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a  b  s  t  r  a  c  t

Since  the homogeneous  linearity  between  multi-sensors  systems  which  are  called  electronic  noses  (E-
noses) designed  using  commercially  available  heated  tin  oxide  sensors,  a high  performance  of  on-line
calibration  transfer  among  multiple  E-nose  instruments  based  on  global  affine  transformation  (GAT)  and
Kennard–Stone  sequential  algorithm  (KSS)  is  presented  and  evaluated  in  this  paper.  GAT  is achieved  in
terms  of one  single  sensor  by  a robust  weighted  least  square  (RWLS)  algorithm  and  KSS is  studied  for
representative  transfer  sample  subset  selection  from  a large  sample  space.  This  paper  consists  of  two
aspects:  calibration  step  (for  responses  of  sensors)  and  prediction  step  (for  gas  concentration).  Prediction
is developed  to evaluate  the performance  of calibration  transfer.  In  prediction  step,  three  artificial  neural
ffine transformation
ennard–Stone sequential algorithm
obust weighted least square

networks  for  concentration  prediction  of  three  analytes  were  trained  based  on  an  error  back-propagation
algorithm.  Both  implementations  of  the two  aspects  were  operated  on Matlab,  preliminarily  evaluated
using  hazardous  formaldehyde  as referenced  gas  and  subsequently  directly  applied  to  quantify  ben-
zene  and  toluene  which  are  measured  by six  E-nose  instruments  at specific  gas  experimental  platform.
Simulated  and  experimental  results  were  found  to be  adequate  and  good  precision  and  accuracy  were
obtained.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Electronic nose (E-nose), which plays a major role in identifi-
ation and quantification of the hazardous odors, has become a
owerful tool to evaluate the odors during quality control process
f foods and beverages [1–3], environment protection [4] and dis-
ase diagnostics [5].  E-nose is composed of gas sensors made from
arious materials that display distinct gas-sensing behaviors in
hich differentiation can be combined, and interpreted via pattern

ecognition techniques [6,7]. The sensors are mounted on a custom
esigned printed circuit board (PCB), along with associate elec-
rical components. Among the available sensing materials, metal
xide semiconductor sensors [8] are perhaps the most ubiquitous
as sensors since they are used in most single gas monitors and
n residential carbon monoxide detectors. However, a fundamental
ssumption is that the inherent variability during the sensor man-
facturing process leads to slight differences in the reactivity of
he tin oxide substrate of individual sensor [9].  For instance, when

wo identical sensors are exposed to the same environment, slightly
ifferent responses would be produced. One reason is that state-of-
he-art gas-sensors do not maintain their sensitivity profile over

∗ Corresponding author. Tel.: +86 23 65111745; fax: +86 23 65111745.
E-mail address: FengchunTian@cqu.edu.cn (F. Tian).

925-4005/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2011.08.079
time. Even brand new gas sensors, coming from the same pro-
duction batch, may  not generate identical response values when
measuring identical samples. Other possible reasons are related to
the physical environment (e.g. temperature, humidity and pres-
sure). The whole purpose and why  we do calibration in our work
would be fully explained in the follows. As we know, traditional
E-nose instruments which have a big volume are inconvenient
and expensive to the users. Our project is devoted to design of
portable E-nose used indoor so that many instruments should be
produced for extensive users. However, in mass production of E-
nose products such as air quality monitors, it is impossible to train
an individual prediction model (e.g. ANN) on each E-nose product
(instrument). However, it’s convenient for us to construct an effec-
tive model on one standard instrument only (e.g. master) through
a large amount of analytical chemical experiments. Unfortunately,
due to the baseline differences of identical sensors, the developed
prediction model using the chemical datasets on the master E-
nose instrument may  not be fitted with the datasets on other slave
instruments even with completely the same sensor array and elec-
trical components as the master instrument. Thereby, in real-time
monitoring of environmental chemicals indoor, the displayed con-

centrations would not be identical and even false discriminations
of gas concentrations for multiple instruments become possible.
So, a well developed ANN with high prediction accuracy would
lose adaptability with new instruments. Considering the intensive

dx.doi.org/10.1016/j.snb.2011.08.079
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:FengchunTian@cqu.edu.cn
dx.doi.org/10.1016/j.snb.2011.08.079
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omplexity of repeated ANN train process for each instrument, it is
mpractical to construct one individual ANN for each instrument,
espectively. Sensor calibration is therefore the first step during
he mass developments of E-nose instruments. A good promo-
ion of E-nose instruments for air quality monitoring should be
ased on a high performance of calibration transfer. Thus, on-line
alibration transfer among E-nose instruments in mass produc-
ion, with subsequent prediction of concentrations in unknown
amples using electronic nose instruments has become increas-
ngly important for manufacturers and researchers in Artificial
lfactory field. Manufacturers aim to construct instruments that
enerate exactly the same gas concentrations when exposed to
dentical environments. Until now, so many literatures on spec-
rophotometers instrument standardization based on transferring
ear-infrared (NIR) have been published, such as classical direct
tandardization (DS) and piece direct standardization (PDS) [10,11],
rthogonal signal correction (OSC) [12], wavelet [13] and principle
omponent regression (PCR) [14]. But these methods can only be
sed in the multidimensional E-nose system directly for off-line

nstrument calibration, because they should be implemented based
n a data set, and also the robustness can also be promised when the
esponses of the sensors measured on a single instrument change
ver a period of time because of temperature and humidity fluctua-
ion. That is to say, when the model studied based on a known data
et is used to another new data set, the model would lose its effect.
o, these methods cannot be used for on line calibration. How-
ver, so few literatures [15–17] on calibration transfer between
lectronic nose instruments with multidimensional sensor array
n artificial olfactory fields inspire us to have a deep research on
his issue toward attempting to solve the E-nose instrument related
ignal shift for on-line calibration. In the existent literatures, neural
ethods were used for sensor array calibration. Due to that a gener-

lized neural network model should be based on a large number of
ransfer samples or datasets, it would certainly increase the exper-
mental calibration complexity, especially in mass production. In
his case, the neural methods would also become worthless. The on-
ine mass standardization is now still a bottleneck problem because
f the multidimensional nonlinear characteristic of E-nose system.

The goal of this project is to develop a tin oxide sensor device
E-nose) capable of detecting and quantifying volatile organic
hemicals present at typical indoor environments. In the previous
ublications [18–20], the E-nose sensor array and circuit device,
eature selection and probabilistic neural network for wound
lassification have been researched through theoretical and exper-
mental analysis. With knowledge of the approximated relation
f linearity (homogeneous linearity) between two E-nose instru-
ents with the same types of sensors, and the inherent flaws of

he previous methods discussed above, a brand new method for on-
ine mass E-nose instruments calibration is proposed to realize the
igh-accuracy standardization between instruments in this paper.
he applied methodology for calibration is global affine transfor-
ation (GAT) and Kennard–Stone sequential samples selection

lgorithm (KSS). Therein, the solutions of affine transformation
oefficients is studied using a robust weighted least square (RWLS)
lgorithm and the sample selection is on the basis of Euclidean dis-
ance. Affine transformation was widely used for pattern matching
21,22]. The concentration prediction step is also developed for val-
dation of the calibration transfer. Consider the strong nonlinearity
f multi-sensors system internal (e.g. response and concentration),

 feed forward multilayer perceptron neural network based on a
ack-propagation algorithm [23] is used for organic gas concentra-
ion prediction. As we know, artificial neural networks have been

idely used for concentration prediction with electronic noses

24–26]. The main advantage of artificial neural network is that
he heavy process of computation reduces significantly during the
raining [27]. It is worth mentioning that the back-propagation
tors B 160 (2011) 899– 909

algorithm is a gradient-descent algorithm in which the network
weights are moved along the negative direction of the performance
function’s gradient [28].

2. Theory

2.1. Calibration step

2.1.1. Affine transform based on RWLS
Affine transformation is a map  F: �n → �n of the form

F(x) = ATx + t, for all x ∈ �n, where A is a linear transformation of
�n [29], and ‘T’ denotes transpose of matrix. Scaling, translation
and rotation are included in affine transformation, but the first two
(scaling and translation) are used here. Let x denote the dataset
measured on the slaved E-nose instrument, and y the calibrated
dataset from x to the master E-nose instrument. The calibration
transfer model is shown as follow

yi,n = ai · xi,n + bi, i = 1, . . . , k, n = 1, . . . , N (1)

in which index i indicates the ith sensor, k denotes the number
of sensors in the sensor array, index n represent the nth sample,
N refers to the number of being calibrated samples; parameter ai
and bi represent the on-line calibration transfer coefficients slope
and intercept of the ith sensor, respectively. The coefficients are
studied using hybrid robust weighted least square algorithm and
KSS algorithm.

Robust weighted least square (RWLS) in this work is first applied
to electronic nose datasets for accurately mapping one instrument
(called “slave”) to another (called “master”) to realize instruments
standardization. Assume the number of transfer samples is V, with
knowledge of that ordinary least square (OLS) which is based on
the minimum of square sum of error (SSE) is sensitive to outliers
and therefore results in a failure in fuzzy chemical dataset mea-
sured using the nonlinear multivariate system. Interestingly, RWLS,
which aims to reduce the sensitivity of SSE, can avoid the disadvan-
tages of OLS through minimizing a weighted square sum of error
(WSSE) [30] shown by

min
V∑

v=1

wv(yv − ŷv)2 (2)

The re-weighted function “bi-square” is used in this work shown
as follow

wv =
{

(1 − u2
v )

2
, |uv| < 1

0, |uv| ≥ ,  v = 1, . . . , V (3)

where uv is the adjusted residuals with standardization. This
method minimizes a weighted sum of squares, in which the weight
assigned to each sample point depends on how far the point is from
the fitted line. The detailed procedure of iterative RWLS algorithm is
presented as follows

Step 1: Fit the model using ordinary least square (OLS), and com-
pute the initial error residual r1×V.
Step 2: Compute the adjusted residuals using radj =
rv/

√
1 − hv, v = 1, . . . , V , where r is from step 1, h are leverages

that adjust the residuals by down-weighting high leverage sample
points that have a large effect on the least square fit. The leverages
are the elements situated on the diagonal of the prediction

matrix (hat matrix), defined as H = x(xTx)−1xT; thus, the leverage
hv = xv(xTx)−1xv

T, where xv denotes the vth transfer sample point.
Step 3: Standardize the adjusted residuals from step 2 using
u = radj/K·s, where K is a tuning constant commonly set to 4.685,
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and s is the robust variance given by MAD/0.6745, and MAD  is the
median absolute deviation of the residuals.
Step 4: Compute the updated robust weights in terms of the bi-
square function of u described in Eq. (3).
Step 5: If the fit converges, algorithm terminated; otherwise, return
to the step 1 for next iteration.

.1.2. KSS algorithm for sample subset selection
In calibration, the selection of most representative samples that

an reflect the whole sample space become necessary for building
he model of Eq. (1).  Therefore, the Kennard–Stone sequential algo-
ithm [31] for sample selection is used in this work. Let z denote
he dataset measured on the master instrument. In order to assure

 uniform distribution of such a sample subset along the sensor
esponse dataset space, KSS follows a stepwise procedure that new
elections are taken in regions of the space far from the samples
lready selected in terms of the multivariate Euclidean distances
z(p, q) between the response z-vectors of each pair (p, q) of samples
alculated as

z(p, q) =

√√√√ k∑
i=1

[xp(i) − xq(i)]2 p, q ∈ [1, N] (4)

The selection starts by taking the pair (p1, p2) of samples for
hich the distance dz(p1, p2) is the largest. For clear understanding

f this algorithm, the flow of KSS algorithm is described as follows:

Step 1: Set the desired number of transfer samples.
Step 2: Select the two furthest samples from each other in the
whole sample space.
Step 3: Calculate the distances between other remaining samples
and the selected ones; the nearest one for each pair is retained
from all the pairs of distances.
Step 4: The sample with the furthest distance from these nearest
distances retained in step 2 is selected.
Step 5: Repeat steps 3 and 4 until the required number of transfer
samples is achieved.

.1.3. Application of the calibration model
The measurement data sets were divided into transfer set (Xtran

or one slave instrument and Ztran for the master instrument) and
alidation set (Xval for slave instrument and Zval for master instru-
ent). In calibration, Xtran and Ztran with m transfer samples are

sed to design the standardization models (m = 5). The remaining
 samples excluding that m transfer samples are used to validate
he models (p = 120, in this paper). The transfer sets that contain m
amples with k sensors (k = 6) are shown as follows

tran =

⎛
⎝

x11 · · · x1k
...

. . .
...

xm1 · · · xmk

⎞
⎠

m×k

(5)

nd

tran =

⎛
⎝

z11 · · · z1k
...

. . .
...

zm1 · · · zmk

⎞
⎠

m×k

(6)

The validation sets that contain p samples with k sensors are
hown as follows⎛ ⎞

val = ⎝

x11 · · · x1k
...

. . .
...

xp1 · · · xpk

⎠
p×k

(7)
tors B 160 (2011) 899– 909 901

and

Zval =

⎛
⎝

z11 · · · z1k
...

. . .
...

zp1 · · · zpk

⎞
⎠

p×k

(8)

After calibration on Xval of the slave instrument, the new cor-
rected response matrix is indicated as

Xval
after corrected−→ Yval =

⎛
⎝

y11 · · · y1k
...

. . .
...

yp1 · · · ypk

⎞
⎠

p×k

(9)

The mean relative difference (MRD) of the ith sensor shown
below between the sensor response of the slaves (x, before calibra-
tion; y, after calibration) and the sensor response z of the master
instrument is performed as the evaluation measure of the proposed
calibration model.

MRDi = 1
N

N∑
n=1

∣∣∣∣xi,n − zi,n

zi,n

∣∣∣∣∞ 1
N

N∑
n=1

∣∣∣∣yi,n − zi,n

zi,n

∣∣∣∣ (10)

For the purpose of clarity, as we know, when the calibration
model is used to other new systems, some prior information of each
new system should be known. So, five transfer samples should be
obtained through experiments using that new instrument being
calibrated. Then, the proposed calibration model can be used to
determine the calibrated coefficients of the new instrument.

2.2. Prediction step

Multilayer perceptron feed forward neural network based on
error back-propagation algorithm is applied for organic chemicals
concentration prediction in our project. The prediction benefits
from the strong generalization ability for approximation of artifi-
cial neural network and its low computation complexity for a large
number of multidimensional experimental datasets. For predicting
concentration, we adopt the multi-input and single-output neural
network to solve the approximation between responses of the sen-
sors and concentrations of the odor. Three layered neural network
m-h-o (one input layer with m neurons, one hidden layer with h
neurons and one output layer with o neurons) is used in experi-
ence. The neural network can be illustrated through weight matrix
W1(m × h), W2(h × o), and bias vector B1(h × 1), B2(o × 1) (o = 1, in
this paper). The architecture of the neural network is illustrated in
Fig. 1.

Given the responses z (training samples measured on the mas-
ter instrument) and the training targets T (actual concentrations
of analytes), the train process of ANN is employed for the weight
matrix and bias vectors learning. The training weights W1, B1,
W2 and B2 are first achieved through the back-propagation algo-
rithm. Detailed description of neural networks is out of the scope
of this present study; for that, we  refer the reader to [23,27]
for clearly understand the training procedure or learning process
through back-propagation algorithm. The active functions of the
hidden layer and output layer for that approximation are selected
as log-sigmoid and pure linear function. After training, the for-
ward computation process for predicted concentration is shown
as follows.

The output of the jth hidden node is calculated by the log-

sigmoid transfer function

f (nodej) = 1

1 + e
−
(∑m

i=1
wij ·zi−bj

) j = 1, . . . , h (11)
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diction variables (features) used in our work are the steady state
responses. Fig. 2 illustrates the experimental response process of
the gas sensors at a time and the locations of steady state response
selected as features of the gas sensors have also been pointed out.
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Fig. 1. Type of archite

here wij (one element of W1) is the connection weight from the
th node of input layer to the jth node of hidden layer, and bj (one
lement of B1) is the bias of the jth hidden layer.

The output concentration of the kth output node is calculated
y the pure linear function

k =
h∑

j=1

wkj · f (nodej) − bk, k = 1, . . . , o (12)

here wkj (one element of W2) is the connection weight from the
th hidden node to the kth output node, bk (one element of B2) is
he bias of the kth output layer.

The learning error E can be calculated by the following formu-
ation

 =
q∑

c=1

Ec

(q · o)
where Ec =

o∑
k=1

(yc
k − Tc

k )2, (13)

here q is the number of total training samples, yc
k

− Tc
k

is the error
f the actual output and desired output of the kth output unit when
he cth training sample is used for training.

In performance evaluation, root mean square error of prediction
RMSEP) and mean absolute relative error of prediction (MAREP)
similar to Ref. [31,32]) are used to verify the calibration effect
hrough concentration prediction. The RMSEP is calculated as

MSEP =

√√√√ 1
N

N∑
n=1

(ϕn − Tn)2 (14)

The MAREP is calculated as

AREP = 1
N

N∑
n=1

∣∣∣ϕn − Tn

Tn

∣∣∣ (15)

here ϕn and Tn denote the predicted and actual concentration for
he nth sample, respectively.

. Experimental

.1. Electronic nose module

The metal oxide semiconductor gas sensors used in our e-nose
ystem consist of TGS series from FIGARO, USA. They are TGS2602,
GS2620 and TGS2201 with two outputs A and B (TGS2201A/B). In
ddition, a module (SHT2230 of Sensirion in Switzerland) with two
uxiliary sensors for temperature and humidity compensations is
lso used. The sensors were mounted on a custom designed printed
ircuit board (PCB), along with associated electrical components.
n analog-digital converter (AD) is used as interface between the
PGA processor and the sensors. The system can be connected to

 PC via a JTAG port. An additional flash memory is used to save

he weights and biases of the neural network trained on the PC and
he calibration transfer coefficients of each sensor. The data sets
or these gases are made up of samples in �6 space, it just means
hat an input vector with 6 independent variables was  obtained
1 neuron

f the neural network.

in each observation. The gases measurements are implemented
in the Constant Temperature and Humidity chamber (LRH-150S)
in which the temperature and humidity can be effectively con-
trolled in terms of the desired temperatures and humidity. In this
paper, six E-nose instruments with completely identical types of
sensors and electrical components are used for verifying the pro-
posed calibration model. For convenience of subsequent analysis,
one instrument is selected as the “master” which is recognized as
the standard instrument and the left five are named as “slave 1,
slave 2, slave 3, slave 4, slave 5” which will be calibrated accord-
ing to [10]. It is worth noting that all the six instruments would
employ the experiments together at the same time in the cham-
ber to ensure the consistence of the experimental samples on each
instrument.

3.2. Gas datasets

Three organic chemicals have been analyzed in calibration
step and prediction step: formaldehyde, benzene and toluene. The
experiments of sample collections are developed in the chamber.
The E-nose instrument should be exposed to each of the three
candidates in many different concentrations separately, and the
responses of the sensors are saved on PC in each measurement.
Totally, 243 measurements (dataset) including 125 formaldehyde
samples, 52 benzene samples and 66 toluene samples for each
instrument are measured in the same way. These samples are mea-
sured through different combinations of the target temperatures
of 15, 25, 30 and 35 ◦C and target humidity of 40, 60, 80 RH. The
total measurement cycle time for a single measurement was set
to 10 min, i.e. 2 min  reference air (baseline) and 8 min sampling.
Between two single measurements, 10 min for cleaning the cham-
ber through injecting clean air are also consumed. In one single
measurement, the temperature and humidity have little change
except the slightly fluctuation. Note that the calibration and pre-
0 50 100 150 200 250 300 350
Time (sec)

Fig. 2. Normalized sensor responses versus time with sensors exposed to hazardous
air.
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n the studies of calibration models, formaldehyde was  chosen as
eferenced gas.

. Results and discussion

.1. Sensor response calibration

Sensor response calibration indicates the projections from the
esponse of slave instruments to the response of the master instru-
ent. For on-line calibration among E-nose instruments, we select

ormaldehyde as reference gas and a certain number of transfer

amples are also needed for developing the calibration coefficients
sing the hybrid RWLS and KSS algorithm. Fig. 3 studies the calibra-
ion error (MRD in Eq. (10) of all sensors between slave instruments
nd the master after calibration) when using different number of

ig. 4. Calibration regression equations between slave 5 and the master using RWLS esti
ub-figure, the open symbols are the selected five transfer sample points; the line is the r
tors B 160 (2011) 899– 909 903

transfer samples. We can see that five transfer samples are enough
to perform a good calibration. More transfer samples would also
increase the experimental and calibration complexity in mass pro-
duction. Fig. 4 illustrates the linear regression curves of each sensor
between the slave 5 and the master using hybrid RWLS and KSS
algorithm on the selected five transfer samples. Each sub-figure in
Fig. 4 represents one type of sensor. Fig. 4 also demonstrates the
homogeneous linearity between multi-sensors systems and feasi-
bility of the proposed calibration transfer model.

Table 1 also presents the regression coefficients of another four
slaves (from slave 1 to slave 4). All squared correlation coefficient
r2 values are between 0.967 and 0.998 and there was  no statistically
significant difference (  ̨ = 0.05) between the master instrument
responses and calibrated responses from the slave instruments. Its
worth noting that all the instruments should use the same transfer
sample number (index 1, . . .,  5) obtained from the master dataset
by calling the KSS algorithm, namely, in subsequent calibration of
other slaves (from slave 1 to slave 5), the same samples number
(index 1, . . .,  5) should be used.

Table 2 presents the performance validation error of the remain-
ing 120 formaldehyde samples using the calibration coefficients
described in Fig. 4 and Table 1. Figs. 5–10 illustrate the steady state
response curves (single sensor) of the 120 formaldehyde samples
measured on the 6 instruments together, respectively; (a) denotes
the 6 curves before calibration; (b) denotes the 6 curves after cal-
ibration. That line with circles is the steady state response curve
of the master instrument which is recognized as the calibration
targets. In Table 2, the columns labeled “N” denote the mean rela-

tive difference (MRD) of all sensors and samples between the slave
instruments and the master without calibration, while the columns
labeled “Y” is with calibration. Through Table 2 and these figures
(Figs. 5–10), we  can find that the calibration coefficients developed

mator and five representative transfer samples selected by KSS algorithm. In each
egression of the five points.
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Table  1
Calibration transfer regression coefficients (calibration equation, y = ax + b).

Sensor slave 1-master slave 2-master slave 3-master slave 4-master

a b r2 a b r2 a b r2 a b r2

Humidity 0.9280 0.0136 0.9736 1.0073 −0.1056 0.9600 0.9903 −0.0091 0.9798 0.8125 0.0472 0.9714
Temperature 0.9929 0.0032 0.9952 1.0510 −0.0213 0.9974 1.0714 −0.0399 0.9944 0.9799 0.0220 0.9963
TGS2620 1.0126 −0.0156 0.9975 0.9848 0.0157 0.9939 1.0069 −0.0071 0.9988 1.0009 −0.0097 0.9983
TGS2602 0.9291 0.0540 0.9753 0.9482 0.0409 0.9922 0.8326 0.1178 0.9725 0.9161 0.0924 0.9778
TGS2201A 1.0687 −0.0666 0.9885 1.0516 −0.0581 0.9835 1.1283 −0.1323 0.9812 0.9719 0.0032 0.9913
TGS2201B 1.0381 −0.0671 0.9876 1.0356 −0.0317 0.9958 1.0030 −0.0254 0.9931 1.0096 −0.0272 0.9880
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Fig. 5. Humidity sensor responses with 120 samples measured before and after
calibration; six curves including five slaves and the master.
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Fig. 6. Temperature sensor responses with 120 samples measured before and after
calibration; six curves including five slaves and the master.
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Fig. 7. TGS2620 responses with 120 samples measured before and after calibration;
six curves including five slaves and the master.
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Fig. 8. TGS2602 responses with 120 samples measured before and after calibration;
six curves including five slaves and the master.

Table 2
Mean relative difference (MRD) of each sensor between the master instrument and the slaves.

Sensor Master-slave 1 Master-slave 2 Master-slave 3 Master-slave 4 Master-slave 5

N Y N Y N Y N Y N Y

Humidity 0.0550 0.0354 0.0968 0.0301 0.3539 0.0333 0.0439 0.0266 0.3038 0.0866
Temperature 0.0054 0.0047 0.0171 0.0052 0.0325 0.0055 0.0088 0.0041 0.0628 0.0162
TGS2620 0.0113 0.0032 0.0149 0.0057 0.0183 0.0047 0.0042 0.0026 0.0063 0.0038
TGS2602 0.0468 0.0242 0.1003 0.0226 0.1202 0.0324 0.0826 0.0286 0.0248 0.0132
TGS2201A 0.0347 0.0224 0.0309 0.0111 0.0535 0.0117 0.0594 0.0155 0.0245 0.0113
TGS2201B 0.0981 0.0298 0.0384 0.0110 0.0221 0.0207 0.0368 0.0171 0.0284 0.0128
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ig. 9. TGS2201A responses with 120 samples measured before and after calibra-
ion; six curves including five slaves and the master.

sing the selected five transfer samples successfully realized the
n-line response projections.

The responses of the master instrument are denoted by the line
ith circles, and other five slaves aim to approximate the master

nstrument by the calibration transfer coefficients. In actual appli-
ations of these five slave instruments, the calibration coefficients
, b would be saved on each slave instrument for on-line auto-
ated calibration. In mass production, all the slaves should be first

ocated in specific experimental environment in accordance with
he selected five transfer samples (index 1, . . .,  5) measured on the

aster instrument for determining the projection parameters of
ach slave instrument.

.2. Concentration prediction

In this section, the concentration prediction model is con-
tructed using the dataset measured on the master E-nose
nstrument using multilayered feed-forward artificial neural
etwork trained by error back-propagation algorithm. The train

rocess of ANN is automatically operated using Matlab toolbox
f neural network. The concentration prediction is also studied
ainly to find out the improved fitting ability of the five slaves
hen still using the same prediction model as the master after
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ig. 10. TGS2201B responses with 120 samples measured before and after calibra-
ion; six curves including five slaves and the master.
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using the presented on-line calibration transfer; in this case, the
importance and necessity of calibration transfer have also been
demonstrated. In this section, three organic chemicals datasets
were used for concentration measure: formaldehyde, benzene and
toluene. Thus, three single ANNs (ANN 1, ANN 2 and ANN 3) were
built for these three analytes, and the three ANNs should be trained
on their gas dataset individually. Considering the generalization of
ANNs, three sets of samples for each analyte have been classified:
training set, monitoring set and test set [28]. The monitoring set
is used to control the training process and avoid overfitting. In this
paper, the predicted and actual concentrations of 20 test samples
for each analyte are presented to test our calibration model. The
validation must be performed with the test set, composed of
samples not used in the ANN train and monitor. Once trained, the
obtained weights W1, W2 and bias vectors B1, B2 should be saved
on each E-nose instrument for calculating the concentrations of
analytes in real-time using Eqs. (11) and (12). The parameters of
each ANN consist of 6 input neurons, 10 hidden neurons and 1
output neuron (see Fig. 1). The maximum number of epochs is set
as 2000 and the convergence goal of each epoch in the training
process is set randomly between 0.0005 and 0.05.

Tables 3–5 present the formaldehyde concentrations of 20
test samples including the five slave instruments, the master
instrument and the actual (reference). To each table, the columns
labeled “N” denote the predicted concentration without calibration
process; while the columns labeled “Y” denote the predicted con-
centration with calibration. It is worthy noting that the predicted
concentration values on each slave instrument are calculated using
the same ANN 1, ANN 2 and ANN 3 as the master instrument. In
visual, Figs. 11–13 illustrate the predicted concentration curves of
20 test samples (slave 1, 2, 3, 4 and 5, master and actual) of three
analytes, respectively; (a) denotes the predicted and actual concen-
trations before calibration, and (b) denotes the same results as (a)
after calibration.

The line with circles denotes the actual concentrations (refer-
ence); the line with triangles indicates the predicted concentrations
of the master. Through Tables 3–5 and Figs. 11–13, we can find
that the predicted concentrations of the five slaves after calibration
become more close to the master and actual concentrations than
before. Also, we can believe that the calibration transfer coefficients
employed from slaves to the master can be fitted with formalde-
hyde, benzene and toluene. For error quantifications, Tables 6 and 7
present the RMSEP and MAREP values of the three measured ana-
lytes. Therein, the columns labeled “N” and “Y” denote the results
without and with calibration, respectively.

From the above two  tables (Tables 6 and 7), the RMSEP and
MAREP of predicted concentrations on the three analytes are
reduced significantly after calibration. The fitting ability of the
slaves to the prediction model trained on the master instrument
has been strengthened obviously. Thus, all the E-nose instruments
for air quality monitoring can share the same prediction model
(weights and biases of ANN) as the master instrument, and avoid
the repeated and complex ANN train process on each instrument.

In mass production, the on-line sensor calibration method
proposed here is based on a global affine transformation. The dif-
ference between global and local affine transformation is that the
slave instruments are calibrated in the whole sample space with-
out considering the piecewise linearity. Local transformation (e.g.
piecewise) can also be used in terms of different conditions (e.g.
types of hazardous gases and concentrations of gases). Through
experimental analysis, we find that the calibration model con-
structed by formaldehyde can also be directly applied to benzene

and toluene. For these three analytes, low, middle and high con-
centration predictions have been tested for calibration based on
global affine transformation. Note that acquirement of represen-
tative transfer samples using KSS algorithm should be built in a
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Table  3
Test of formaldehyde concentration estimation (concentration in ppm).

Sampling number slave 1 slave 2 slave 3 slave 4 slave 5 Master Actual

N Y N Y N Y N Y N Y – –

1 0.084 0.066 0.086 0.067 0.558 0.064 0.123 0.067 0.026 0.064 0.067 0.064
2  0.068 0.076 0.070 0.076 0.109 0.080 0.111 0.081 0.116 0.084 0.074 0.074
3 0.666 0.090 0.364 0.100 0.959 0.098 0.114 0.085 0.734 0.120 0.079 0.081
4 0.114 0.082 0.126 0.083 0.800 0.086 0.118 0.091 0.477 0.095 0.080 0.090
5 0.061 0.094 0.075 0.087 0.115 0.105 0.139 0.094 0.113 0.090 0.096 0.103
6  0.061 0.163 0.084 0.159 0.129 0.140 0.204 0.130 0.158 0.138 0.140 0.140
7  1.030 0.300 0.163 0.115 0.439 0.126 0.813 0.190 0.813 0.195 0.188 0.172
8  0.221 0.164 0.096 0.200 0.236 0.198 0.348 0.182 0.583 0.166 0.181 0.174
9 0.012 0.123 0.088 0.172 0.148 0.162 0.293 0.162 0.137 0.180 0.180 0.196

10 0.033 0.117 0.084 0.241 0.109 0.118 0.179 0.201 0.239 0.201 0.185 0.206
11 0.418 0.236 0.447 0.422 1.040 0.230 0.233 0.244 1.130 0.266 0.256 0.234
12  0.079 0.207 0.004 0.234 0.577 0.206 1.236 0.312 1.687 0.200 0.216 0.250
13 1.268 1.497 0.598 1.361 2.274 1.193 1.684 1.529 1.594 1.300 1.387 1.419
14  1.243 1.892 0.172 1.581 0.959 1.512 2.000 1.484 2.618 1.523 1.816 1.753
15  1.574 2.125 2.322 2.132 2.380 1.950 1.984 2.100 0.153 2.237 2.127 2.191
16  2.012 2.113 2.267 2.559 3.251 1.964 2.031 2.160 1.668 1.938 2.481 2.456
17  2.464 2.765 0.176 2.503 1.442 2.382 2.019 2.133 3.152 2.582 2.461 2.615
18  2.763 3.340 2.547 3.219 2.467 2.557 2.752 2.833 3.323 3.146 3.216 3.169
19 3.035 3.894 1.311 4.211 3.151 4.094 4.746 4.612 4.057 4.837 4.539 4.529
20  5.283 5.307 5.099 5.320 4.425 5.314 5.309 5.314 5.302 5.315 5.318 5.322

Table 4
Test performance of benzene concentration estimation (concentration in ppm).

Sampling number slave 1 slave 2 slave 3 slave 4 slave 5 Master Actual

N Y N Y N Y N Y N Y – –

1 0.126 0.181 0.131 0.180 0.207 0.184 0.127 0.179 0.236 0.170 0.181 0.172
2  0.172 0.278 0.232 0.283 0.451 0.275 0.276 0.324 0.302 0.281 0.301 0.281
3 0.342 0.499 0.400 0.522 0.680 0.529 0.416 0.513 0.534 0.517 0.519 0.500
4  0.696 0.861 0.810 0.910 1.259 0.873 0.770 0.860 0.884 0.833 0.918 0.911
5  0.114 0.179 0.054 0.179 0.023 0.222 0.014 0.235 0.105 0.168 0.165 0.172
6  0.189 0.287 0.246 0.300 0.367 0.303 0.224 0.310 0.264 0.294 0.279 0.281
7 0.335 0.442 0.483 0.507 0.712 0.454 0.435 0.487 0.418 0.493 0.499 0.500
8  0.725 0.871 0.974 0.922 1.288 0.840 0.787 0.872 1.002 0.922 0.956 0.911
9  0.125 0.220 0.157 0.182 0.323 0.196 0.217 0.195 0.245 0.216 0.199 0.172

10 0.303 0.492 0.361 0.524 0.698 0.512 0.427 0.510 0.562 0.502 0.490 0.500
11  0.668 0.893 0.776 0.916 1.010 0.876 0.618 0.900 0.797 0.891 0.897 0.911
12 0.108 0.181 0.156 0.179 0.327 0.181 0.199 0.185 0.250 0.191 0.183 0.172
13  0.149 0.301 0.242 0.277 0.414 0.294 0.253 0.305 0.272 0.303 0.301 0.281
14  0.352 0.463 0.401 0.505 0.745 0.512 0.455 0.511 0.511 0.470 0.538 0.500
15  0.715 0.928 0.804 0.932 0.909 0.845 0.556 0.900 0.784 0.876 0.873 0.911
16  0.098 0.170 0.147 0.183 0.253 0.211 0.155 0.188 0.317 0.236 0.209 0.172
17 0.146 0.272 0.215 0.294 0.377 0.256 0.231 0.266 0.265 0.259 0.272 0.281
18  0.233 0.469 0.343 0.467 0.592 0.445 0.362 0.512 0.370 0.363 0.429 0.500
19  0.683 0.845 0.802 0.923 1.080 0.868 0.661 0.801 0.748 0.763 0.912 0.911
20  0.065 0.174 0.077 0.176 0.264 0.172 0.161 0.172 0.133 0.168 0.149 0.172

Table 5
Test performance of toluene concentration estimation (concentration in ppm).

Sampling number slave 1 slave 2 slave 3 slave 4 slave 5 Master Actual

N Y N Y N Y N Y N Y – –

1 0.068 0.055 0.059 0.054 0.065 0.053 0.047 0.055 0.067 0.051 0.055 0.052
2  0.069 0.043 0.047 0.049 0.077 0.048 0.075 0.049 0.066 0.045 0.049 0.052
3  0.183 0.092 0.098 0.084 0.120 0.092 0.107 0.093 0.149 0.086 0.090 0.086
4  0.292 0.149 0.152 0.148 0.191 0.143 0.175 0.142 0.294 0.140 0.147 0.143
5  0.076 0.062 0.072 0.067 0.076 0.062 0.076 0.059 0.074 0.059 0.063 0.067
6 0.093 0.069 0.077 0.063 0.088 0.070 0.087 0.064 0.099 0.068 0.073 0.067
7  0.157 0.134 0.101 0.137 0.129 0.139 0.123 0.134 0.189 0.131 0.132 0.143
8  0.084 0.062 0.063 0.055 0.088 0.062 0.087 0.060 0.093 0.063 0.065 0.052
9  0.109 0.067 0.079 0.068 0.099 0.067 0.094 0.063 0.124 0.071 0.073 0.076

10  0.276 0.132 0.153 0.141 0.189 0.131 0.172 0.111 0.330 0.142 0.148 0.143
11 0.082 0.057 0.049 0.052 0.075 0.050 0.063 0.046 0.067 0.047 0.052 0.052
12  0.107 0.063 0.075 0.064 0.095 0.059 0.087 0.056 0.121 0.065 0.063 0.067
13  0.106 0.066 0.074 0.064 0.093 0.064 0.086 0.058 0.102 0.062 0.067 0.067
14  0.267 0.124 0.138 0.129 0.177 0.122 0.161 0.103 0.312 0.127 0.128 0.133
15  0.078 0.059 0.053 0.058 0.076 0.055 0.065 0.059 0.076 0.053 0.059 0.067
16  0.108 0.071 0.070 0.075 0.098 0.071 0.089 0.063 0.131 0.071 0.076 0.076
17  0.207 0.109 0.116 0.137 0.161 0.116 0.152 0.097 0.286 0.122 0.131 0.143
18  0.097 0.051 0.057 0.048 0.094 0.059 0.087 0.058 0.122 0.051 0.054 0.052
19 0.097 0.061 0.059 0.069 0.095 0.059 0.085 0.057 0.129 0.062 0.064 0.067
20  0.129 0.068 0.067 0.076 0.108 0.066 0.095 0.061 0.186 0.073 0.074 0.076
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Fig. 11. Performance of predicted concentrations on test samples (before and after calibration) of formaldehyde.

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

Sampling Points

C
on

ce
nt

ra
tio

n 
va

lu
e (a)before calibration

 

 

slave 1

slave 2

slave 3

slave 4

slave 5

master

actual

0 2 4 6 8 10 12 14 16 18 200

0.5

1

Sampling Points

C
on

ce
nt

ra
tio

n 
va

lu
e (b)after calibration

Fig. 12. Performance of predicted concentrations on test samples (before and after calibration) of benzene.
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Fig. 13. Performance of predicted concentrations on test samples (before and after calibration) of toluene.

Table 6
RMSEP of the three measured analytes.

RMSEP slave 1-actual slave 2-actual slave 3-actual slave 4-actual slave 5-actual Master–actual

N Y N Y N Y N Y N Y –

Formaldehyde 0.4743 0.1782 1.0048 0.1014 0.6695 0.2282 0.3440 0.1641 0.7113 0.1484 0.0439
Benzene 0.1580 0.0299 0.0880 0.0140 0.1782 0.0363 0.1386 0.0358 0.0828 0.0535 0.0269
Toluene 0.0655 0.0101 0.0136 0.0041 0.0294 0.0093 0.0214 0.0163 0.0866 0.0078 0.0059
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Table  7
MAREP of the three measured analytes.

MAREP slave 1-actual slave 2-actual slave 3-actual slave 4-actual slave 5-actual Master–actual

N Y N Y N Y N Y N Y –
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ig enough sample space so that the selected transfer samples
an represent the whole range of concentrations being moni-
ored. However, calibration accuracy may  be reduced slightly. The
xperimental results demonstrate the good performance of global
alibration transfer. Consider the unknown concentration of haz-
rdous gas in real-time, its difficult for local affine transformation
o determine different calibration model using piecewise linearity
n terms of different stages of concentrations, and it needs a further
esearch in the future work.

. Conclusions

Due to the instrumental signal shift, when used the well studied
oncentration prediction network based on the referenced master
nstrument, the new instrument can not perform good concen-
ration prediction or even display false concentrations. So, this
aper addresses the critical issue of calibration transfer among
lectronic nose instruments based on the assumption that homoge-
eous linearity of E-nose multi-sensors system. A high performance
f on-line sensor calibration transfer model used for indoor air
uality monitoring through global affine transformation based
n robust weighted least square algorithm and Kennard–Stone
equential sample subset selection algorithm is proposed. Six E-
ose instruments, including one master instrument and five slave

nstruments designed with the same types of sensors and other
lectrical components, were used to evaluate the performance of
he proposed model. Simulated and experimental results for con-
entration estimation in real-time confirmed the efficiency of the
roposed calibration transfer models and the enhanced intelli-
ence of E-nose. The instrumental related signal shifts have been
educed significantly through the calibrated sensor responses and
lso proved our initial assumption of homogeneous linearity. In
ass calibrations of instruments not limited in the E-nose sys-

em with metal oxygen semiconductor gas sensors, the proposed
ethod can also be used in other systems according to the follow-

ng three steps. First, a master instrument (standard instrument)
hould be determined. Second, a certain number of transfer sam-
les (five in this paper) should also be needed in calibration through
SS algorithm when a new instrument (slave instrument) comes.
inally, the proposed method is directly used onto the obtained
ransfer samples measured on the master instrument and slave
nstrument to calculate the calibration coefficients. The calibration
oefficients can be feasible in long term. This paper presents three
hemical analytes to validate our method by an electronic nose with
etal oxygen semiconductor sensors. The applicability of the pro-

osed model still remains to be validated for real applications and
easurements of other kinds of substances.
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