π
S0,2

2

∗
∏T

t=1
(π

St−1,1St,1

1,1 π
St−1,1St,2

1,2 π
St−1,2St,1

2,1 π
St−1,2St,2

2,2 )

The standard MHMM usually assumes that the multivariate
variables are independent; however, in our research, the nation-
al epidemic risk of a country is correlated with the epidemic
risks of surrounding countries. As a second difference from
the standard MHMM model, our method does not assume
constant initial probabilities for the risk states, instead, the
values of π1, π2, πn,k are estimated using the actual epidemic
states calculated based on the WHO morbidity data. The
proposed method can do that because, different from the
standard MHMM method, the hidden states of the epidemic
risks are partially available in our application.

As a challenge for global influenza surveillance, for most
countries, the morbidity-based epidemic risk states may not
always be available; however, the influenza-related Google
query-volume level Gt and news-count level Nt can be ob-
tained as syndromic indictors. Suppose α

St,h

k and β
St,h

k are the
conditional probability of Gt = k and Nt = k respectively,
where k ∈ {1, 2, 3} is the level of syndromic indicator
in week t. As in the standard hidden Markov model, the
specification of the MHMM is completed by assuming that,
the conditional distribution of the syndromic indicator process,
given the sequence of latent epidemic states, takes the form
of a product density as

p(G0:T |S0:T ,α) =
∏T

t=0

∏3

k=1

∏2

h=1
α
St,h

k

p(N0:T |S0:T ,β) =
∏T

t=0

∏3

k=1

∏2

h=1
β
St,h

k

C. Parameter Estimation for Real-time Epidemic Detection

The proposed method is designed for real-time detection
of influenza epidemics using heterogeneous data collected
from the Internet. To overcome the GISN’s reporting lag,
our spatial-temporal surveillance is performed in an online
fashion. Specifically, at the tth week, we use the morbidity
data, the query volume levels, the news count levels and
the international air transportation data published before the
(t− 1)th week as training data. The training process updates
the model parameter set λ = {π,α,β} by maximizing the
following likelihood function as

argmax
λ

L(λ|S0:t−1,G0:t−1,N0:t−1) =

arg max
π,α,β

p(S0:t−1;π)p(G0:t−1|S0:t−1,α)p(N0:t−1|S0:t−1,β)

After updating the parameters, we can use the week-t query
data and news data to estimate the current national epidemic
risk state St,1, which is achieved by choosing the risk state
with the maximum probability to generate the current Gt and
Nt as

argmax
St,1

p(St,1|St−1,1, St−1,2, Gt, Nt,λ)

= argmax
St,1

π
St−1,1,St,1

1,1 π
St−1,1St,2

1,2 π
St−1,2St,1

2,1 π
St−1,2St,2

22

∗
∏2

h=1
α
St,h

Gt
∗
∏2

h=1
β
St,h

Nt

where St,1, St,2 ∈ {0, 1} is the feasible set of the epidemic
risk states. Since the Google search volume and the news count
data are updated on a daily basis, the proposed method can
provide timely estimates of national influenza epidemic states,
which is generally one week ahead of the GISN’s reports.

Furthermore, since the Markov process could capture the
temporal relation of influenza transmission, it could predict
future epidemic risk states. Specifically, at tth week, one could
predict the national epidemic risk state St+1,1 by using the
estimated risk states of the tth week (S∗

t,1, S∗
t,2) as ground-

truth, and calculate the most probable epidemic risk state of
the (t+ 1)th week as

arg max
St+1,1

p(St+1,1|St,1, St,2,λ)

= arg max
St+1,1

π
S∗
t,1St+1,1

1,1 π
S∗
t,1St+1,2

1,2 π
S∗
t,2St+1,1

2,1 π
S∗
t,2St+1,2

2,2

D. Predicting Unmonitored Epidemics

One important challenge of global influenza surveillance
is the temporal gaps in the surveillance data [31]. In fact,
among all the examined countries and regions, the average
missing rate of the WHO morbidity data is over 35% for the
examined period of eleven years. To address this challenge,
our method takes advantage of the Internet syndromic data to
provide timely indicators for unmonitored epidemics.

Suppose the morbidity data of the target country are not
available from the tth week to the (t + n)th week. Given



(c) 2016 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2017.2690631, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100
N

or
m

al
iz

ed
 tr

en
ds

(b) France

 

 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

N
or

m
al

iz
ed

 tr
en

ds

(c) Austrilia

 

 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

N
or

m
al

iz
ed

 tr
en

ds

(d) Ukraine

 

 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

N
or

m
al

iz
ed

 tr
en

ds

(e) Belarus

 

 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

N
or

m
al

iz
ed

 tr
en

ds

(a) United States

 

 Epidemic estimates (monitored)
Epidemic estimates (unmonitored)
News count
Morbidity
Hidden morbidity
Query volume
Imported infections
Baseline

Fig. 3. Surveillance results of the proposed method for five representative countries. The whole examined period has two stages, i.e. the real-time surveillance
stage (year 2005 to 2014) and the blind surveillance stage (year 2015). Note that the unmonitored epidemic in Belarus around 2010 is detected by the MHMM
model due to large volume of imported infections from Ukraine.

contemporary sequence of query volume levels Gt:t+n, the
sequence of news count levels Nt:t+n, and the sequence of
imported epidemic risk states St:t+n,2 which is calculated
based on the existing morbidity data of airline-connected
countries, then the Markov model could predict the la-
tent sequence of national epidemic risk states St:t+n,1 =
(St,1, St+1,1, . . . , St+n,1) by maximizing the probability

arg max
St:t+n,1

p(St:t+n,1, St:t+n,2,Gt:t+n,Nt:t+n;λ)

which approximates the most probable sequence of national
epidemic risk states that leads to the observed sequence of
influenza-related query volume levels and news count levels.
In practice, the above maximization can be computed effi-
ciently using the Viterbi algorithm, which is a widely adopted
algorithm for approximating latent states in the hidden Markov
model [32].

IV. EXPERIMENTS

This section evaluates the effectiveness of the proposed
spatial-temporal method for detecting influenza epidemics at
the global scale in real time. Respective models were built for
each examined country and region. The examined period were
divided into two stages, i.e. (1) the real-time surveillance stage
and (2) the blind surveillance stage. The real-time surveillance

stage covered the period from January 2005 to December
2014 using the multivariate Hidden Markov model whose
parameters were incrementally updated on a weekly basis.
The blind surveillance stage was designed to evaluate the
proposed method for its ability to detect influenza epidemics
in unmonitored period. The rest of this section gives more
detailed information of the experiment in each stage.

A. Real-time Epidemic Surveillance Results

We first examined the MHMM method for real-time de-
tection of influenza epidemics at the global scale. Generally
speaking, despite that disease transmission was affected by
many factors, the multivariate hidden Markov model captured
the spatial-temporal pattern of influenza epidemics in all
examined 106 countries. The average accuracy of the real-
time estimates of national-epidemic-risk states was remarkably
high (93.34 %) compared with the ground truth. The yearly
average accuracies over the examined countries ranged from
92.20% (2013) to 97.50% (2006). Moreover, the estimation
accuracy was consistently high for both pandemic (year 2009,
94.79%) and non-pandemic (94.41%) periods. Since the WHO
surveillance data are based on virological testing, its surveil-
lance reports usually have one-week lag, while the Google
query data and the news count data are updated on a daily
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basis, which enables us to detect national influenza epidemics
of different countries in nearly real time.

Fig. 3 shows the real-time estimates of the national epidemic
risk states for five representative countries. For each country,
the morbidity data published by the WHO is normalized
between zero and one hundred, and a baseline line is cal-
culated to threshold the epidemic period with the largest
15% morbidity. As one can see, the volume of the examined
search queries has multiple peaks which are irrelevant to local
influenza morbidity. For example, there was a peak in the
amount of searches for ‘grippe’ (meaning influenza) in France
early in 2006 when official media reported the discovery of
multiple dead birds infected with H5N1 virus [33]. On the
other hand, the heavy media reports of the influenza A(H1N1)
epidemic in Mexico caused dramatic increase in the amount of
influenza-related searches at the early stage of the pandemic
in 2009, which were irrelevant to contemporary morbidity
for most countries. These irrelevant searches may result in
false alerts for the Google Flu method; however, thanks to the
heterogeneous data sources incorporated, the MHMM method
can provide accurate surveillance results which are robust
against irrelevant peaks in search volume data.

Though the estimated number of aeroplane-imported in-
fections are strongly correlated with the actual influenza
morbidity for many countries like France (Pearson correlation
coefficient r = 0.75) and Australia (r = 0.71), the airline
data also suffer from irrelevant peaks. For example, multiple
peaks of imported infections could be observed in the United
States in 2012 and 2014, which were not correlated with
the actual morbidity data (Fig. 3). It seems that, to improve
the robustness of syndromic surveillance, it is preferable to
incorporate multiple data sources.

Besides real-time detection of influenza epidemics, at each
week, the multivariate hidden Markov model could also be
used to predict the national epidemic risk state of the next
week. After updating the parameters using the latest morbidity
data published by the WHO at each week, the MHMM
achieved over 89.10% average accuracy among all the exam-
ined countries for predicting the next-week epidemics in the
period from 2005 to 2014. More detailed results can be found
in Table II.

The real-time surveillance results of each continent were al-
so calculated, and the average accuracies ranged from 91.80%
(Africa) to 93.90% (Oceania). It seemed that, the accuracy of
the real-time surveillance results were affected by the missing
rate of the morbidity data. Specifically, we found positive
correlation existed (r = 0.36) between the missing rate and the
error rate of epidemic detection among the examined countries.
Fortunately, despite the high missing rate of many developing
countries, the lowest accuracy achieved by the multivariate
hidden Markov model is still relatively high for real-time
epidemic detection.

B. Detecting Unmonitored Epidemics

The Global Influenza Surveillance Network has been proven
essential for preventing a global influenza pandemic; however,
until the present day, many developing countries still lack the

resources to monitor the influenza morbidity constantly. For
example, as illustrated in Fig. 3, there was a server influenza
epidemic in Belarus later in 2009 [34]; however, no official
surveillance data were available at that time. The proposed
method detected the influenza epidemic by the significant
increase in the number of imported infections via international
air transportation.

To fully evaluate the proposed method for its ability to de-
tect unmonitored influenza epidemics, in the second stage, we
trained respective models for different countries and regions
using the data collected before the 52th week of year 2014.
By presuming that the morbidity data of the target country
were not available in 2015, we frozen the model parameters
and estimated the latent national-epidemic-risk states at each
week in 2015. By comparing with the ground-truth epidemic
states, one could calculate the average accuracy for blind
prediction of influenza epidemics among different countries.
Experiment showed that, even for the extreme case of missing
the morbidity data for a whole year, the multivariate hidden
Markov model could still provide early alarms of influenza
epidemics with relatively high accuracy (89.20%).

C. Comparing with other Methods

To further evaluate the effectiveness of the proposed
method, we compared it with the widely adopted statistical
thresholding method, the linear regression method and the
Naive Bayes method. For the statistical thresholding method,
we simplied thresholded each examined data and treated the
period associated with the largest σ × 100% values as the
epidemic periods; Both the Naive Bayes method and the linear
regression method used the Google query data, the news count
data and the volume of infected airplane passengers as input.
At each week, the Naive Bayes method treated the estimation
of the national epidemic risk state as a binary classification
problem. Similar to the Google Flu method, the linear regres-
sion model was fitted to approximate contemporary influenza
morbidity, and the morbidity estimates were further classified
as pandemic and non-pandemic using the probability threshold
σ.

As mentioned in the second section, the proposed surveil-
lance system uses the probability threshold σ to calculate the
ground-truth epidemic states. It seems that the value of σ
controls the tradeoff between sensitivity and accuracy of the
surveillance system. Experiment results in Table III show that,
all the compared approaches achieve the highest surveillance
accuracy with the smallest probability value of σ = 5%;
however, larger probability tends to increase the sensitivity
of the surveillance system.

Our experiment also compared the MHMM with the stan-
dard hidden Markov model (HMM), which used the query
volume levels and news count levels to estimate the national
epidemic risk states. The difference between the MHMM
and HMM was that, the HMM only considered the tem-
poral correlation of disease transmission. Experiment results
showed that, by incorporating the geographical correlation
between countries connected by international airlines, the
MHMM method achieved notably higher accuracy. Moreover,



(c) 2016 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2017.2690631, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

TABLE II
ESTIMATION AND PREDICTION OF INFLUENZA EPIDEMICS IN DIFFERENT COUNTRIES AND REGIONS

Country Estimation Prediction Prediction Morbidity Country Estimation Prediction Prediction Morbidity
and region (Stage 1) (Stage 1) (Stage 2) missing and region (Stage 1) (Stage 1) (Stage 2) missing
Algeria 94.32±0.74% 91.22±1.51% 95.65% 46.41% Croatia 97.18±3.17% 87.91±1.20% 89.47% 50.88%
Angola 88.95±2.22% 75.43±8.10% - 77.67% Denmark 97.82±1.35% 95.63±4.91% 88.46% 21.53%
Burkina Faso 95.41±3.14% 94.22±4.42% 100.00% 71.93% Estonia 96.34±1.42% 90.24±3.06% 88.46% 41.63%
Cameroon 94.39±3.91% 93.02±4.67% 80.39% 34.29% Finland 86.88±1.11% 80.11±0.52% 76.92% 36.52%
Cote d’Ivoire 83.09±5.97% 72.56±4.30% 88.46% 47.37% France 97.71±1.08% 96.50±5.94% 100.00% 19.62%
Egypt 97.63±1.38% 96.02±6.07% 70.00% 31.58% Georgia 94.32±0.89% 89.07±0.18% 92.59% 52.31%
Ethiopia 94.25±4.06% 91.57±4.39% 100.00% 65.23% Germany 94.01±0.20% 89.83±0.15% 92.59% 18.66%
Ghana 90.68±4.38% 88.00±5.53% 82.35% 31.26% Greece 95.53±0.77% 93.04±2.44% 81.82% 30.46%
Kenya 91.42±2.50% 83.17±0.88% - 29.67% Hungary 90.01±2.03% 86.59±1.61% 83.33% 63.48%
Madagascar 95.21±4.45% 94.01±4.69% 78.85% 2.23% Ireland 95.57±0.89% 92.76±2.17% 72.00% 38.28%
Mauritius 92.29±3.67% 91.47±17.7% 100.00% 72.73% Italy 94.47±0.10% 88.76±1.31% 100.00% 47.21%
Morocco 92.97±1.08% 88.87±0.30% 92.86% 41.31% Latvia 96.50±1.09% 90.28±3.21% 86.96% 32.85%
Mozambique 97.75±1.93% 94.32±5.75% 82.69% 68.74% Lithuania 97.30±1.24% 86.96±0.08% 81.48% 56.46%
Nigeria 77.49±2.60% 75.63±3.00% 97.67% 51.83% Luxembourg 93.29±2.01% 90.72±3.66% 89.47% 45.14%
South Africa 93.02±0.76% 89.06±0.06% 86.54% 10.05% Malta 86.21±3.19% 78.94±10.5% 88.46% 65.07%
Tanzania 85.27±0.40% 80.39±4.70% 96.15% 47.69% Moldova 94.42±0.57% 83.48±4.50% 81.48% 54.70%
Tunisia 94.77±2.56% 92.31±9.79% 79.41% 44.18% Netherlands 92.20±1.98% 88.22±0.71% 96.30% 43.06%
Uganda 93.90±6.68% 87.90±5.46% 84.78% 33.81% Norway 98.36±1.18% 96.53±2.62% 88.46% 12.12%
Zambia 86.72±1.40% 84.67±1.53% 86.54% 52.15% Poland 92.83±0.36% 93.71±2.66% 88.24% 8.29%
Bangladesh 92.80±2.46% 87.29±0.50% 78.00% 50.88% Portugal 93.22±1.10% 90.39±0.11% 90.91% 17.22%
Cambodia 96.20±2.37% 93.82±4.00% 96.15% 21.85% Romania 93.72±1.56% 90.37±1.42% 94.12% 14.19%
China 97.89±2.54% 96.77±3.86% 84.78% 1.12% Russian 97.47±1.59% 96.95±6.19% 90.38% 17.22%
India 95.95±2.26% 92.36±2.67% 92.16% 36.84% Slovakia 88.58±0.70% 86.09±0.95% 81.48% 48.01%
Indonesia 93.51±2.71% 90.81±1.65% 76.92% 44.02% Slovenia 94.79±0.91% 93.02±1.43% 96.30% 11.00%
Iran 97.69±2.68% 92.77±2.18% 69.23% 21.85% Spain 96.57±0.73% 94.20±3.83% 100.00% 18.50%
Iraq 93.94±0.74% 91.00±0.41% 74.00% 41.95% Sweden 96.07±0.67% 93.42±3.17% 92.00% 24.88%
Israel 96.26±2.30% 90.56±1.53% 85.71% 54.07% Switzerland 95.99±1.51% 93.32±2.94% 73.33% 26.00%
Japan 95.10±1.41% 91.06±0.85% 100.00% 0.00% Ukraine 96.61±3.18% 93.12±5.04% 80.00% 36.36%
Jordan 88.07±0.97% 87.89±0.29% 74.51% 55.50% Canada 94.90±1.89% 93.55±2.61% 98.08% 23.29%
Kazakhstan 96.68±2.19% 93.31±2.89% 96.00% 53.75% Costa Rica 94.62±2.85% 89.86±1.11% 100.00% 34.77%
Korea 93.46±1.89% 88.04±3.87% 100.00% 17.07% Cuba 86.77±8.89% 83.32±1.38% 87.88% 44.82%
Kyrgyzstan 95.65±2.30% 90.94±4.45% - 55.50% Dominican 96.84±6.29% 96.19±6.34% 96.97% 15.31%
Malaysia 84.47±5.42% 78.02±9.61% 100.00% 7.81% El Salvador 92.79±3.96% 90.08±4.79% 100.00% 31.90%
Mongolia 92.47±1.54% 90.23±1.03% 84.21% 15.79% Guatemala 88.42±1.42% 75.53±5.21% 100.00% 51.36%
Nepal 95.72±2.95% 88.20±0.32% 79.07% 65.87% Honduras 94.90±3.30% 93.34±3.74% 100.00% 29.82%
Pakistan 94.14±4.61% 90.94±5.07% 73.17% 34.45% Jamaica 92.70±3.58% 89.55±2.80% 81.25% 36.84%
Philippines 91.20±5.14% 88.17±4.95% 100.00% 1.91% Mexico 98.45±1.84% 97.70±3.04% 81.82% 3.19%
Qatar 98.77±3.61% 82.60±6.70% 72.55% 58.85% Nicaragua 91.80±0.66% 89.36±0.09% 100.00% 49.44%
Singapore 94.27±2.93% 92.11±3.43% 94.23% 26.32% Panama 95.20±1.69% 91.98±1.69% 100.00% 34.45%
Thailand 88.48±3.32% 86.64±4.31% 100.00% 3.35% USA 93.66±0.50% 92.31±1.88% 100.00% 4.15%
Turkey 98.20±1.31% 94.45±1.30% 80.77% 43.06% Argentina 96.22±0.79% 92.94±2.11% 79.59% 2.07%
Uzbekistan 72.68±0.10% 65.75±14.0% 100.00% 87.88% Bolivia 94.47±2.79% 92.11±3.50% 100.00% 53.11%
Viet Nam 92.46±3.24% 86.84±5.10% 100.00% 17.22% Brazil 96.78±3.38% 95.29±4.63% 90.20% 0.16%
Albania 79.99±4.43% 76.25±6.12% 87.50% 79.43% Chile 96.48±0.58% 93.26±0.88% 90.91% 3.51%
Armenia 86.99±0.70% 83.84±4.70% - 70.33% Colombia 96.57±4.04% 95.23±5.51% 87.50% 5.42%
Austria 96.69±1.57% 92.94±0.70% 85.71% 56.46% Ecuador 91.89±1.31% 86.93±2.90% 100.00% 48.48%
Azerbaijan 95.98±6.93% 86.94±1.41% 100.00% 66.35% Guadeloupe 87.43±2.75% 83.87±0.01% 90.38% 49.44%
Belarus 93.03±2.51% 71.79±1.30% 85.19% 58.37% Martinique 89.25±3.10% 85.94±12.1% 76.92% 53.11%
Belgium 87.98±1.04% 84.68±1.01% 92.00% 33.33% Uruguay 89.51±0.12% 82.98±0.70% 100.00% 39.55%
Bosnia 90.42±0.14% 86.04±1.74% - 70.02% Venezuela 95.77±5.83% 87.54±0.07% 100.00% 54.07%
Britain 97.24±1.76% 97.05±4.54% 88.89% 9.25% Australia 96.77±1.14% 95.58±1.79% 97.73% 2.23%
Bulgaria 94.83±1.09% 90.33±1.84% 85.19% 40.67% Fiji 86.35±1.01% 84.74±0.82% 78.95% 49.92%
Czech 96.83±2.95% 92.75±7.34% 83.33% 53.43% New Zealand 98.65±1.32% 97.30±6.73% 81.82% 53.27%

we found that the MHMM method was more sensitive and
accurate for epidemic surveillance during the pandemic period.
Specifically, the HMM method had lower detection accuracy
during the year 2009 (86.77%, σ=15%), while the MHMM
method showed 94.79% (σ=15%) average accuracy among the
examined countries and regions in 2009.

V. DISCUSSION AND CONCLUSION

The timing of influenza epidemic outbreaks varies from
country to country, which makes it a challenge to provide

timely, sensitive and reliable surveillance results at the global
scale [31]. To address this challenge, this paper presents a
spatial-temporal method to detect influenza epidemics using
heterogeneous data collected from the Internet. By taking
advantage of the geographical and temporal correlation of in-
fluenza transmission, the proposed multivariate hidden Markov
model could detect potential influenza epidemics in 106 coun-
tries and regions with over 90% accuracy on average.

Traditional influenza surveillance networks built on virolog-
ical testing data suffer from one to two weeks’ lag of reporting
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TABLE III
ACCURACY OF REAL-TIME DETECTION OF INFLUENZA EPIDEMICS

Epidemic Statistical thresholding method (%)1 Linear regression Naive Bayes HMM MHMM
probability(σ) News count Query volume Imported infections (%) (%) (%) (%)

5% 85.23 93.43 91.99 80.57±2.30 95.47±2.86 89.92±1.68 97.10±1.01
10% 70.88 86.70 85.06 72.87±2.48 91.52±1.62 89.56±1.34 94.99±1.02
15% 58.01 78.39 79.61 65.44±2.20 88.03±2.19 87.18±1.13 93.34±1.11
20% 47.06 73.38 75.36 61.49±1.88 84.12±2.86 87.86±0.57 91.82±1.12
25% 40.89 67.72 72.30 57.30±2.56 80.78±2.52 86.31±0.23 90.26±1.11

1. The statistical thresholding method binarizes each type of data using probability and treats the period with the largest σ × 100% values as epidemics.

time; However, thanks to the daily-updated influenza-related
query data and news data, the proposed Internet based syn-
dromic surveillance method could provide epidemic surveil-
lance results in nearly real time. Furthermore, the weekly
updated Markov model could even provide epidemic alerts
ahead of the outbreaks of influenza epidemics with over 89%
accuracy. Timely surveillance results may enable public health
officials and health professionals to better respond to epidemic
outbreaks. For example, if a particular country or region is
predicted to experience an influenza epidemic, it may be
possible to focus additional resources to identify the source
of the outbreak, and provide extra drug capacity as necessary.

The Internet based surveillance may become an important
defense line against influenza epidemic, yet there are some re-
strictions. First, the WHO morbidity data reported by different
countries may be missing or inaccurate. The lack of reliable
surveillance data makes it a challenge to fit more sophisticated
models with more parameters, e.g. the random Markov field,
for epidemic simulation at the global scale. Secondly, our
method used the morbidity of the departure location to esti-
mate the number of infections in airline passengers. Given the
large volume of airline passengers registered by the IATA (up
to 2.85 million each week) and our long examined period of
eleven years, the morbidity rate of departure location might be
a proper estimation of the passenger morbidity rate. However,
since the passengers are not necessarily uniformly sampled
from the population, more precise models are planed to be
studied in the future if more comprehensive and reliable data
are available.
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