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Abstract—The electronic nose (E-nose), as a metal oxide
semiconductor gas sensor system coupled with pattern recogni-
tion algorithms, is developed for approximating artificial olfaction
functions. Ideal gas sensors should be with selectivity, reliability,
and cross-sensitivity to different odors. However, a new problem
is that abnormal odors (e.g., perfume, alcohol, etc.) would show
strong sensor response, such that they deteriorate the usual usage
of E-nose for target odor analysis. An intuitive idea is to recog-
nize abnormal odors and remove them online. A known truth is
that the kinds of abnormal odors are countless in real-world sce-
narios. Therefore, general pattern classification algorithms lose
effect because it is expensive and unrealistic to obtain all kinds
of abnormal odors data. In this paper, we propose two sim-
ple yet effective methods for abnormal odor (outlier) detection:
1) a self-expression model (SEM) with l1/l2-norm regularizer is
proposed, which is trained on target odor data for coding and
then a very few abnormal odor data is used as prior knowledge
for threshold learning and 2) inspired by self-expression mecha-
nism, an extreme learning machine (ELM) based self-expression
(SE2LM) is proposed, which inherits the advantages of ELM
in solving a single hidden layer feed-forward neural network.
Experiments on several datasets by an E-nose system fabricated
in our laboratory prove that the proposed SEM and SE2LM
methods are significantly effective for real-time abnormal odor
detection.

Index Terms—Electronic nose (E-nose), extreme learning
machine (ELM), odor detection, self-expression.

I. INTRODUCTION

DURING the past two decades, the electronic nose (E-
nose) as a kind of artificial olfaction system, has been

explored in depth from the viewpoints of applications, systems
and algorithms. Artificial olfaction system constructed by
a model nose was originally proposed to mimic biological
olfactory mechanism in 1982 [1]. The definition of artificial
olfaction was further validated by Gardner and Bartlett [2],
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who claimed that an E-nose was an instrument comprising of
an array of chemical sensors with partial specificity and a pat-
tern recognition system, for recognizing simple or complex
odors.

A. Background

Gas sensor technology and artificial intelligence are the
research foundation of artificial olfaction systems (i.e., an
E-nose). An E-nose has been widely applied in a number of
applications, such as food/beverage quality control (e.g., milk
analysis, tea analysis, meal analysis, etc.) [3]–[5], environ-
mental monitoring (e.g., gas analysis, air quality monitoring,
etc.) [6]–[10], medical diagnosis (e.g., diabetes analysis, can-
cer analysis, etc.) [11]–[13], and public safety monitoring (e.g.,
tobacco, explosive, etc.) [14], [15]. So far, a number of E-nose
systems have been developed by researchers with different
kinds of sensors [16], implementation strategies [17], [18],
and hardware platform [19]. In our previous work [9], the
E-nose system and experimental setup for odor data collec-
tion have been presented. In this paper, we aim at solving the
abnormal odor disturbance detection in this community based
on the proposed E-nose system.

Currently, there are commonly three challenging problems
in the E-nose community, which are summarized as 3-D (i.e.,
discreteness, drift, and disturbance) issue in [20]. Specifically,
the discreteness issue has been well handled in recent years by
using calibration transfer methods [21]–[24]. The drift issue
is currently a hot problem in E-noses, which is recognized
to be time-varying noise and difficult to be described by
some deterministic models. A number of different methods
have been proposed by researchers to compensate and pro-
cess the drift [25]–[29], and big progress has been achieved
by using transfer learning techniques. However, for the dis-
turbance issue (i.e., abnormal odors), there is little work in
E-noses [30], [31], [45]. Specifically, Zhang et al. [30] and
Phaisangittisagul and Nagle [45] followed a general classifi-
cation route and simply take abnormal odors as one class, but
neglect that there are thousands of abnormal odors which are
impossible to collect. Tian et al. [31] attempted to establish
a self-correspondence by using a regression idea, i.e., predict-
ing one sensor by using other sensors based on the target sam-
ples, but neglect the intrinsic independence between sensors.
This disturbance issue is closely related to the cross-sensitivity
characteristics of gas sensors. Generally speaking, during the
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target gases sensing by an E-nose system, the gas sensors show
strong response when exposed to the disturbances (abnormal
odors, e.g., perfume, alcohol, etc.). Consequently, the sensors
are seriously deteriorated and the target odor detection by an
E-nose comes to a failure in such application scenarios. In
this paper, we would focus on the abnormal odor detection
and improve the E-nose performance in complex application
scenarios (i.e., with abnormal odors).

B. Problem Statement

As claimed above, we target at solving the disturbance (i.e.,
abnormal odors) problem in E-nose. An intuitive idea is to
recognize the abnormal odors, because the abnormal odors
are with large intervariance by comparing to target odors (i.e.,
normal odors) that are detected by an E-nose of the same
type. With this idea, it may not be difficult to have a rational
strategy based on appropriate pattern recognition algorithms
to train a model for classification, by treating abnormal odors
as one class and target odors as another class. However, we
have to face with the fact that there are so many kinds of
disturbances (countless) appeared in real-world air scenarios,
such that the discrimination between target odors and abnor-
mal odors cannot be simply recognized as a general pattern
recognition problem, because it is expensive and unrealistic
to acquire all kinds of abnormal odor data. Therefore, abnor-
mal odor detection without “seeing” some prior knowledge
of abnormal odor patterns is currently an open and urgent
problem to be solved.

C. Motivation

By thinking about the above problem from scratch, we get
that, in our E-nose system, although the prior knowledge of
abnormal odor detection is deficient, the prior knowledge of
target odor data (six kinds of contaminants) can be easily
obtained. Therefore, the problem becomes how to accurately
detect the abnormal odors by using the data of target odors.
Our motivations are as follows.

1) For abnormal odor detection, the prior knowl-
edge of target odor can be recognized as some
invariant information, which is used for modeling
some self-correspondence. Once the established self-
correspondence when feed into some input is violated,
it will be categorized as abnormal odors.

2) To establish a self-correspondence, the prior knowledge
of target odors may be modeled by using self-expression
based on representation-based learning theory.

3) A fast learning algorithm for solving a single-hidden
layer feed-forward neural network (SLFN), known
as an extreme learning machine (ELM) proposed by
Huang et al. [32], [33], has turned out to be the remedy
for biological learning. ELM is with rather simple struc-
ture, and its speed can be thousands of times faster than the
traditional network learning algorithms. Recently, ELM
has been explored efficiently in hierarchal learning [34],
transfer learning [35], and deep learning [36]. A deep
insight of ELM theory about its learning mechanism and
biological learning idea can be found in [37] and [38].

Fig. 1. Schematic of abnormal odor detection in our E-nose system. “Yes”
indicates that the unknown odor X′ complies with the self-correspondence
α. “No” indicates that the unknown odor Y violates the self-correspondence.
The odor data acquisition and detection is implemented in our E-nose system.

Inspired by self-expression and ELM, we would like to
model the self-correspondence of target odor data as an
SLFN network with nonlinear activation.

With the above motivations, the research on abnormal odor
detection in an E-nose system by using self-expression learn-
ing and ELM is expanded. The idea and motivation can be
briefly described in Fig. 1, which clearly shows the abnor-
mality detection process by an E-nose system. Some other
interesting applications in vision and tactile perception can be
referred to as [39]–[43].

D. Paper Contribution

In this paper, we propose two methods including self-
expression model (SEM) and ELM-based self-expression
(SE2LM), for abnormal odor detection in E-nose. The con-
tributions of this paper are summarized as threefold.

1) We propose a self-correspondence concept based on the
prior knowledge of target odors for abnormal odor detec-
tion, without using the prior information of abnormal
odors in model training.

2) With the representation-based learning mechanism,
an SEM with l1/l2-norm regularization is proposed in
our E-nose system.

3) Inspired by biological learning concept of ELM,
a heuristic self-expression method (SE2LM) is proposed
in our biological olfaction (E-nose) system for abnormal
odor detection.

The basic idea of self-correspondence is illustrated in Fig. 1,
which is simply divided into two steps. First, the training
is conducted for self-correspondence establishment, and the
coefficient α describes the self-correspondence. Second, for
abnormality detection, each new pattern is represented by
using the self-correspondence coefficient matrix, and represen-
tation error is computed for abnormality detection. As shown
in Fig. 2, in testing phase, the instances y1, y2, and y3 indi-
cate target odor, therefore small errors are observed. However,
the instance y4 indicates abnormal odor, and a big error is
observed, that is used to recognize the abnormal odor based
on error criteria.
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Fig. 2. Framework of the self-correspondence mechanism. Both SEM and
SE2LM are proposed based on this framework. In the training data X (target
odor data), six samples of three target classes are shown for obtaining the self-
correspondence coefficients (α1, . . . ,α6). In the testing data Y, four samples
of three target classes and one abnormal class are used to calculate the coding
error (e1, . . . , e4).

E. Paper Organization

This rest of this paper is organized as follows. Section II
illustrates the related work closely related with this paper.
Section III presents the proposed SEM framework includ-
ing model formulation and algorithm. The proposed SE2LM
framework is presented in Section IV. The E-nose experiments
on several datasets for abnormal odor detection are conducted
in Section V. A brief discussion about the violation thresh-
old and model parameter is presented in Section VI. Finally,
Section VII concludes this paper.

F. Notations

In this paper, the training phase consists of two parts: first,
compute the self-expression matrix α and second, determine
the violation threshold T (representation error). X ∈ �D×N

is the target odor data used for computing the coding coef-
ficient matrix α. The training data of a very few abnormal
odor data is denoted as Y ∈ RD×n (n � N), respectively,
where D is the number of dimensions, N and n are the num-
ber of training samples, and α is the self-expression coding
coefficient matrix. ‖·‖F denotes Frobenius norm of a matrix.
‖·‖1 denotes l1-norm, and ‖·‖2 denotes l2-norm. Tr(·) denotes
the trace operator. Throughout this paper, matrix is written in
capital bold face, vector is presented in lower bold face, and
variable is in italics.

II. RELATED WORKS

ELM [32] is closely related with this paper, and there-
fore presented in this section. The magic of ELM is that
the parameters of weight and bias can be assigned randomly

independent of training data, and do not require computa-
tionally intensive tuning upon the data. Besides, the output
weights can be solved with different constraints. The activation
function can be any type of piecewise continuous nonlinear
hidden neurons, such as sigmoid function, Fourier function,
RBF function, etc. In learning process, the hidden layer nodes
(number of neurons) can be tuned in terms of the actual situ-
ation, which naturally do not require an iterative adjustment.
ELM has been successfully applied for handling regression
and classification problems. Briefly, the principle of ELM [32]
for generalized SLFNs is described as follows.

In the case of clean data, the output of ELM is presented as

f (x) =
L∑

i=1

βiG(ai, bi, x) (1)

where x is the input vector, L is the number of hidden nodes,
ai is the input weights, bi is the bias of the hidden nodes, and
β i is the output weights between the ith hidden node and the
output nodes. f (x) is the corresponding target output vectors
and G(ai, bi, x) is the output vector of the ith hidden neuron.
Equation (1) can also be compactly written as

f (x) = h(x)β (2)

where hi(x) = G(ai, bi, x) is the output vector of the ith
hidden neuron, thus h(x) = [h1(x), h2(x), . . . , hL(x)] is the
output matrix of the hidden layer and β = [β1, β2, . . . ,βL]
is the output weights matrix. In order to minimize the norm
of the output weights, the minimal norm least square con-
straint is used in ELM, such that a closed-form solution can
be obtained, instead of the standard gradient descent-based
optimization methods. Thus, the output weights β can be deter-
mined analytically using Moore–Penrose (MP) generalized
inverse as

β = h(x)+T (3)

where T is the label hypothesis and h(x)+ is the MP gen-
eralized pseudo-inverse of the hidden layer output matrix.
β has the smallest norm among all the optimization solutions,
and this is the reason why ELM has better generaliza-
tion performance and higher learning accuracy. According
to Bartlett’s neural network generalization theory, in addi-
tion to achieving smaller training error, the smaller the norms
of weights are, the better generalization performance of the
networks tend to be. The regularized ELM is expressed as

min
β

‖β‖2
F + C‖Hβ − T‖2

F. (4)

Then the solution can be written as

β = HT
(

I
C

+ HHT
)−1

T, if N ≤ L (5)

where N is the number of training samples, and L is the
number of hidden nodes.

When the number of training samples N is larger than that
of nodes L, then one can have

β =
(

I
C

+ HTH
)−1

HTT, if N > L (6)

where I is an identity matrix.
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III. PROPOSED SELF-EXPRESSION MODEL

FOR ABNORMALITY DETECTION

A. Framework Formulation

There are numerous types of abnormal odors in real-
world application scenarios, which can seriously deteriorate
the performance of E-nose systems. Obviously, it is expen-
sive and unrealistic for researchers to obtain all of them in
experiments as training samples. Therefore, we attempt to use
the prior information of the target odors for modeling the
self-correspondence. Specifically, the prior knowledge of tar-
get odors is invariant information, and thus for constructing
a self-correspondence model, it is rational to imagine that an
SEM can be designed for capturing the internal relationship
(i.e., self-correspondence) among target odors. The relation-
ship within target odors can be used to detect the abnormality
if “violation” of this relationship is encountered. The proposed
SEM method includes two phases: 1) self-correspondence
learning and 2) violation threshold learning.

1) Self-Correspondence α Learning: Instinctively, the rela-
tionship can be modeled by satisfying

X = Xα (7)

where α ∈ RN×N describes the self-correspondence and X ∈
RD×N denotes the training set of target odors. It is important
to find a robust α based on (7). Generally, we propose to solve
α by minimizing the following objective:

min
α,αii=0, ∀i

‖X − Xα‖2
F + λ · R(α) (8)

where 0 < λ ≤ 1 denotes the regularization coefficient, and
R(α) represents an appropriate regularizer formulated as

R(α) = ‖α‖p (9)

where ‖ · ‖p indicates lp-norm. Specifically, p = 1 denotes
sparsity constraint is imposed on α, and p = 2 shows better
smoothness of the self-correspondence. Therefore, with p = 1,
the SEM-sparse model is formulated as follows:

min
α,αii=0, ∀i

‖X − Xα‖2
F + λ · ‖α‖1. (10)

With p = 2, the SEM-smooth model is formulated as follows:

min
α,αii=0, ∀i

‖X − Xα‖2
F + λ · ‖α‖2

F. (11)

2) Violation Threshold T Learning: After obtaining the
self-correspondence α, the coding error EX of target odor
pattern x is calculated as

EX
(
xj

) = 1

N

N∑

i=1

∥∥xj − Xαi
∥∥2

, j = 1, · · · , N. (12)

Similarly, the coding error EY of abnormal odor pattern y is

EY
(
yj

) = 1

N

N∑

i=1

∥∥yj − Xαi
∥∥2

, j = 1, . . . , n. (13)

The violation threshold T can be determined by uniform
search between the minimum EX (i.e., EX,min) and the maxi-
mum EX (i.e., EX,max), until the average classification accuracy

Algorithm 1: SEM (SEM-Sparse Versus SEM-Smooth)
Input:
The training data X ∈ R

D×N and Y ∈ R
D×n;

Parameter λ;
Procedure:
• Phase 1: self-correspondence α learning
if l1-norm constraint is used (p=1), solve Eq.(10) by
using Lasso operator (SEM-sparse)

for i, j = 1 to N
Initialize αi,j = xT

j xi;
Update αi,j by using Eq.(15);

end
else if l2-norm constraint is used (p=2), solve Eq.(11) by
using least-square operator (SEM-smooth)

Compute the close-form solution α by using Eq.(16);
• Phase 2: violation threshold T learning

Compute EX and EY using Eq.(12) and (13);
Compute the optimal T∗ by solving Eq.(14).

Output: α and T∗.

of X and Y is maximized. Then, the optimal T is determined as

T∗ = arg max
EX,min≤T≤EX,max

1

2
(Accuracy(X) + Accuracy(Y)). (14)

Note that for simplification, the target odors are categorized
as one class (i.e., normal class). The classification accuracy
is easy to be computed by using the popular coding error.
Additionally, other strategies other than the average accuracy
can also be used in (14) for determining the threshold. Once
the optimal T is determined, the abnormal odor detection can
be made by comparing T∗ with the coding error Ez computed
in (12) or (13) when given a new instance z. Without loss of
generality, if Ez ≥ T∗, then z is discriminated as some kind
of abnormal odor. Otherwise, z is recognized to be one kind
of target odors.

B. Algorithm

According to the SEM framework, two steps in training
phase are included as follows.

For the first step, two models in (10) and (11) are presented
based on l1/l2-norm regularizer.

When l1-norm constraint on α is considered, (10) is a sparse
optimization problem, and can be easily solved by a stan-
dard Lasso solver [44]. Generally, the update strategy of αi,j

is shown as

αi,j = sign
(
αi,j

)(∣∣αi,j
∣∣ − λ

2

)

+
(15)

where (|αi,j| − (λ/2))+ = max(|αi,j| − (λ/2), 0).
When l1-norm constraint on α is considered, (11) is a least-

square optimization problem, and a closed-form solution can
be induced as follows:

α = (
XTX + λ · I

)−1
XTX. (16)

Specifically, the detailed implementation of the whole SEM
framework for abnormality detection (abnormal odor) is sum-
marized as Algorithm 1.
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Fig. 3. Network structure of SE2LM. The difference between this struc-
ture and ELM lies in that the number of input nodes is associated with the
dimensionality. In SE2LM, it serves for representing each sample by using hid-
den layer output and the analytically determined output weights α. It implies
that the ELM space represents the dictionary space. Note that an interesting
aspect is that in ELM, the number of input nodes and output nodes can be the
dimension D, which would become a transformation problem. If N is set, it
is expression problem focused in this paper. Also, in the proposed structure,
each node is composed of D subnodes (i.e., shadow nodes).

IV. PROPOSED EXTREME LEARNING MACHINE-BASED

SELF-EXPRESSION MODEL

A. Model Formulation

In (7), the self-expression is purely linear. Inspired by ELM
theory, we propose to establish the self-correspondence by
using the nonlinearity activated data in SE2LM space (i.e.,
hidden layer output). Suppose the random hidden layer output
of SE2LM to be H ∈ RD×L, then (7) can be further written as

X = Hα (17)

where α ∈ RL×N denotes the output weights between hidden
layer and output layer, and H is represented as follows:

H =

⎡

⎢⎢⎢⎣

h(w1x1 + b1) h(w2x1 + b2) · · · h(wLx1 + bL)

h(w1x2 + b1) h(w2x2 + b2) · · · h(wLx2 + bL)
...

...
...

...

h(w1xD + b1) h(w2xD + b2) · · · h(wLxD + bL)

⎤

⎥⎥⎥⎦

(18)

where h(·) indicates the activation function, such as sigmoid,
Gaussian function, etc., L denotes the number of hidden nodes,
W = [w1, . . . , wL] ∈ RN×L is the randomly generated weights
between input layer and hidden layer, and B = [b1, . . . , bL]T ∈
RL is the randomly generated bias for hidden nodes.

The structure of SE2LM is shown in Fig. 3, which is similar
with ELM yet different in nodes design for self-expression.

Specifically, the proposed SE2LM model is formulated as

min
α,ξ i,∀i

1

2
‖α‖2

F + 1

2
μ ·

N∑

i=1

∥∥ξ i

∥∥2

s.t. ξ i = xi − Hαi, i = 1, . . . , N. (19)

Algorithm 2: SE2LM
Input:
The training data X ∈ R

D×N and Y ∈ R
D×n;

Parameter μ;
Procedure:

• Phase 1: self-correspondence α learning
Generate the input weights W and hidden bias B
randomly;
Compute the hidden layer matrix H by using Eq.(18);
Compute the output weights α by using Eq.(21);

• Phase 2: violation threshold T learning
Compute EX and EY using Eq.(22) and (23);
Compute the optimal T∗ by solving Eq.(14).

Output: α and T∗.

The model in (19) can be compactly written as

min
α,ξ

1

2
‖α‖2

F + 1

2
μ · ‖ξ‖2

F

s.t. ξ = X − Hα. (20)

The model can also be explained as that each sample can
be represented by the dictionary H through the coefficient α.
Additionally, the proposed SE2LM inherits the advantages
of ELMs. The objective is to learn the self-correspondence
coefficients α, based on the fixed dictionary H. That is, the
SE2LM is only proposed in training process.

B. Algorithm

Similar to SEM framework, in SE2LM framework, the same
two phases are included.

1) Self-Correspondence α Learning: The optimization of
SE2LM model (20) can be easily conducted, by following sim-
ilar induction with ELM. Specifically, the closed-form solution
of α can be described as follows:

α =

⎧
⎪⎨

⎪⎩

HT
(

I
μ

+ HHT
)−1

X, if D ≤ L
(

I
μ

+ HTH
)−1

HTX, if D > L.

(21)

The deduction of (21) is similar to the standard ELM
framework, by considering the property of hidden matrix H.

2) Violation Threshold T Learning: After obtaining the
self-correspondence α, similar to (12) and (13), the coding
error EX of target odor pattern x is calculated as

EX
(
xj

) = 1

N

N∑

i=1

∥∥xj − Hαi
∥∥2

, j = 1, . . . , N. (22)

Similarly, the coding error EY of abnormal odor pattern y is

EY
(
yj

) = 1

N

N∑

i=1

∥∥yj − Hαi
∥∥2

, j = 1, . . . , n. (23)

The search process of the optimal T is similar to (14).
Specifically, the whole process for abnormality detection of

SE2LM framework is summarized as Algorithm 2.
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V. E-NOSE EXPERIMENTS FOR ABNORMAL

ODOR DETECTION

Our E-nose system and experimental setup developed in
this paper have been described previously in [9]. The E-nose
system is composed of an array of metal oxide semiconduc-
tor sensors, which includes TGS2602, TGS2620, TGS2201A,
and TGS2201B. Additionally, the gas sensors are also sensi-
tive to the environmental variables, such as temperature and
humidity, and result in an impact on concentration measure and
discrimination of gases. Therefore, a module of temperature
and humidity (i.e., STD2230-I2C), which is used to measure
the ambient temperature and humidity, is also integrated in our
E-nose system. The real-time response of this module has been
used as feature variables in our algorithms for environmental
compensation. In this paper, six kinds of target odors/gases
including formaldehyde (HCHO), benzene (C6H6), toluene
(C7H8), carbon monoxide (CO), ammonia (NH3), and nitrogen
dioxide (NO2) are being detected by our E-nose.

That is, other odors except the six target odors will be
uniformly categorized as abnormal odors. In addition to com-
puting the recognition accuracy, we also collect two extra real-
time sequences for validating the effectiveness of the proposed
frameworks in real-time application scenarios. The data acqui-
sition experiments were measured in a gas chamber, where the
E-nose system was fixed. The odor sample (target odor and
abnormal odor) mixed with pure nitrogen (i.e., N2) is col-
lected in a gas bag, and an air pump is used to transfer the
odor from the bag to the chamber, controlled by a flowme-
ter for different concentrations. During the measurements, the
temperature and relative humidity of the gas chamber are set
within 10 ◦C–40 ◦C and 40%–80% RH.

A. Experimental Data

In this paper, three benchmark datasets that have been used
for abnormal odor detection in [20], [30], and [31] are used
for verifying our proposed methods.

1) Dataset 1 (Pretraining and Test of the Proposed
Framework): This dataset 1 was collected by using an E-nose
system when exposed to the six kinds of targets odors. We
aim to learn the self-correspondence coefficients α and the
violation error threshold T by using the proposed SEM and
SE2LM frameworks based on dataset 1 with six kinds of tar-
get gases: 1) HCHO; 2) C6H6; 3) C7H8; 4) CO; 5) NH3;
and 6) NO2. In experiments, the number of target samples for
HCHO, C6H6, C7H8, CO, NH3, and NO2 are 188, 72, 66, 58,
60, and 38, respectively. Each sample can be represented as
four curves in Fig. 4, where the steady state point is extracted
as feature of each observation (sample). In self-expression, the
whole target odor dataset 1 is divided into three parts: 1) the
data for training α; 2) the data for training T; and 3) the test
data. The detail of target odor data is illustrated in Table I, in
which the proportionality for each part is shown. Additionally,
48 samples of alcohol (abnormal odor) were also used. The
alcohol dataset is divided into two parts: 1) 24 samples for
training T and 2) 24 samples for testing. This dataset 1 is used
for model training and validation. The detection accuracy of

Fig. 4. Sensor response curves for each observation. Four important phases
of sensor response mechanism are highlighted. The steady state point for each
sensor is extracted as feature of each observation.

Fig. 5. Real-time sensor response sequence when exposed to abnormal odors
such as perfume and floral water. A peak response will be produced when
abnormal odors exist.

target odor and abnormal odor is reported based on this dataset
(i.e., 96 target samples and 24 abnormal samples).

2) Dataset 2 (Real-Time Abnormal Odor Without Target
Odor): For validating the effectiveness of the proposed frame-
works, we choose some common abnormal odors in our life
and do a real-time experiment. The dataset 2 was collected
based on the same E-nose system, by exposing E-nose to
abnormal odors, such as perfume, floral water, and fruits
smell. Note that, these abnormal odors do not participate in
α training. Specifically, an observation vector with length of
2400 points for each sensor was acquired in a continuous
sampling way. This dataset was developed under two odor
interferences in order, i.e., perfume and floral water. In detail,
we present the approximation positions for each odor as fol-
lows. Perfume appears in two approximated regions 95–308
and 709–958; floral water appears in two approximated regions
1429–1765 and 2056–2265. Visually, the sensor sequences of
dataset 2 are illustrated in Fig. 5.

3) Dataset 3 (Real-Time Abnormal Odor With Target
Odor): Dataset 3 is also a real-time data sequence for val-
idation. Dataset 3 was obtained by exposing the same E-nose
system to abnormal odor and one kind of target odor (HCHO),
simultaneously. Similar to dataset 2, dataset 3 is with length of
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TABLE I
TARGET ODOR SAMPLES (DATASET 1) FOR MODEL TRAINING AND TESTING

TABLE II
RECOGNITION ACCURACY (%) OF ABNORMAL ODOR DETECTION UNDER DIFFERENT NUMBER OF TRAINING SAMPLES PER CLASS FOR TRAINING α

Fig. 6. Real-time sensor sequence exposed to target odor (HCHO) and
abnormal odors such as ethanol, toiletwater, mixture of perfume, and orange.

2400 points for each sensor and acquired in a continuous sam-
pling way. Specifically, this dataset is developed under HCHO
(target odor) and four kinds of abnormal odors (disturbance),
respectively. Briefly, HCHO appears in three approximated
regions 102–250, 719–880, and 1380–1580; ethanol appears in
region 260–410; floral water appears in region 881–1064; and
a mixture of perfume and orange appears in region 1599–1899.
Visually, the sensor sequences in dataset 3 are illustrated in
Fig. 6.

B. Abnormal Odor Detection Based on Dataset 1

The training performance of the proposed SEM and SE2LM
frameworks is relevant to the data amount during training of α

and T. In experiments, to observe the performance impact with
respect to the number of training samples in training α, 10,
15, 20, 25, 30, 35, and 40 samples per class in the training set
are explored for sample balance, respectively. Due to the num-
ber of samples for some target odor shown in Table I is less

than the maximum value (i.e., 40), we repeat the sample selec-
tion randomly for sample balance. The recognition accuracy
is shown in Table II. For SE2LM method, sigmoid function
and Gaussian (RBF) function are used as activation func-
tion separately. From the results, we can see the best average
performance when 30 samples per class are used in training
set. The recognition accuracy of target odors is 90.91% and the
accuracy of abnormal odors is 91.67%. Note that, we show the
average performance, because in (14) the average accuracy is
used as criteria in searching the optimal violation error thresh-
old T. Additionally, we could observe that SE2LM method
outperforms SEM method for different settings. The SEM with
sparse l1-norm constraint achieves 89.78%, which is much
better than SEM with smooth l2-norm constraint (84.73%).
This demonstrates that the self-correspondence coefficients α

should be sparse for robust self-expression.
Similarly, for observing the impact with respect to the num-

ber of training samples in searching T, 10, 15, 20, 25, 30,
35, and 40 training samples per class in training set X are
explored, respectively. The recognition accuracies are shown
in Table III. We can observe that the best average accuracy
is 91.29% when 25 samples per class are used. Also, it turns
out to be that SE2LM not only outperforms SEM but also
show better stability when fewer training samples are used.
Additionally, SEM-based methods show imbalanced recogni-
tion between target odor and abnormal odor. Specifically, we
have shown the performance variation curves with respect to
the threshold T in searching process as Fig. 7. We can observe
that with the increasing of T, the recognition rate of target odor
is decreasing due to that the rejection rate of target odor is
increasing. In contrast, the recognition rate of abnormal odor
is increasing. Clearly, the near-optimal T appears in their cross
point region. From Fig. 7, the SE2LM-based method shows
better detection performance and lower bias for both target
and abnormal odor. Note that the scale of T may be different
which depends on the method. Also, the model parameters λ
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TABLE III
RECOGNITION ACCURACY (%) OF ABNORMAL ODOR DETECTION UNDER DIFFERENT NUMBER OF TRAINING SAMPLES PER CLASS FOR TRAINING T

TABLE IV
DETECTION ACCURACY (%) FOR DIFFERENT METHODS

(a) (b)

(c) (d)

Fig. 7. Performance variation with respect to the violation threshold T for
target and abnormal odor. The near-optimal T is labeled in rectangle region
(the cross point). (a) SEM-sparse. (b) SEM-smooth. (c) SE2LM (sigmoid).
(d) SE2LM (Gaussian).

and μ are tuned in the range of 10−4 and 104. For different
tasks, the optimal model parameters may be different during
the learning process.

Through the comparisons shown in Tables II and III, we
can observe that the results based on SE2LM are better than
that of SEM-based methods. Generally, if we simply treat
the target/abnormal odor recognition as a binary classifica-
tion problem, the recognition accuracy by using conventional
ELM classifier is shown in Table IV. Note that ELM (sig-
moid) denotes the ELM classifier based on sigmoid kernel

function. The principle of pattern mismatch-based interference
elimination (PMIE) [31] is that a similar but different self-
correspondence is established by regression between sensors
based on target odor data, which is based on a regression idea.
Specifically, PMIE uses five sensors to predict the remain-
ing sensor for target odors, and search an optimal prediction
error threshold. As shown in Table IV, we can observe that
the results with general binary classification method between
target odor (positive class) and abnormal odors (negative
class) are much worse than the proposed SEM and SE2LM
methods. Besides, binary classification-based method should
rely on all kinds of abnormal odors in real-world scenar-
ios, which is expensive and unrealistic in E-nose. Therefore,
both results and reality demonstrate that abnormal odor detec-
tion cannot be simply recognized as a binary classification
problem. The truth also confirms the difficulty of problem
and significance of our proposed methods. As shown in
Table IV, the proposed SE2LM method still outperforms
other binary classification-based abnormal odors detection
methods.

C. Validation on Real-Time Sequence Based on Dataset 2

As expressed in experimental data (i.e., dataset 2), this
dataset was collected in real time and used for validating the
proposed SEM and SE2LM methods. There are four sensors
(TGS2602, TGS2620, and TGS2201A/B), all the sensors have
similar trends when exposed to abnormal odors as shown in
Fig. 4. The abnormal odor region recognition results for dif-
ferent methods are shown in Fig. 8, in which the rectangular
windows are represented as detected abnormal odor regions
(i.e., disturbance). Totally, four actual regions of abnormal
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(a) (b) (c) (d)

Fig. 8. Detected abnormal regions based on dataset 2. (a) SEM-sparse. (b) SEM-smooth. (c) SE2LM (sigmoid). (d) SE2LM (Gaussian).

(a) (b)

Fig. 9. ROC curves on real-time validation odor sequences. ROC curves on (a) dataset 2 and (b) dataset 3.

(a) (b) (c) (d)

Fig. 10. Detected abnormal regions based on dataset 3. (a) SEM-sparse. (b) SEM-smooth. (c) SE2LM (sigmoid). (d) SE2LM (Gaussian).

odor with respect to Fig. 5 are correctly recognized. In addition
to the qualitative recognition of regions, we have described the
receiver operating characteristic curve (ROC) on this valida-
tion dataset 2 in Fig. 9(a), by computing true positive rate and
false positive rate by adjusting the threshold T.

D. Validation on Real-Time Sequence Based on Dataset 3

This dataset is also real-time sequence in which the target
odor also appears in experiment (as shown in Fig. 6), which is
different from dataset 2. The abnormal odor region recognition
results for different methods are shown in Fig. 10, where the
regions labeled by rectangular windows are indicated as abnor-
mal odor regions. The effectiveness of the proposed methods is
clearly demonstrated. The ROC curves are shown in Fig. 9(b),
and it shows that SE2LM is better.

Note that, in the research area, there is very limited research
work in abnormal odor detection. Therefore, the comparisons

are conducted with the closely related work [20], [30], [31], in
this paper. The superiority of the proposed methods is shown.

VI. DISCUSSION

The key idea behind the proposed methods is to construct
an internal relationship (i.e., self-correspondence) based on
target odor data, such that the abnormal odor (i.e., distur-
bance) can be detected if only the established relationship
is violated. The rationality and motivation behind are that it
is hard and even impossible to collect all kinds of abnor-
mal odors (countless) in real-world application scenarios by
using an E-nose system. That is, the detection of abnormal
odors cannot be simply recognized to be a binary classification
problem. Therefore, we have to rely on the known prior knowl-
edge of the target odors and establish a self-correspondence.
During the compared methods, the PMIE method [31] actu-
ally relies on a regression idea, which attempts to construct
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(a) (b)

(c) (d)

Fig. 11. Recognition on dataset 2 using different near-optimal
T values. (a) SEM-sparse. (b) SEM-smooth. (c) SE2LM (sigmoid).
(d) SE2LM (Gaussian).

(a) (b)

(c) (d)

Fig. 12. Recognition on dataset 3 using different near-optimal
T values. (a) SEM-sparse. (b) SEM-smooth. (c) SE2LM (sigmoid).
(d) SE2LM (Gaussian).

a similar self-correspondence between sensors (i.e., five sen-
sors are used to approximate the remaining one sensor for
target odors), but neglect the property of internal independence
assumption between sensors. In our methods, also, a very nec-
essary step is to search an optimal violation threshold T (i.e.,
an appropriate decision bound). Actually, the value of bound
T is important to decide rejection rate or acceptance rate of
an unknown odor, which is also an important and difficult
problem in machine learning. In this paper, we have discussed
and presented the performance based on different T-values
around the near-optimal T in rectangle window as shown in
Fig. 7 for datasets 2 and 3, respectively. Specifically, we have
selected four different T-values around the near-optimal T,
and shown the recognized abnormal odor regions in datasets
2 and 3. The abnormal odor region detection results on both
validation datasets based on different T-values are shown in

Figs. 11 and 12, respectively. We observe that with the increas-
ing of T value, the detected region is shrinking. That is, manual
intervention can be made on the determination of the opti-
mal T instead of the near-optimal T, due to its task-specific
characteristic.

VII. CONCLUSION

In this paper, we focus on the challenge of abnormal odor
detection (i.e., disturbance) in E-nose community. With our
fabricated E-nose system, we propose two frameworks such
as SEM and SE2LM for abnormal odor detection, which
consist of two general phases: 1) self-correspondence estab-
lishment (i.e., self-expression α) and 2) violation threshold
T search. The strength of the proposed methods are twofold:
1) the self-correspondence α is easily implemented by using
target odor data as invariant information and 2) the search
of violation threshold T is conducted by using a very few
abnormal odor data as prior knowledge, without considering
countless kinds of abnormal odors in surroundings. The weak-
ness of the proposed method lies in that the boundary of
the abnormal odor regions may not be accurately estimated,
due to the fuzzy sensor sensitivity problem. Numerous exper-
iments by using our E-nose system were conducted, and the
results demonstrate the effectiveness of the proposed methods.
Particularly, in comparisons, the SE2LM method shows a supe-
rior performance in real application scenarios. In our future
work, we would address detection of mixtures, which is still
an open problem in E-nose community. Also, the proposed
method is implemented off-line, thus on-line representation of
α is necessary.
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