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Abstract
Purpose – The purpose of this paper is to present a novel concentration estimation model for improving the accuracy and robustness of low-cost
electronic noses (e-noses) with metal oxide semiconductor sensors in indoor air contaminant monitoring and overcome the potential sensor drift.
Design/methodology/approach – In the quantification model, a piecewise linearly weighted artificial neural network ensemble model
(PLWE-ANN) with an embedded self-calibration module based on a threshold network is studied.
Findings – The nonlinear estimation problem of sensor array-based e-noses can be effectively transformed into a piecewise linear estimation
through linear weighted neural networks ensemble activated by a threshold network.
Originality/value – In this paper, a number of experimental results have been presented, and it also demonstrates that the proposed model has
very good accuracy and robustness in real-time indoor monitoring of formaldehyde.
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Introduction
Indoor air quality is attracting people’s attention in recent
years. As we know that new furniture, the wall with new paint
and the new floors in a new house with fitment will release
chemicals such as formaldehyde, benzene and toluene.
Especially, as a kind of harmful gas to a human’s health,
formaldehyde occupies a larger proportion in the pollutant gas
mixture. Therefore, accurate detection of the contents of
formaldehyde indoor in real-time becomes the essential task in
this work. Electronic nose (e-nose), as an artificial olfaction
system, has a wide range of applications. For instance, e-nose
has been used in food quality testing (Berna, 2010; Di Natale
et al., 1997; Gomez et al., 2008), discrimination of tea (Yu and
Wang, 2007) and milk (Ampuero and Bosset, 2003),
environmental monitoring (Zhang et al., 2011, 2012; De Vito
et al., 2008; Zhang et al., 2013, 2011), medical treatments and
diagnosis (Gardner et al., 2000; D’Amico et al., 2010), etc.

This paper concentrates on the study of indoor formaldehyde
detection using the proposed e-noses developed in our lab. Our
e-noses are designed based on metal oxide semiconductor gas
sensors arrays consisting of four gas sensors (TGS2620,
TGS2602, TGS2201A and TGS2201B). In addition, a
temperature–humidity module is also embedded to sense the
ambient temperature and relative humidity indoor. The
cross-sensitivity and broad spectrum characteristic of gas

sensors array make the gas detection possible. In recent years,
new publications on qualitative analysis of various gases using
e-noses have been proposed by many researchers (D’Amico
et al., 2010; Röck et al., 2008; Brudzewski et al., 2012; Güney
and Atasoy, 2012; Cano et al., 2011; Ehret et al., 2011; Chen
et al., 2011). However, concentration estimation for
quantification analysis is always a challengeable task compared
with qualitative analysis in e-nose. To our knowledge, artificial
neural network (ANN) has been widely used for concentration
estimation (Yea et al., 1997; De Vito et al., 2007; Gao and
Chen, 2007; Gao et al., 2012; Huyberechts et al., 1997; Pardo
et al., 2000) due to its nonlinear approximation ability.
Generally, ANN was used for regression between responses of
sensors array and the true concentrations, and then the
learned weights of ANN would be transferred to the e-nose
system for concentration estimation of unknown samples.

However, ANN is sensitive to environmental noise and cannot
perform good detection in its usage; thus, it is trained using a few
samples. Moreover, in practical application, the robustness is a
very important characteristic of e-noses. Thus, this paper
presents a novel quantification model in e-nose based on ANNs
and aims to overcome the flaw of ANN’s noise sensitivity and
improve the stability of e-nose, although it is a new finding to
apply ANN in an e-nose for prediction. In actual e-nose
application for environmental monitoring, both accuracy and
robustness should be equivalently important in technical
assessment. In terms of the nonlinear e-nose system and the
strong nonlinear regression ability of ANN, we propose
a piecewise linearly weighted ANN ensemble modelThe current issue and full text archive of this journal is available at
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(PLWE-ANN) with characteristics of global linearity and local
nonlinearity for formaldehyde concentration estimation by an
e-nose. In the proposed ANN ensemble model, a threshold
network is designed to make decisions on which prediction
equation internally should be selected for usage. Accordingly,
an embedded self-calibration module is also proposed for
compensating the attenuation of the threshold network output
and promising the reliability of the PLWE-ANN ensemble
model.

Materials and methods

E-nose
The e-nose system has been introduced in our previous
publication (Zhang et al., 2012). The sensor array in an e-nose
system consists of four metal oxide semiconductor gas sensors
with TGS series including TGS2602, TGS2620, TGS2201A
and TGS2201B. In addition, a module with two auxiliary
sensors for sensing ambient temperature (T) and humidity
(H) is also used. A 12-bit analog–digital converter is used as
the interface between the field programmable gate array
(FPGA) processor and the sensors. FPGA can be used for
data collection, storage and processing. The e-nose system is
then connected to a laptop via a joint test action group
(JTAG) port which can be used for transferring data and
debugging programs. The e-nose instruments developed in
our laboratory are illustrated in Figure 1.

The proposed ensemble model
The proposed PLWE-ANN ensemble model in this paper is
essentially designed with four ANNs: ANN1, ANN2, ANN3

and ANNthreshold (threshold network). Note that ANN1,
ANN2 and ANN3 are the predictive units in the PLWE-ANN
model for concentration estimation through a weighted
scheme. The structure of the PLWE-ANN model is described
in Figure 2.

The mathematical representations of the PLWE-ANN
model is shown by:
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where, ŷ denotes the estimated concentration; yi(i�1,2,3)
denotes the output of the ANNi; wi

j (i�1,2,3; j�1 . . . , n)
denotes the weight coefficient of the ANNiin the jth section; dj

(j�1 . . . , n) denotes the constant value in the jth section; yth

denotes the output of the ANNthreshold; aj (j�1 . . . , n)
(a1�a2� . . .�an) denotes the fixed threshold value in the jth

section; and n denotes the total number of sections of
PLWE-ANN model. Each section corresponds to a given
prediction equation.

From equation (1), we can find from the PLWE-ANN model
that the concentration estimation is used through a series of
multivariate linear regression equations constructed between the
outputs of the three ANNs and the true concentration. Note that
each ANN is trained between a sensor response vector and the
true concentration. Thus, a nonlinear estimation problem of an
e-nose can be transformed into a simplified piecewise linearly
weighted estimation problem, and the robustness and precision
of the e-nose prediction can be effectively improved. Through
the long-term observations of e-nose experiments, we set three
fuzzy partitions of concentrations:
1. low concentration (0-0.3 ppm);
2. medial concentration (0.3-5 ppm); and
3. high concentration (5-20 ppm).

Then, the threshold values aj (j�1 . . . ,n), the weights wi
j

(i�1,2,3; j�1 . . . ,n) and the constants dj (j�1 . . . ,n) in the
proposed PLWE-ANN model can be obtained through a
multivariate linear regression method.

From the constructed PLWE-ANN model, we can find that
the threshold network ANNthreshold plays a very important role
in e-nose prediction because it decides the specific section for
robustness. Considering that the ANNthreshold’s attenuation
resulting from the long-term sensor drift or sensor
replacements in e-nose exists, and incorrect decision of the
desired concentration section in the PLWE-ANN model
would happen; thus, the final concentration estimation ŷ of
e-nose would become inaccurate due to the incorrectly used

Figure 1 E-nose instruments developed in our laboratory

Figure 2 Structure of the PLWE-ANN ensemble model
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prediction equation. Therefore, a self-calibration module with
adaptive correction of the ANNthreshold output is also
proposed to improve the concentration estimation in
long-term use of the developed e-nose instrument and
partially overcome the problem of sensor replacement.

Self-calibration module
For simplification of the self-calibration module, the
correction method is proposed in a linear way, which is shown
as:

ŷth � AC·�yth � AB� (2)

where, AC and AB are the being-adjusted coefficients of the
self-calibration model, ŷth is the corrected value of the
ANNthreshold output yth. Then, the deduced PLWE-ANN
model with the self-calibration module is presented as follows:
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Due to the existence of a long-term sensor drift, calibration
coefficients AC and AB should be adjusted adaptively.
Therefore, the proposed experimental method for acquisition
of AC and AB is illustrated in the following part.

Assume the actual output of the ANNthreshold to be yth, and
the desired output to be ŷth . Due to that, ŷth and yth are easier
to be obtained, and the two steps for determination of the
calibration coefficients are shown as follows:
● Step 1. Calculate the coefficient AB of baseline calibration.

The e-nose should be exposed to clean air, the initial AC is
set as 1 and the desired output ŷth of ANNthreshold should
be 0. That is, ŷth � 0 . Then, according to equation (2),
yth-AB � 0¡AB � yth.

● Step 2. Calculate the coefficient AC of sensitivity calibration.
The e-nose should be exposed to a chamber with a certain
formaldehyde concentration C (C should be known in the
experiment), then the desired value of ŷth can be estimated by
setting ŷ � C in equation (3) and other known parameters of
the PLWE-ANN model. According to equation (2), AC can
be calculated by:

AC �
ŷth

y'th � AB
(4)

where, y'th is the current estimation value of ANNthreshold.
From above analysis, we can find AB and AC that were used

for correcting the baseline (exposed to clean air) and
sensitivity (exposed to contaminants) of ANNthreshold,

respectively. In this case, the self-calibration module can
partially deal with the sensor drifts, including baseline drift
and sensitivity drift, and sensor shifts caused by sensor
replacement.

Learning of ANN
In the proposed PLWE-ANN model, the structure of the four
neural networks (ANN1, ANN2, ANN3 and ANNthreshold) is
totally set as 24-10-10-1 with two hidden layers used. The
numbers of input neurons, the 1th hidden neurons, the 2th

hidden neurons and output neurons are set as 24, 10, 10 and
1, respectively. Note that the number 24 represents the
number of input variables, and the number 1 represents one
kind of formaldehyde concentration. Back-propagation
algorithm is used for ANN training, the “log-sigmoid”
function is used as the transfer function in the two hidden
layers and the linear “purelin” function is used as the transfer
function in the output layer.

To improve the diversity of ANN1, ANN2 and ANN3, the
training samples for each network are different according to
the concentration value. ANN1, ANN2 and ANN3 are learned
by experimental samples with true low concentration (� 0.3
ppm), true median concentration (0.3-0.6 ppm) and true high
concentration (� 0.6 ppm), respectively. In the proposed
PLWE-ANN model, the threshold network ANNthreshold

plays a more important role than other three ANNs; thus, the
ANNthreshold is trained using the total experimental samples so
that it can be used to make decisions on specific prediction
equations of the PLWE-ANN model in the whole
concentration level. In this case, three ANNs can effectively
contribute to the final estimation by assigning them
appropriate weights in each concentration section of the
PLWE-ANN model.

Data analysis
In data analysis, we evaluate the proposed model using
absolute error (AE, ppm), relative absolute error (RAE, per
cent), mean relative absolute error (MRAE, per cent),
variance of AE (VAE) and variance of RAE (VRAE).

Assume that the true concentration value of the jth sample (j
is the validation sample index, j�1 . . . ,N) is denoted as Cj

(ppm) and the estimated concentration is denoted as ŷj (ppm),
then AEj, RAEj per cent, MAE, MRAE (%), VAE and VRAE
can be calculated by the following equations:

AEj � �ŷj � Cj�, j � 1, . . . , N (5)
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�ŷj � Cj�
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Experimental data
The gaseous experiments of e-nose in this paper were
conducted in the constant temperature and humidity chamber
(LRH-150S), which can automatically adjust the temperature
and humidity. The target gas is collected in a gas bag and then
injected to the chamber through a flowmeter. A fan is fixed in
the chamber for purging to make the gas diffuse evenly. In
total, 10 minutes are consumed in each experiment for
obtaining one sample. The specific experimental procedures
can be illustrated as follows:
● Stage 1. Gas preparing and collection: collect each target gas

in a bag, and dilute each target gas using pure nitrogen (N2).
● Stage 2. Data collection (major part): in this stage, there are

several steps shown as follows:
– Step 1. Set the initial temperature and humidity

of the chamber. To obtain the sample data by
simulating the real environment, all samples are
measured at the target temperatures of 15, 25, 30
and 35 degrees and target humidity of 40, 60 and
80 per cent relative humidity, through different
combinations of these target temperatures and
humidity.

– Step 2. Turn on the e-nose system until the
temperature and humidity in the chamber reach the
initial setting, and then use the sensor baseline
collection for 2 minutes.

– Step 3. Inject target gas by using a flowmeter. Then,
the sensors will have a quick response to target gas
and until the sensors reach a steady-state response
after about 8 minutes. Therefore, one experiment
of sample collection would sustain 10 minutes
totally. The steady-state response is also the
extracted feature to represent the gas texture for
pattern analysis.

● Stage 3. Air exhaust and chamber cleaning: after one
experiment of sample collection, air exhaust by a pump
is necessary for chamber cleaning to recover the sensor
response as quick as possible.

● Stage 4. Data transferring to PC: sensor response data in
one experiment is transferred to the PC conveniently
through a JTAG connected between the e-nose and the
PC for data analysis.

For ANN model learning, in e-nose experiments, we used 126
formaldehyde samples mentioned by Zhang et al., 2011, and
each experiment was conducted in the constant temperature
and humidity chamber. For feature selection, three points at
the steady-state response are extracted from each sensor; for
each sample, its concentration (unit: ppm) is obtained using
the spectrophotometer which can analyze the collected
formaldehyde liquor through a gas sampler.

For testing of the approximated linearity of ANNthreshold

with the true concentration, two experiments were conducted
by injecting formaldehyde gas from low to high concentrations
gradually. In the first experiment, 24 samples (0-3 ppm) were
obtained; for the second, 34 samples (0-2 ppm) were
obtained. Besides, to validate the validity and robust

performance of the proposed PLWE-ANN concentration
estimation model, 60 samples (six samples were measured in
each e-nose) using 10 e-nose instruments with completely the
same type developed in our laboratory were designed.

Results and discussion
From the principle of the proposed model, the ANNthreshold

makes key decisions on the specific sections of PLWE-ANN
model. Therefore, it should have a good linearity with the true
concentrations and promise the correct decision. As can be
seen in Figure 3(a and b), they prove the potential linearity of
ANNthreshold with the true concentrations from two
experiments. Figure 3(a) presents the first experiment in
which 24 samples between 0 and 3 ppm are collected, and the
other experiment was shown in Figure 3(b), which includes 34
samples between 0 and 2 ppm. In Figure 3, the prediction of
ANNthreshold can effectively follow the true concentrations in a
linear way, and it means that the ANNthreshold obtained in this
paper is a good choice to control the specific section in the
proposed model.

The parameters of PLWE-ANN model in equation (1) are
presented in Table I. In total, 18 sections are obtained
including high concentration estimation from sections 1 to 4
(5 � yth � 20 ppm), median concentration estimation from
sections 4 to 15 (0.3 �yth � 5 ppm) and low concentration
estimation from sections 15 to 18 (0.005 � yth � 0.3 ppm).
Besides, we take the estimation level yth � 0.005 ppm as the
baseline prediction in clean air.

The prediction results of the 60 samples using the proposed
PLWE-ANN model are shown in Figure 4. We can find from
Figure 4 that the final predictions can approximate the true
values very well. For quantitative evaluation of the prediction
performance, Table II presents the specific validation results
of all the experimental samples. Besides, the true values, the

Figure 3 Approximated linearity test between the output of ANNthreshold

and the true concentration
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estimated values, the RAE and absolute errors AE for all
samples are included.

For visualization of the predictive performance, we have
presented the bar plots of the RAE and AE in Figure 5(a and
b), respectively. In Figure 5, the samples have been rearranged
according to the concentrations from low to high so that we
can see the prediction error in different concentration levels.
For instances, the relative error is larger in low concentration,
while the absolute error is larger in high concentration
which can be easy to understand according to computations
shown in equations (5) and (6). Through the equations
(7–10), we can obtain that the MRAE is 16.76 per cent, the
VRAE of RAE is 1.45 per cent, the MAE is 0.09 ppm and
the VAE of AE is 0.0077 ppm. The VRAE shows the
uniform error distribution for the total samples from 10

e-nose instruments with completely the same type
developed in our laboratory.

Besides, we present the proportions of samples in four
different relative error grade 0-10, 10-20, 20-30 and 30-50 per
cent in Table III, respectively. We can find that the proportion
of 85 per cent was obtained with the relative error � 30 per
cent. The proportions of samples and mean relative absolute
error in low (0-0.3 ppm), median (0.3-0.6 ppm) and high
concentration (� 0.6 ppm) levels are included in Table IV.
We can see that the mean relative absolute errors are 23.9,
16.7 and 14.2 per cent in low, median and high concentration
levels, respectively. We also use the statistical analysis with a
confidence level of 95 per cent, as shown in Figure 6. The
statistical results demonstrate the final concentration
estimations that show a very good linear regression with the
true values. These results demonstrate that the proposed
PLWE-ANN model does not only have a good accuracy but
also has good robustness in different concentration levels
validated on multiple e-nose instruments.

In e-nose research, the robustness in actual application,
especially in quantity of e-nose instruments, is also important.
Nonlinear methods may show a seemingly good prediction,
however, the robustness cannot be promised due to the
broad-spectrum response characteristic of metal oxide
semiconductor gas sensors which are sensitive to many kinds of
gases and is easy to be affected by environmental elements such
as temperature, humidity and pressure. Linear methods may
have good robustness in actual prediction; however, the accuracy
cannot be promised because of the strong nonlinearity of
multiple sensors system in an e-nose. Therefore, a new
prediction method is proposed based on an effective fusion of
nonlinearity and linearity in this paper. The fusion means that the
model for the whole (globally) is linear in robustness and
nonlinear to its internal units (locally) in accuracy. The
quantification of e-nose largely depends on the reliability of
ANNthreshold which decides the performance of the proposed
PLWE-ANN concentration estimation model. First, it is very
necessary to gain an obviously good linearity of ANNthreshold with
the true concentration in the model. Second, the ANNthreshold

should have a good stability after its long-term use. Note that we
embed the self-calibration model for ANNthreshold so as to
improve its stability and avoid the possible attenuation results
from the sensor drift after aging and sensor shift caused by sensor
replacement. From the real validation results analyzed from 10
e-nose instruments, we can say that the proposed model is
competent in e-nose prediction in accuracy and robustness.

Conclusions
In this paper, we propose a novel PLWE-ANN model with an
embedded self-calibration module in e-noses for concentration
estimation of formaldehyde. Unlike the single ANN, this
proposed model is linear globally and nonlinear locally, and the
ensemble model has better robustness than the single ANN. For
improving the robustness and accuracy of e-nose prediction,
we designed three expert ANNs as the prediction units in the
model for accurate concentration estimation in each
concentration level. Besides, the sensor drift after aging and
the sensor shift caused by sensor replacement (i.e.
discreteness) will also influence the long-term stability and

Table I Parameters of the PLWE-ANN ensemble model

Section i w1
i w2

i w3
i di ai

1 0.1 0.4 1.0 3.6 20
2 0.1 0.4 1.0 3.2 15
3 0.1 0.4 1.0 2.8 10
4 0.1 0.4 1.0 2.4 5.0
5 0.1 0.4 1.0 2.2 4.5
6 0.1 0.4 1.0 2.0 4.0
7 0.1 0.4 1.0 1.8 3.5
8 0.1 0.4 1.0 1.6 3.0
9 0.5 0.5 1.0 1.4 2.5

10 0.5 0.5 1.0 1.2 2.0
11 0.5 0.5 1.0 1.0 1.5
12 0.5 0.5 1.0 0.8 1.0
13 0.5 0.5 1.0 0.7 0.8
14 0.5 0.5 1.0 0.6 0.5
15 0.5 0.5 1.0 0.4 0.3
16 1.0 0.4 1.0 0.2 0.1
17 0.8 0.5 1 0.1 0.03
18 0.5 0.1 0.5 0.03 0.005

Figure 4 Formaldehyde concentration prediction of the proposed
PLWE-ANN ensemble model
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quantity application of e-noses. Therefore, an embedded
self-calibration module is proposed for correcting the
ANNthreshold’s attenuation in baseline and sensitivity of the
proposed PLWE-ANN model. Experimental results

Figure 5 Bar plots of relative estimation error and absolute
estimation error

Table III Proportions of samples in total validation samples with different
RAE grades

RAE grades (per cent) Number of samples Proportion (per cent)

0-10 20 33.33 (20/60)
10-20 19 31.67 (19/60)
20-30 12 20 (12/60)
30-50 9 15 (9/60)

Table IV MRAE of prediction in low, median and high concentration
grades of formaldehyde

Concentration grades Number of samples
Proportion
(per cent)

MRAE
(per cent)

Low (0, 0.3 ppm) 15 25 23.9
Median (0.3, 0.6 ppm) 19 31.67 16.7
High (0.6, 5 ppm) 26 43.33 14.2

Figure 6 Regression and statistical analysis of estimated and true
concentrations

Table II Validation results of formaldehyde concentration estimation using the proposed PLWE-ANN ensemble model

j Cj ŷj AEj RAEj j Cj ŷ j AEj RAEj j Cj ŷ j AEj RAEj

1 0.60 0.74 0.14 23.3 21 0.65 0.60 0.05 7.69 41 0.33 0.28 0.05 15.1
2 1.10 1.20 0.09 9.09 22 0.62 0.55 0.07 11.214.2 42 0.29 0.28 0.01 3.44
3 1.61 1.74 0.13 8.07 23 0.07 0.06 0.01 40.7 43 0.50 0.50 0.00 0.00
4 0.53 0.45 0.08 15.0 24 0.27 0.38 0.11 46.1 44 0.41 0.50 0.09 21.9
5 0.90 0.86 0.04 4.44 25 0.26 0.38 0.12 12.7 45 0.75 0.73 0.02 2.66
6 0.50 0.40 0.10 20.0 26 0.55 0.48 0.07 5.88 46 0.67 0.73 0.06 8.95
7 1.10 1.14 0.04 3.63 27 0.51 0.48 0.03 8.97 47 1.00 0.88 0.12 12.0
8 0.27 0.29 0.02 7.40 28 0.78 0.85 0.07 14.8 48 0.86 0.87 0.01 1.16
9 0.85 0.83 0.02 2.35 29 0.74 0.85 0.11 37.5 49 0.71 0.76 0.05 7.04

10 0.25 0.34 0.09 36.0 30 0.08 0.05 0.03 23.0 50 0.03 0.03 0.00 0.00
11 0.22 0.32 0.10 45.4 31 0.26 0.20 0.06 16.0 51 0.04 0.03 0.01 25.0
12 0.43 0.51 0.08 18.6 32 0.25 0.21 0.04 12.5 52 0.36 0.35 0.01 2.77
13 0.38 0.49 0.11 28.9 33 0.48 0.42 0.06 2.17 53 0.58 0.64 0.06 10.3
14 0.49 0.65 0.16 32.6 34 0.46 0.45 0.01 25.3 54 0.60 0.65 0.05 8.33
15 0.46 0.63 0.17 36.9 35 0.71 0.53 0.18 18.4 55 0.79 0.85 0.06 7.59
16 0.04 0.04 0.00 0.00 36 0.65 0.53 0.12 30.0 56 0.75 0.85 0.10 13.3
17 0.20 0.28 0.08 40.0 37 1.40 0.98 0.42 25.5 57 0.95 1.06 0.11 11.5
18 0.50 0.37 0.13 26.0 38 1.33 0.99 0.34 22.8 58 0.91 1.06 0.15 16.4
19 0.44 0.36 0.08 18.1 39 1.27 0.98 0.29 20.0 59 1.34 1.68 0.34 25.3
20 0.68 0.55 0.13 19.1 40 0.05 0.04 0.01 60 1.27 1.54 0.27 21.2
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demonstrate the effectiveness of the proposed estimation model
in quantity of e-nose instruments.
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