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Abstract—In this paper, we aim at presenting the new 

challenges of electronic noses and proposing effective methods for 

handling the new challenging scientific issues to be solved, such as 

signal discreteness (reproducibility), systematical drift and 

non-target disturbances. We first review the progress of E-noses 

in applications, systems, and algorithms during the past two 

decades. Recall a number of significant achievements and 

motivated by the current issues that hinder large-scale application 

pace of E-nose technology, we propose to address three key issues: 

discreteness, drift and disturbance (simplified as 3D issues), which 

are sensor induced and sensor specific. For each issue, a highly 

effective and efficient method is proposed. Specifically, for 

discreteness issue, a global affine transformation (GAT) method is 

introduced for E-nose instruments batch calibration; for drift 

issue, an unsupervised feature adaptation (UFA) model is 

proposed to achieve effective drift adaptation; additionally, for 

disturbance issue, we proposed a simple targets-to-targets 

self-representation classifier (T3SRC) method for fast non-targets 

detection, without knowing any prior knowledge of thousands of 

non-target disturbances in real world. For each method, a closed 

form solution can be analytically determined and the simplicity is 

guaranteed. Experiments demonstrate the effectiveness and 

efficiency of the proposed methods for addressing the proposed 

3D issues in real applications of electronic noses. 

Index Terms—Electronic nose, discreteness, drift, disturbance, 

sensor 

I. INTRODUCTION 

lectronic olfactory system constructed with a model nose 

was proposed for the first time to mimic the biological 

olfactory mechanism as early as in 1982 [1], which 

presented two key assumptions of mammalian olfactory system: 

(1) there is no requirement for odour-specific transducers; (2) 

odor signals from the transducers can be learnt. One key 

characteristic of model nose is that the odorant detectors (i.e. 

the primary neurons) respond to a wide range of chemicals. In 

1994, Gardner et al. [2] showed a new definition for artificial 

olfactory system: “An electronic nose is an instrument, which 

comprises an array of chemical sensors with partial specificity 

and an appropriate pattern recognition system, capable of 

recognizing simple or complex odours”. In other words, 
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electronic nose (abbreviated as E-nose) can be recognized to be 

an intelligent sensor array system for mimicking biological 

olfactory functions. An excellent review of E-noses can be 

referred as [3]. A general electronic nose system in research 

route is presented in Fig. 1, which consists of data acquisition 

and pattern recognition. The sensor array chamber with 

controller is recognized to be an E-nose device.   

A. Development in Application Level 

E-nose has been applied in many areas, such as food analysis 

[4-13], medical diagnosis [13-17], environmental monitoring 

[18-23], and quality identification [7,8,24,25]. For food 

analysis, Brudzewski et al. [4] propose to recognize four 

different types of milk, Lorenzen et al. [5] tends to differentiate 

four types of cream butter, Bhattacharyya et al. [6] proposed to 

classify different types of black tea, Chen et al. [7], Dutta et al. 

[8], Hui et al. [9] and Varnamkhasti et al. [10] propose to 

predict tea quality, apple storage time and the aging of beer. 

The reviews of the existing work in food control and analysis 

by using E-noses are referred as [11-13]. For medical diagnosis, 

inspired by [14] that human breath contains some biomarkers 

that contribute to disease diagnosis, Yan and Zhang [15] 

proposed a breath analysis system to differentiate healthy 

people and diabetics, Di Natale et al. [16] proposed a lung 

cancer identification system with a quartz microbalance (QMB) 

sensor array, Pavlou et al. [17] designed a 14-conducting 

polymer sensor array for diagnosis of urinary tract infections. 

For environmental monitoring, Getino et al. [18] and Wolfrum 

et al. [19] proposed to detect the volatile organic compounds 

(VOCs) in air, Zhang et al. [20, 21] proposed a portable E-nose 

system for concentration estimation using neural networks, 

targeting at real-time indoor air quality monitoring, Dentoni et 

al. [22], Baby et al. [23] and Fort et al. [24] proposed tin-oxide 

sensors based systems for monitoring air contaminants, 

including single odour and mixtures of different odours. For 

quality identification, Chen et al. [7] and Dutta et al. [8] 

proposed to discriminate and predict tea quality, Gardner et al. 

[25] proposed to monitor the quality of potable water, and Cano 

et al. [26] proposed to discriminate counterfeits of perfumes. 

Other applications are referred as tobacco recognition [27], 

coffee recognition [28], beverage recognition [29], and 

explosives detection [30], etc. To this end, we refer to interested 

readers as [31] for extensive applications of E-noses. 

B. Development in System Level 

After observing a number of E-nose applications, we then 

present different types of E-noses systems, like conventional  
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Fig. 1. A general electronic nose system with multiple units 

E-noses [32-35], differential E-noses [27, 28, 30], temperature 

modulated E-noses [36-41], active E-noses [42-44] and 

LabView E-noses [45, 46]. First, the conventional E-noses are 

constructed with a sensor array worked at constant temperature 

voltage. Zhang et al. [32, 33] proposed a 6-metal oxide 

semiconductor gas sensor system, Hong et al. [34] proposed a 

6-thick film oxide sensor system, and Rodriguez-Lujan et al. 

[35] proposed a 16-screen printed MOX gas sensing system. 

Second, the differential E-nose proposed by Brudzewski et al. 

[27, 28, 30] is with two sensor arrays: one is for gas sensing and 

the other one is for baseline measurement. Third, the 

temperature modulated E-noses proposed by Lee and Reedy 

[36], Llobet et al. [37], Martinelli et al. [38], Hossein-Babaei 

and Amini [39, 40], and Yin et al. [41] are with an idea that the 

heating voltage of each sensor is dynamic rather than constant. 

The adaptive change (ramp, sine wave, rectangular wave, etc.) 

of heating voltage is termed as temperature modulation. The 

rationality behind is that one sensor with multiple heating 

voltages would produce multiple patterns, such that 

temperature modulation can effectively lower the cost of sensor 

array [41]. Fourth, the active E-noses proposed by R. Gosangi 

et al. [42, 43] and Herrero-Carrón et al. [44] are evolution of 

temperature modulation systems. The “active” concept shows 

an adaptive optimization of operating temperatures, because 

not all heating voltages contribute positively to classification. 

Lastly, Imahashi and Hayashi [45] developed a computer 

controlled odor separating system based on LabVIEW, which 

consists of adsorbing and separating cells. It separates the 

detected odorants in terms of the properties of installed 

adsorbents. Jha and Hayashi [46] also developed a LabVIEW 

based odor filtering system. The advantage of LabVIEW based 

E-noses are low-cost, high efficiency and heuristic for lab use. 

C. Paper Organization 

After an overview, the progress of E-nose is significant. Our 

purpose is to study soft computing algorithms in E-noses. 

Therefore, in this paper, we focus on the new challenges after a 

thought of technical issues that prevents the industrialization 

paces of E-noses. Further, we propose efficient solutions in 

facing with the challenges. A general diagram of the progress 

and challenges is illustrated in Fig. 2. The parts in bright blue 

color and orange color denote the achieved aspects and new 

challenges in its current stage.   

The remainder of this paper is as follows. Section II 

illustrates the key achievements of state-of-the-art algorithms. 

Section III presents the 3D issues with the proposed methods, 

solutions and experiments. Finally, Section IV concludes this 

paper and conceives the future work. 

II. RELATED WORK IN ALGORITHM LEVEL 

A. Feature Extraction and De-noising Algorithms 

Feature extraction is the first step of a recognition system. 

Without exception, multi-dimensional feature extraction is also 

the key part of E-nose system. Generally, hand-crafted feature 

extraction includes normalization, feature selection and feature 

enhancement [47]. Normalization is used to remove the scaling 

effect caused by odorant concentration, such that the 

interrelation among patterns can be better shown. Suppose the 

original feature matrix   ,       -      , then the 

normalization is formulated as follows  

          (  )⁄                         (1) 

where d and n denotes the feature dimension and the number of 

samples, respectively. More normalization techniques such as 

baseline subtraction, centralization, scaling, etc. can be found 

in [47]. Feature selection aims at identifying the most 

informative and discriminative subset that leads to the best 

classification performance [51]. Principal component analysis 

(PCA) and linear discriminant analysis (LDA) are used for 

extracting the most informative and discriminative features, 

respectively. Suppose        to be the linear 

transformation (basis), the extracted features  ̂ is as follows 

 ̂                                            (2) 

where k denotes the number of selected components 

(eigenvectors). Further, Peng et al. [48] proposed a KECA 

method by considering the components w.r.t. maximum 

entropy, rather than maximum eigenvalue. Martinelli et al. [49] 

proposed a phase space based feature extraction with temporal 

evolution of sensor response. Leone et al. [50] proposed a 

representation method, which solves a dictionary algorithm by 

minimizing reconstruction error. Feature enhancement targets 

at the best features in another domain (e.g. frequency domain). 

Ehret et al. [52] proposed a Fourier transform method without 

information loss, and Kaur et al. [53] proposed a dynamic 

social impact theory and moving window time slicing method.   

De-noising algorithms pursue noise removal (i.e. de-noising) 

on data mixed with some unknown noise. First, in 

pre-processing, smooth filter (window moving average) in 

real-time sensing was used [54]. Suppose the response 

sequence to be * ( )        +, the filtered response is 

 ̂( )  
∑  ( )    * ( )    (     )+    * ( )    (     )+

     
   

   
   (3) 

where Q and q represent the length of signal and smooth filter, 

           . Moreover, Kalman filter was used [55]. 

Second, in feature extraction, Jha and Yadava [56] proposed 

singular value decomposition (SVD) based denoising. The 

noise removal is done by truncating the components w.r.t. a few 

largest singular values and reconstructing the noiseless data as 

 ̂  ∑  ̂     
  

                                      (4) 

where  ̂  represents the truncated singular value,    and    

represent the singular vectors w.r.t.  ̂ , k denotes the rank of 
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Fig. 2. Developments (blue) and Challenges (orange) of E-Noses 

 

noiseless data (i.e.  ̂           ). The principle of SVD can 

be referred as [57]. Furthermore, following component analysis 

based methods, Di Natale et al. [58], Kermit and Tomic [59] 

proposed higher order statistical method, i.e. independence 

component analysis (ICA) based denoising, which shows better 

representation for non-Gaussian data than PCA. The ICs that 

are highly correlated with disturbance will be recognized as 

noise. Suppose that   ,       -
       is mixed by 

source signal   ,       -       through a linearly 

mixed system       , then there is 

                                            (5) 

ICA aims at solving a linear transform or un-mixing system 

      , and the estimated source signal  ̂ is formulated as  

 ̂                                   (6) 

where  ̂   ̂  and     ̂  . By solving W, the unmixed 

source signal can be recovered. Tian et al. [60] also proposed a 

hybrid PCA plus ICA de-nosing. We refer to as [47, 61, 62] for 

more knowledge about signal processing in E-nose. 

B. Pattern Recognition Algorithms 

Pattern recognition methods are powerful tools to endow 

E-nose with “intelligence”. Therefore, conventional pattern 

recognition algorithms such as nearest neighbors [63, 64], 

neural networks [65, 66], support vector machines (SVMs) [63, 

68, 69] and decision tree [70] have been proposed for E-nose 

applications. Some improved SVMs are also proposed. For 

example, Wang et al. [71] proposed a relevance vector machine 

(RVM) with fewer kernel functions, Zhang et al. [72] proposed 

a hybrid support vector machine (HSVM) with fisher linear 

discriminant analysis, and Vergara et al. [73] proposed an 

inhibitory support vector machine (ISVM), inspired by the 

inhibition process in animal neural system. Recently, 

committee classifiers (ensemble models) are used in E-nose for 

classification. For example, Shi et al. [74] proposed a 

committee machine (GIEM) combined with five algorithms 

(experts) in decision level, Szczurek et al. [75] proposed a 

multiple classifiers system (MCS) of four sensor-specific base 

classifiers, and Dang et al. [76] proposed an improved support 

vector machine ensemble (ISVMEN) method with base 

classifier weighting. Fuzzy algorithms have also been proposed 

in E-nose. For example, Tudu et al. [77] proposed an 

incremental learning fuzzy approach for black tea classification, 

and Jha et al. [78] proposed an adaptive neuro-fuzzy inference 

system (ANFIS). Recently, semi-supervised learning has been 

used in E-nose for dealing with more challenging problem (i.e. 

insufficient labeled data). Specifically, De Vito et al. [79] 

proposed a semi-supervised learning technique (COREG) 

based on cluster assumption, and Hong et al. [80] also proposed 

to use cluster based semi-supervised approach for E-nose data. 

From the analysis above, E-nose has observed a progress in 

pattern recognition algorithms. We refer to readers as [81] for 

an insight of pattern analysis methods in machine olfaction. 

C. Drift Compensation Algorithms 

Though much endeavor has been made on algorithms, sensor 

drift caused by unknown dynamic processes (aging, poisoning, 

etc.) is seriously deteriorating classification [82]. From the 

viewpoint of machine learning, the drifted data cannot well fit 

the training data due to their differences in probability 

distribution, and classifier re-training/recalibration with new 

samples is required. In the past 10 years, a progress is observed 

in drift compensation. Zuppa et al. [83] proposed a multiple 

self-organizing maps method, by adapting each map to the 

changes of input probability distribution. Ding et al. [84] 

proposed a hybrid method of PCA and wavelet for detecting 

drift online, and then compensate it using an adaptive dynamic 

drift compensation algorithm (ADDC). The drift model of each 

sensor can be dynamically updated online, which assumes that 

there exists some linear/nonlinear relation between drift and 

time. Artursson et al. [85] proposed a component correction 

based principal component analysis (CCPCA) method, by 

finding the drift direction and correct the data. The model of 

component correction is shown as follows 

 ̂    (  )                                   (7) 

where p is the loading vector (drift direction) calculated by 

PCA on the reference gas data with serious drift,   is the 

measurement data and  ̂ is the drift component corrected data. 

Ziyatdinov et al. [86] proposed a common principal 

component analysis (CPCA) method, which explicitly 

computes the drift direction for all classes. Padilla et al. [87] 

proposed a linear orthogonal signal correction (OSC) by 

removing the components (e.g. drift components) orthogonal to 

the data. The correction model is shown as 

 ̂    ∑     
  

                                  (8) 

where n denotes the number of OSC factors, pi is the loading 

vector and ti is the score vector. 

Additionally, Di Carlo et al. [88] proposed an additive factor 

correction method, in which the correction matrix is optimized 

by using evolutionary algorithm (EA), described as 

 ̂                                        (9) 

where M is the optimized correction factor by using EA. 

These methods suppose that drift can be corrected additively, 

but capability restricted due to its nonlinear dynamic behavior 

[89]. To this end, Vergara et al. [90] proposed a classifier 

ensemble method for enhancing the classifier generalization to 

drift and also provided a long-term drift dataset for validation. 

Liu et al. [91] also proposed a fitting based dynamic classifier 

ensemble. Martinelli et al. [92] proposed an AIS based adaptive 

classification method. Recently, transfer learning based models 
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have been proposed by Liu et al. [93] and Zhang et al. [94] for 

drift adaptation and the classification accuracy on drifted data 

has been much improved. The DAELM transfer learning model 

proposed in [94] for drift adaptation is formulated as follows 
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where    is the learned classifier with drift adaptation, HS and 

HT denote the hand-crafted data matrix for clean and drifted 

sensor data, tS and tT denote the label matrix,    and    denote 

the prediction error on source and target data, respectively. 

From the discussions in the previous sections, E-nose has 

witnessed significant progress in applications, systems, feature 

extraction, pattern analysis and drift compensation aspects. 

However, for industrialization, commercialized E-noses still 

face with several novel challenges, such as discreteness 

(reproducibility), drift recovery and non-target disturbance 

counteraction. These challenges are closely related with the fate 

of E-nose technology in large-scale industrialization. Therefore, 

in this paper, we aim at proposing these challenges in terms of 

the current E-noses, and also proposing the highly efficient 

solutions for dealing with the key problems. 

III. PROPOSED 3D ISSUES, METHODS AND SOLUTIONS 

A. Notations 

In this paper,          and          represent the 

source and target domain data, d is the data dimension, and NS 

and NT represent the size of source and target data. ak and bk 

represent the calibration transfer coefficient for sensor k.    

denotes the i-th obervation,         and         denote 

the subspace projection (basis) of source and target domain, 

and r denote the lower dimension. W represents the subspace 

alignment.   denotes the representation coefficient matrix, 

‖ ‖  denotes the Frobenius norm,  ‖ ‖  denotes l2-norm and 

( )   denotes the inverse operator.  

B. 3D Challenge I: Discreteness 

Reproducibility represents the signal discrepancy of multiple 

E-nose systems with identical sensor array. It is known that in 

the sensor manufacturing process the inherent variability may 

cause slight difference in the reactivity of the tin oxide substrate, 

such that the response of two identical sensors under the same 

condition is different [95]. This discrepancy between two 

identical sensors can be termed as sensor discreteness [96], 

which results in the worse reproducibility problem of E-noses. 

From the viewpoint of E-nose system, sensor discreteness 

reflects the output differences (signal shift) among completely 

the same E-nose systems. Specifically, the discreteness can be 

described as two facets [96]. (1) baseline difference: the 

sensitive resistance Ro of two identical sensors in clear air under 

the same ambient temperature and relative humidity is different, 

which results in that the response (output voltage) of the 

identical sensors is also different; (2) sensitivity difference: two 

identical sensors that exposed to some odorant have different 

sensitivity Rs/Ro, where Rs is the sensitive resistance in odorant 

and Ro in clean air, such that the responses of two sensors are  

 
Fig. 3. Characteristic of sensor discreteness. Six sensors are repeated. 

 

also different. More visually, the discreteness can be observed 

in Fig.3, where Fig. 3(a) denotes the response of the same 6 

TGS2620 sensors under the same condititon, and Fig. 3(b) 

shows the response of the same 6 TGS2602 sensors. 

From the analysis above, the discreteness greatly deteriorates 

the predictive performance of multiple E-nose systems, which 

particularly prohibits the large-scale production of E-noses. 

Therefore, it is urgent and challenging to enhance the 

reproducibility for accelerating the development of E-nose 

technology. In the present literatures, most of the E-nose 

research focus on one single system but neglects the 

systematical discrepancy among multiple systems. Therefore, 

the pattern recognition algorithms established on single system 

cannot be used in multiple systems if the discrepancy is not well 

handled. For this purpose, Tomic et al. [97] proposed a 

univariate direct standardization (UDS) and a partial least 

square based PLS2 method for handling the instrument shift. 

However, the two methods tend to reduce the shift by matrix 

based standardization, but neglect the property of 

sensor-specific discreteness. Zhang et al. [98] also proposed 

matrix standardization by using nonlinear artificial neural 

network for compensating the nonlinear instrument shift. 

In our research, as discussed in [99], we found that the 

discreteness is sensor-specific and approximately linear in 

some affine space. Therefore, to address this challenge we 

propose a very simple and effective global affine linear 

transformation (GAT) model for discreteness reduction and 

reproducibility enhancement, which is formulated as follows 

                                           (12) 

where    denotes the i-th sensor response of the slave 

instrument,    denotes the i-th sensor response of the master 

instrument, ai and bi represent the sensor-specific calibration 

parameters. The parameters can be easily solved by using 

regularized least square based methods. 

For computing the calibration coefficients in (12), several 

global optimal samples should be selected from the training set 

due to that in large scale calibration transfer, the sample 

collection needs high labor cost. Therefore, a Euclidean 

distance based sample selection algorithm (SSA) is presented 

for searching the most representative samples, which is 

described as follows. 

Step 1: Calculate the Euclidean distance in pair-wise from 

the master training set, and select the farthest two patterns s1 

and s2 as the calibration samples, which forms a set   *     +. 
Step 2: To each sample xi, the Euclidean distance between xi  
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Fig. 4. Sensors discreteness before and after correction of 10 identical 

E-nose instruments 

and one sample in set S is computed and the nearest distance is 

denoted as di, which then forms a nearest distance vector d. 

Step 3: The sample with the farthest distance in d is selected 

as the calibration sample s3, and update the set   *        +. 
Step 4: repeat Step 2, Step 3, until calibration set S is done. 

In this paper, five samples i.e.   *              +  are 

selected for calibration transfer by using model (12). The 

coefficients will be used for on-line calibration in real-time use. 

The proposed method can be easily implemented for sensor 

discreteness reduction in large-scale E-nose systems coupling 

with operable experimental procedures for different odorants 

[96]. The performance of sensor discreteness calibration of 10 

E-nose systems with identical type is shown in Fig. 4, from 

which we can clearly observe the reproducibility enhancement 

of E-noses. Specifically, Fig. 4(a) and (c) show the sensor 

discreteness before and after correction of TGS2620 signal, 

respectively, and that of the TGS2602 is shown in Fig. 4(b) and 

(d) by using GAT method. In terms of Fig. 4(a) and (b), we can 

figure out the difficulties of E-noses in large-scale production 

due to the very bad reproducibility. Therefore, reproducibility 

enhancement is one challenge on the road of E-nose 

industrialization and the proposed affine linear model would be 

a very efficient solution in large-scale E-nose calibration [96]. 

C. 3D Challenge II: Drift 

Drift is another challenge, due to that the sensor array is the 

most important part in E-noses which provides source signal of 

odorants. In the past two decades, drift has been paid more 

attention with different drift counteraction and compensation 

techniques. However, drift still plagued researchers and 

prohibit the long-term and stable usage of E-noses. In principle, 

drift has been caused by a number of factors, such as aging, 

ambient temperature, humidity, pressure and poisoning, etc. 

such that the chemical reaction inside the sensors when exposed 

to some odorant will be broken. Therefore, it is difficult to 

establish a drift model once and for all, especially that the 

sensor with identical type shows different drift effects. In our 

opinion, drift cannot be explicitly shown but may be implicitly 

learned through enough prior knowledge. Therefore, in this 

paper, we propose a very simple but effective Unsupervised 

Feature Adaptation (UFA) based transfer learning idea for  

 
Fig. 5. Schematic diagram of UFA for drift (subspace) adaptation 

 

enhancing the drift tolerance of E-noses, such that the aging and 

performance can be extended and optimized. The previous 

method (DAELM) in [94] is a supervised classifier adaptation 

method and the information of labels is needed for classifier 

learning. However, in large-scale drift data, it becomes difficult 

to label each sample by hand. Therefore, an unsupervised and 

subspace transfer learning based feature adaptation (UFA) is 

proposed and discussed in this paper, instead of classifier 

adaptation. Specifically, the proposed UFA aims at minimizing 

the distribution discrepancy in principal component (PC) 

subspace caused by drift. By aligning the PC subspace between 

the clean E-nose data and the drifted data, the drift can be well 

compensated. The idea of the proposed UFA is described in Fig. 

5, from which the aligned subspace for source and target data is 

achieved. Visually, the data distribution in principal component 

space has been shown in Fig. 6, in which Fig. 6 (a) shows the 

principal component loading vectors of 10 batches and Fig. 6 (b) 

shows the low-dimensional projection of the data on the 

principal component space. Note that the 10 batches of E-nose 

data were provided by Vergara et al. [90], which were collected 

during 3 years and the batch 1 is recognized to be clean data 

without drift. From Fig. 6, we can clearly observe the 

distribution discrepancy of the loading vectors and the principal 

component projection between batch 1 and other batches, due 

to the drift effect. 

 UFA: Unsupervised Feature Adaptation 

The UFA idea described in Fig. 5 is for adapting the subspace 

incrementally learned from old data to new drift data observed 

by an E-nose. In this section, we will discuss a subspace 

transfer learning model in feature-level (i.e. feature adaptation). 

It is known to us that the difference between the un-drifted 

sensory data and the drift data lies in the probability distribution 

discrepancy. Let each batch of data be a domain, that is, the 

clean (no drift) data is viewed as source domain          

and the drift data is viewed as target domain         . Then, 

the drift compensation issue can be recognized to be a domain 

adaptation or transfer learning problem from source domain to 

target domain. For domain adaptation, in this paper, we make 

use of the subspace         and         composed of r 

eigenvectors induced by PCA, of source and target domain, 

respectively. We suggest project the source and target data into 

their respective subspace    and   , by using   
    and   

   . 

For feature subspace adaptation, we propose a simple model by 
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Algorithm 1: UFA 

Input:    and   ; 

Output: W*,   
    and   

   ; 

Step 1: Solve    by using PCA on   ; 

Step 2: Solve    by using PCA on   ; 
Step 3: Obtain W* by solving the model Eq. (14); 

Step 4: Calculate   
    by using Eq. (15); 

Step 5: Compute   
      

   . 

 

aligning    and    with a linear transformation, as follows 

    ‖      ‖ 
   ‖ ‖ 

                       (13) 

where ‖ ‖  denotes the Frobenius norm and        

denotes a positive regularization coefficient. Consider the 

orthogonal property of r eigenvectors in each domain, the 

model (13) can be written as 

  (  
      )    

    
 

   
  

                 (14) 

where   
     . If there is no difference between    and   , 

then    
 

   
  

    
 

   
 , and the 

 

   
 can be recognized to 

be the scaling coefficient. 

With the optimal   , the drift-less target data with the 

adapted subspace basis vectors can be formulated as follows 

  
    (   

 )    
 

   
  

     
                (15) 

As we can see from the UFA method, during subspace transfer 

process, the labels are not considered. Therefore, UFA can be 

recognized to be unsupervised feature adaptation. Generally, 

the UFA algorithm is summarized as Algorithm 1. 

 Experiments 

The long-term (3 years) sensor drift data published in UCI 

Machine Learning Repository by Vergara et al. [90] has been 

used for verifying the proposed UFA method. The dataset 

consists of 13,910 observations by an E-nose with 16 gas 

sensors on 6 kinds of odorants, such as acetone, acetaldehyde, 

ethanol, ethylene, ammonia and toluene. In feature extraction, 8 

features on each sensor are selected which forms a 

128-dimensional vector for each observation. This time series 

dataset is divided into 10 batches in terms of the experimental 

period. Therefore, the batch 1 is recognized to be drift-less 

(clean) data, and there is more and more serious drift from 

batch 2 to batch 10. The number of samples in each batch is 

shown in Table I. For classification, we train a support vector 

machine (SVM) with RBF kernel on the raw data (RAWSVM), 

semi-supervised learning (SSL) with manifold structure 

preservation, CCPCA and the adapted feature using UFA 

(UFASVM), respectively. In experiment, we take the batch 1 as 

source data without drift for classifier learning and test on other 

batches. For the proposed UFA method, the projected   
   of 

the batch 1 is used for classifier training and the projected   
    

with drift adaptation via UFA is used for testing. We have 

compared with RAWSVM, CCPCA and SSL methods for 

confirming the effectiveness of the proposed UFA method. 

First, we have plotted the principal component loading vectors 

and low-dimensional projection after UFA treatment in Fig. 7. 

By comparing the scatter points shown in Fig. 6, it is clearly 

observed that the distribution has been aligned and the 

similarity of the loadings has been enhanced after using the 

proposed UFA based drift compensation algorithm. Further, for 

quantifying the distribution difference, we propose to use a 

metric which is defined as Mean Distribution Discrepancy 

(MDD). Specifically, the MDD between          and  

         is calculated as follows 

   (     )  ‖
 

  
∑   ( )  

 

  
∑   ( )

  
   

  
   ‖

 
    (16) 

where   ( ) and   ( ) denote the i-th and j-th row vectors. 

The MDD between batch 1 and other batches in the principal 

component loading vectors is presented in Table I 

(Loadings_RAW vs. Loadings_UFA), and that of the 

projection with the loadings is also presented in Table I 

(Projection_RAW vs. Projection_UFA). From the Table I, the 

quantitative difference of the raw data and drift-adapted data 

via UFA is significant. The classification accuracy has been 

reported in Table II, from which we can observe the much 

improved performance with 6.3% increment on average. 

Additionally, for statistical test on the results, we adopt t-test 

and ANOVA-test on Table I and II, respectively. The test result 

shows a statistical significance with a level of 5%.  

From the experimental data analysis, the effectiveness of the 

proposed UFA is demonstrated. The advantages of UFA can be 

summarized as three points: 1) UFA aims at aligning the 

subspace distribution of the E-nose data, instead of exploring 

the drift direction or some deterministic rules that are not robust 

and generalized in large-scale gas sensors. 2) UFA is an 

unsupervised machine learning method, such that it can reduce 

a lot of work in labeling each sample and overcome the flaws of 

the classifier adaptation based drift compensation methods. 3) 

UFA is simple in implementation and can be easily achieved 

with high efficiency. UFA provides a new idea from subspace 

adaptation in facing with the E-nose drift challenge. 

D. 3D Challenge III: Disturbances 

In this section, we will present the third challenge, non-target 

disturbance, which has seriously caused a failure of E-nose in 

real-time applications. For better understanding the “non-target 

disturbance”, we call the odorants that will be measured as 

target gases. Therefore, the non-target gases other than the 

several target odorants being detected are uniformly recognized 

to be the “disturbances”. For our E-nose system, six odorants 

such as formaldehyde, benzene, toluene, carbon monoxide, 

ammonia, and nitrogen dioxide are the target gases being tested. 

Specifically, any unknown odorant except the six target gases 

would be viewed as disturbance, such as alcohol, perfume, 

smoke smell, fruit smell, etc. because the metal oxide 

semiconductor gas sensors produce much stronger response to 

these disturbances that are undesired, as shown in Fig. 8. The 

experiment in Fig. 8 is as follows. First, the baseline is collected 

in the first 2 minutes. Second, the disturbance is within the next 

5 minutes. Third, the disturbance exhaust continues about 10 

minutes. Fourth, repeat the three steps four times. Although the 

non-target disturbance is serious, research on this specific 

problem has never been reported in E-nose community except 

[54], in which the non-target disturbances were treated by using 

disturbance recognition and disturbance elimination based 

route. The disturbance detection step is the most important part 

for non-targets disturbance counteraction. The disadvantage of 

[54] is that the proposed method can only treat very limited 

kinds of disturbances. However, it is known that there are 

thousands of “non-target” disturbances in real-world. Therefore, 

we claim that non-target disturbances counteraction is another 

huge challenge of E-nose for real applications. 
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Fig. 6. Principal components loading vectors (a) and principal component projection (b) of the raw data from batch 1 (no drift) 

 

 
Fig. 7. Principal components loading vectors (a) and principal component projection (b) after UFA subspace alignment from batch 1 (no drift) to batch 10 

 

TABLE I  
MEAN DISTRIBUTION DISCREPANCY (MDD) BETWEEN EACH BATCH AND THE BATCH 1 IN LOADING VECTORS AND THE PROJECTION, RESPECTIVELY 

MDD Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Average 

Sample No. 445 1244 1586 161 197 2300 3613 294 470 3600 - 

Loadings_RAW 0 0.0197 0.0185 0.0209 0.0152 0.0194 0.0183 0.0211 0.0160 0.0226 0.0191 

Loadings_UFA 0 0.0065 0.0043 0.0049 0.0075 0.0042 0.0049 0.0059 0.0064 0.0038 0.0054 

Projection_RAW 0 0.0241 0.0186 0.0495 0.0348 0.0222 0.0517 0.0207 0.0725 0.0257 0.0355 

Projection_UFA 0 0.0220 0.0180 0.0359 0.0328 0.0212 0.0242 0.0252 0.0128 0.0260 0.0242 

 

TABLE II  

CLASSIFICATION ACCURACY OF OTHER BATCHES USING THE CLASSIFIER LEARNED ON BATCH 1  

Accuracy Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Average 

RAWSVM - 56.1 81.3 63.9 70.1 69.1 47.8 45.6 49.1 31.1 57.1 

CCPCA - 67.0 48.5 41.0 35.5 55.0 31.0 56.5 46.5 30.5 45.7 

SSL  42.3 73.7 75.5 66.8 77.5 54.4 33.5 23.6 34.9 53.6 

UFASVM - 74.7 83.7 79.5 75.1 69.8 47.2 44.2 66.4 30.4 63.4 

 

 Targets-to-Targets Self-representation Classifier 

(T
3
SRC) 

Hopefully, in this paper, we will propose a novel 

Targets-to-Targets Self-representation Classifier (T
3
SRC) 

method and a very effective solution to address this issue. 

Motivated by dictionary learning based representation classifier 

theory, the main idea of the proposed T
3
SRC is that the 

knowledge of the target gases can be only memorized via 

knowledge representation learning without depending on what 

disturbances are damaging the E-nose. That is, the target gases 

are invariant though the disturbances are ever-changing. The 

learned model   via T
3
SRC is recognized as a representation 

based classifier, which is used for separating the target gases 

and non-target disturbances by leveraging the representation 

error as a metric. It is rational to imagine that for some 

non-target disturbance the representation error would be larger 

due to the weak representation capability of   on the 

non-targets. The most prominent merit of the proposed T
3
SRC 

is that it can well tackle the fatal flaw in [54] that only very 

limited disturbances can be treated. Visually, we provide a 

schematic diagram of T
3
SRC in Fig.9 for disturbance detection.  

Suppose the training set of target gases to be   
,       -      , the self-representation coefficients (i.e. 

self-classifier) to be   ,       -      , then there is 

                                           (17) 

where E denotes the representation error matrix, which implies 

that some unknown noises may lie in the data. The 

representation error of   (       ) can be formulated as 

   ‖      ‖ 
                         (18) 

Therefore, a good representation should satisfy that the total 

representation error (TRE) ∑     should be minimized, and 

there is the following model 

     ∑     ∑ ‖      ‖ 
  

                       (19) 

where ‖ ‖  represents l2-norm. To control the complexity of 

representation classifier   without overfitting, it is better to use 

the regularization technique. Therefore, the proposed T
3
SRC 

can be compactly formulated by rewritten Eq. (19) with a 

regularizer as follows 

     ‖    ‖ 
     ( )                     (20) 

where  ( )  represents some regularizer and   denotes a 

positive regularization coefficient. In this paper, the L2-norm 

regularization based collaborative representation with better 

robustness and lower computational cost is considered. The  
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Fig. 8. Sensor response to disturbance, i.e. smoke smell and perfume. 

(a) and (b) are experimented with different sampling rate. 

regularization is a useful way to overcome the noise in 

classifier learning. Therefore, T
3
SRC can be written as 

     ‖    ‖ 
   ‖ ‖ 

                        (21) 

It is worth noting that T
3
SRC is not used for intra-gases 

recognition in targets, therefore the label information is 

unnecessary, which is an unsupervised method for disturbance 

detection. In this paper, we would like to exploit the 

representation error boundary idea between targets-to-targets 

and targets-to-non-targets for discrimination of targets and 

non-targets. The closed form solution of Eq. (21) can be 

achieved as follows 

  (      )                               (22) 

In discrimination of targets and non-target, for a new pattern 

    , the total representation error (TRE) metric is 

calculated as 

     √
 

 
∑ ‖     ‖ 

  
                         (23) 

It is clear from Eq. (21) that if one new pattern y is not from 

the self-representation set X, then there should be 

          
                             (24) 

It is not difficult to figure out that the representation ability of 

target by using   and   is superior to that of non-targets. Then, 

the attribute decision of y can be made as follows 

           {
                                     

                             
        (25) 

where           represents the boundary of the total 

representation error, determined by the target testing set and 

non-target validation set. From the Eq. (21), the solution in Eq. 

(22) and decision in Eq. (23, 25), we can see that during the 

process of non-targets discrimination, only the training patterns 

of the target gases are required. Additionally, the proposed 

method is an unsupervised manner without using class labels. 

 Experiments 

In this section, we adopt the dataset in [54] for experimental 

analysis. Six kinds of target gases including formaldehyde 

(188), benzene (72), toluene (66), carbon monoxide (58), 

ammonia (60), and nitrogen dioxide (38) are experimented. 

Note that the digits in brackets denote the number of samples. 

For learning the T
3
SRC model, 10 samples are selected as 

training set from each gas, respectively and totally 60 samples 

are used for model training. The remaining data are used for 

determining the           (test process). In validation process, 

we have also collected a non-target disturbance (alcohol) data 

 
Fig. 9. Schematic diagram of T3SRC method in training and testing.    

denotes the representation coefficient vector of the sample xi 

(i=1,…,6). The      w.r.t. xi or of the same class has the largest 

coefficient, and a small value is obtained w.r.t. that of different classes. 

 
Algorithm 2: T3SRC 

Input: Target train-set X, target test-set Y, non-target validation-set Z, and a 
new pattern y; 

Step 1: Calculate   by using Eq. (22); 
Step 2: Calculate TREY by using Eq. (23); 

Step 3: Calculate TREZ by using Eq. (23); 
Step 4: Calculate the Eboundary by calculating the recognition rate. 

Step 5: Calculate TREy using Eq. (23) and the Attributey using Eq. (25). 

Output:  , Eboundary, Attributey 

 

set including 48 samples for testing the pre-determined 

representation error boundary, i.e.          . The total 

representation error curve of training, testing and validation set 

is shown in Fig. 10 (a), in which we can see that the non-target 

disturbance (alcohol) has significantly larger representation 

error and the target test data has similar errors with the target 

training data. It also shows the potential capability of the 

proposed method for differentiating the non-target disturbances 

by using the representation error based metric. For finding the 

error boundary for separation by using the representation errors 

of target testing data, we plot the recognition rate based on Eq. 

(25) by increasing the error boundary from the lowest error of 

target testing to the largest error in Fig. 10(b), from which we 

can observe the                 for the best separation 

between the targets and non-targets. The recognition rates of 

targets and non-targets are 91.7% and 95.8%, respectively. The 

ROC (Receiver Operating Characteristic) curve is shown in Fig. 

10(c), from which we can clearly observe the good 

performance of targets and non-targets discrimination. Fig. 10 

demonstrates that the targets have very weak representation 

ability to non-targets. Therefore, it is rational to separate 

between them by using target-specific representation 

coefficients with an error boundary (threshold).  

Additionally, we have collected another three real-time data 

with continuous observations, including smoke smell, perfume 

and mixtures (target vs. non-targets). The average sensor 

responses have been illustrated in Fig. 11 (first row), from 

which there are several wave peaks denoting the disturbances. 

Fig.10 (second row) denotes the total representation error (TRE) 

of each observation computed as Eq. (23). Notably the red 

dashed line denotes the error (threshold) Eboundary=0.84 shown 
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Fig. 10. Representation error, recognition rates and ROC curves by using T3SRC 

 

Fig. 11. Representation errors of three continuous observation sets, in which the red dashed line denotes the error boundary for separating 

between the targets and non-targets (disturbances) 

 

in Fig. 10(b). We can see that the peaks representing 

disturbance have larger error than           and the attribute 

recognition is correctly done (100% accuracy). It is worth 

noting that in Fig. 11(c), the targets are highlighted in ellipses, 

which have smaller errors than           and the attribute 

recognition can also be correctly done. 

From the experiments, we see that the proposed method is 

very effective in discrimination of non-targets. The main 

advantages of T
3
SRC are threefold: 1) the computation 

complexity is very low with a closed form solution. 2) in 

modeling and discrimination, the information of non-targets are 

not required, which handles the most important and difficult 

issue in E-noses that thousands of non-target disturbances may 

exist in real-world. 3)  in modeling, very few number of target 

training samples are used (in this paper, 10 sample for each 

target gas), such that the computational and manual cost are 

very low for learning the representation coefficients  . 

Through analysis of the proposed solutions (GAT, UFA and 

T
3
SRC) w.r.t. the 3D issues, we provide following remarks: 

 The three methods are discussed separately, and used for 

respective scenarios in a general case.  

 More complex conditions that discreteness, drift and 

disturbance happen simultaneously are not considered. 

 For GAT, the calibration coefficients are computed off-line 

by using several selected data points, and the calibration 

transfer is on-line with the coefficients. 

 For T
3
SRC, the target gas mixture is not considered, but we 

assume that the mixture of target gases cannot be non-targets. 

IV. CONCLUSION 

In this paper, we have summarized the progress and new 

challenges in E-noses. First, the progress is described in 

application, system and algorithm levels. Specifically, the 

extensive applications and several different types of E-noses 
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including conventional E-noses, temperature modulated 

E-noses, differential E-noses, and active E-noses have been 

explored. The state-of-the-art algorithms in feature extraction, 

pattern recognition and drift compensation are overviewed. 

Second, with a deep insight of the observed achievements in 

E-nose, we present new challenges that have not been properly 

handled and treated, i.e. 3D issues including: (I) Discreteness: 

sensor reproducibility enhancement; (II) Drift: sensor drift 

recovery; (III) Disturbance: non-targets disturbances 

counteraction. Third, motivated by these proposed 3D 

challenges, to this end, we have also proposed the efficient 

solutions including global affine transformation (GAT), 

unsupervised feature adaptation (UFA) and targets-to targets 

self-representation classifier (T
3
SRC) for handling the 3D 

issues to be solved, separately. Experiments demonstrate the 

effectiveness and efficiency of the proposed approaches in 

dealing with the proposed issues. Notably, this paper proposes 

to solve the 3D issues separately with different approaches. A 

potential limitation of the proposed methods for each issue is 

the application scenario with gas mixtures, instead of single gas, 

which would be particularly explored in our future work. 

As recent progress in machine learning and feature 

extraction developed based on different systems [100-104], in 

the future work, the further improvements can be done in two 

facets. First, in the proposed UFA method, the drift is handled 

by aligning the principal loading vectors between the clean data 

and the drifted data. It is also rational to consider the adaptation 

in some discriminative subspace with better separable 

capability, such that the drifted data can be reconstructed by the 

clean data in the subspace. The reconstruction error can be 

understood to be drift-induced, and the reconstructed new data 

can be recognized as the drift-less data. The reconstruction 

process is denoted as drift recovery. Second, in the proposed 

T
3
SRC, the L2-norm is imposed on the representation 

coefficients α for reducing the complexity caused by overfitting 

and Gaussian noise. Consider that α has different 

representation ability to different objects, a stronger sparse 

constraint on α may be better for discriminative representation. 

Therefore, L0 or L1-norm can be imposed for regularization 

 ( ) in model (20), such that Laplacian noise or outliers can 

be well fitted. 
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