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Abstract

Computer-aided protein-coding gene prediction in uncharacterized genomic DNA sequences is one of the most important issues of bio-
logical signal processing. A modified filter method based on a statistically optimal null filter (SONF) theory is proposed for recognizing
protein-coding regions. The square deviation gain (SDG) between the input and output of the model is used to identify the coding
regions. The effective SDG amplification model with Class I and Class II enhancement is designed to suppress the non-coding regions.
Also, an evaluation algorithm has been used to compare the modified model with most gene prediction methods currently available in
terms of sensitivity, specificity and precision. The performance for identification of protein-coding regions has been evaluated at the
nucleotide level using benchmark datasets and 91.4%, 96%, 93.7% were obtained for sensitivity, specificity and precision, respectively.
These results suggest that the proposed model is potentially useful in gene finding field, which can help recognize protein-coding regions
with higher precision and speed than present algorithms.
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Introduction

Recognition of protein-coding regions has attracted much
attention in recent years. Currently, different kinds of
methods for locating protein-coding regions have been pro-
posed. Conventional techniques for recognizing exons of
DNA sequences include intelligent methods based on neu-
ral networks [1], hidden Markov models (HMMs) based on
statistical theory [2–4], and correlation function methods
[5]. Markov chain based models perform well in gene-find-
ings for genome sequence analysis [6] and a better Markov
model, which relies on a number of training gene datasets
for accurate model parameters such as the first, second
and fifth-order Markov models, has been well developed
in comparison with other algorithms using Z-curve [7].
However, the computational speed of such models is
1672-0229/$ - see front matter � 2012 Beijing Institute of Genomics, Chinese A

Ltd and Science Press. All rights reserved.

http://dx.doi.org/10.1016/j.gpb.2012.02.001

⇑ Corresponding author.
E-mail: leizhang@cqu.edu.cn (Zhang L).
cost-ineffective in the training process. Besides, the prior
information is overconsidered in modeling. Thus, further
development of more convenient and simple algorithms
with acceptable accuracy is beneficial to genome sequence
studies especially in the investigation of eukaryote
genomes.

In recent years, signal processing approaches have
attracted significant attention in research of genomic
sequences and genome structures, which may identify hid-
den periodicity and features that cannot be revealed easily
by conventional statistical methods. In DNA sequences,
protein-coding regions typically show a periodic character
of three bases, which cannot be found in intergenic regions
and introns in eukaryotes. Previous digital signal process-
ing methods were based on the property of period-3 and
include the discrete Fourier transform (DFT) [8–11],
short-time discrete Fourier transform (STDFT) with a slid-
ing window [12], lengthen-shuffle DFT based on the format
of the Z-curve [13] and EPND method with DNA walk
cademy of Sciences and Genetics Society of China. Published by Elsevier
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Figure 1 The schematic data flow block diagram of the proposed gene

prediction model structure
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sequences [14]. In addition, the band-pass digital filters,
which are centered at 2p=3, have also been proposed to
predict protein-coding regions. These include single infinite
impulse response (IIR) anti-notch filter using lattice struc-
ture [15] and multistage filters to suppress the background
1/f noise [16]. Guigo divides gene prediction methods into
model-dependent and model-independent methods [17].
Model-dependent methods depend on a priori known
genomic information of organisms, while model-indepen-
dent methods do not. Model-independent methods, such
as modified Garbor transform (MGT) [18], DSP methods
[19,20], extended Kalman filters based on symbolic dynam-
ics [21], and a time-frequency filtering technique based on
S-transform [22], can be used to identify unknown pro-
tein-coding regions of DNA sequences. However, most
existing algorithms may be useful in the recognition of
DNA sequences which are longer but the accuracy of rec-
ognition may be affected for shorter sequences. Recently,
an exon detection algorithm using statistically optimal null
filters (SONFs) has been proposed in comparison with the
DFT algorithm for shorter sequences [23] and showed its
feasibility in gene prediction for shorter DNA sequences.
SONF, which is closely related to the Kalman filter,
reduced the modeling complexity without requiring the
solution of nonlinear equations of the Ricatti type which
is essential in computing the gain of the Kalman filter
[24]. SONF has been widely used in the seizure detection
field [25]. Effectiveness and lower complexity of computing
with SONF inspire us to explore SONF in-depth for detect-
ing more favorable characteristics of genomes.

For clarity, the outline of this paper has been shown as
follows. First, we apply Z-curve representation to map
DNA sequences into digital sequences. Second, we illus-
trate the basic principle of the improved model and the
square deviation (SD) gain (SDG) amplification method
was used to suppress the non-coding signal which is viewed
as 1/f noise in this paper. The complete recursive iteration
algorithm is also described, and the global procedure frame
is given. Then, we describe the benchmark gene datasets,
and present the prediction of coding regions with Class I
and Class II amplification using the proposed algorithm.
Furthermore, an evaluation measurement is performed
for comparison with other gene prediction methods using
the F56F11.4 sequence, HMR195 datasets and human
b-globin gene, respectively. Finally, a conclusion of this
paper is presented. This paper addresses the challenges in
the locations of longer DNA sequences and shorter DNA
sequences, respectively, using SONF without any training
datasets, which is different from the Markov chain based
models that require DNA sequence length and their a-pri-
ori biological information.

Methods

The improved model and structure are used to detect pro-
tein-coding regions. Also, a SDG amplification method is
applied to suppress the non-coding regions. The recursive
algorithm is illustrated and the global program for imple-
mentation is presented in detail. A block diagram of gene
prediction model is shown in Figure 1.
Digital mapping of DNA sequence

DNA sequence digitalization is the first stage in genome
analysis. We describe a three-dimensional curve representa-
tion called the Z-curve to reconstruct each base [26].

Considering a DNA sequence with N bases, we calculate
the cumulative numbers of the bases A, C, G and T, respec-
tively beginning from the 1st base to the n-th base. We then
obtain four positive integers An, Cn, Gn and Tn. The
Z-curve is constructed by a group of nodes Pn (n = 1,
2, . . .,N), whose coordinates are illustrated by the following
xn, yn, and zn [26]:

xn ¼ 2ðAn þ GnÞ � n;

yn ¼ 2ðAn þ CnÞ � n;

zn ¼ 2ðAn þ T nÞ � n;

8><
>: n ¼ 0; 1; . . . ;N ð1Þ

where the initial values A0 = C0 = G0 = T0 = 0 and
x0 = y0 = z0 = 0. Also, we define that

Dxn ¼ xn � xn�1;

Dyn ¼ yn � yn�1;

Dzn ¼ zn � zn�1;

8><
>: n ¼ 1; 2; . . . ;N ð2Þ

Thus, we know that a DNA sequence can be decomposed
into three digital sequences (consisting of 1 or �1), which
represents the distribution of purine/pyrimidine type, ami-
no/keto type and strong/weak hydrogen bonds type along
the DNA sequences, respectively [13].

To detect protein-coding region, a sliding window with a
width of M samples is applied in our model, where M

should be determined by the maximum exon length in
protein-coding regions. To obtain a new digital DNA
sequence, the window is then moved by one base



Figure 2 The structure of the improved filter model

The part with dashed line denotes the block of instantaneous matched
filter (IMF).
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overlapping for every sample interval until all the bases are
embedded in the window.

Modified filtering

The basic theory of instantaneous matched filter (IMF) has
been presented previously [27] and a general description of
the SONF, which combines the maximum output signal-to-
noise ratio (SNR) with the minimum mean square error
(MMSE) criteria, is also given [24]. The modified filter
method designed based on IMF and SONF is shown as
follows.

Consider a DNA sequence with a length of N shown as
follows:

xðkÞ ¼ dðkÞ þ nðkÞ ð3Þ
where n(k) is zero-mean white Gaussian noise, and the de-
sired signal d(k) is represented as:

dðkÞ ¼ V T /ðkÞ ð4Þ
where V is the random variable, /ðkÞ is the known basis
function, and v(k) is the output of IMF which can be
expressed as:

vðkÞ ¼
XN

k¼0

xðkÞ/ðkÞ ð5Þ

For the least optimization of IMF output, we scale v(k) by
/ðkÞ=cðkÞ, then the desired signal estimate can be shown
by:

d̂ðkÞ ¼ ½VcðkÞ þ n00ðkÞ�/ðkÞ=cðkÞ ¼ V /ðkÞ þ n0ðkÞ ð6Þ
where n0ðkÞ is white noise, and the ultimate form of d(k) is
illustrated as:

d̂ðkÞ ¼ dðkÞ þ n0ðkÞ ð7Þ
To determine the optimal filter, we scale the output v(k) of
IMF by an unknown function kðkÞ, the final output y(k) of
IMF is presented as:

yðkÞ ¼ vðkÞkðkÞ ð8Þ
where y(k) is also called the estimate of d(k), and the output
error eðkÞ of the filter is illustrated as:

eðkÞ ¼ xðkÞ � yðkÞ ¼ xðkÞ � vðkÞkðkÞ ð9Þ
By using (3) the output error eðkÞ can also been represented
by:

eðkÞ ¼ dðkÞ þ nðkÞ � vðkÞkðkÞ ð10Þ
For an ideal null filter, eidealðkÞ ¼ nðkÞ, and the error func-
tion of the filter becomes:

ekðkÞ ¼ eidealðkÞ � eðkÞ
¼ nðkÞ � ½dðkÞ þ nðkÞ� þ vðkÞkðkÞ ð11Þ

Consider the MSE criteria, with respect to the input SNR,
the optimal post-IMF scaling function koptðkÞ can be writ-
ten as:
koptðkÞ ¼ /ðkÞ=½qðkÞ þ 1=SNR� ð12Þ

where q(k) is shown as follows:

qðkÞ ¼
Xk

i¼0

/ðkÞ2 ð13Þ

Thus, the power of the input noise should be small enough
(i.e. SNR!1), then the scaling function is rewritten as:

k0optðkÞ ¼ /ðkÞ=qðkÞ ð14Þ

The detailed structure of the model is illustrated in
Figure 2.
SDG amplification model

Non-coding regions may obscure the coding regions in pre-
diction such that, the border information of coding regions
cannot be identified accurately [28]. To suppress the non-
coding regions (1/f noise), an SDG amplification method
is proposed to enhance the SDG of coding regions which
is recognized as our feature object of the coding regions.
A related suppressing method has been introduced in
which a quadratic window operation is performed [28].
The window can effectively suppress the non-coding
regions while preserving the coding regions so that the cod-
ing regions can be easily recognized. However, a different
window length is needed for different DNA sequences.
To calculate the SDG of DNA sequence segment, we first
design a SDG function as the weight scales of original out-
put which is similar to the signal boosting method [29]. We
define the SDG of coding regions as follows

Rr ¼ Rr�1 þ gðGr � Rr�1Þ ð15Þ

where g is a smaller positive value (i.e., g = 0.2 ± 0.05)
which is equal to smooth coefficient to control the sensitiv-
ity of algorithm. The SDG of non-coding regions is illus-
trated as follows:

Qr ¼
l � Qr�1; if Qr�1 6 Rr

Rr; if Qr�1 > Rr

�
ð16Þ

where l should be slightly greater than 1 to control the
attenuation velocity of noise level. Therefore, the final ob-
ject value after Class I amplification is described as:

�Gr ¼ W2
r Gr ð17Þ



Figure 3 Implementation diagram of the modified algorithm
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where the gain function Wr ¼ Rr=Qr, Gr is the original SDG
of coding regions. The operation on the original filter re-
sults denotes the Class I amplification, while the Class II
amplification denotes the same operation on the Class I
amplification results so that more signal of non-coding
region will be suppressed.

Implementation of recursive algorithm

Before the implementation, we first define SD of signal X

as:

r2 ¼ Ef½X � EðX Þ�2g ð18Þ
where E(X) denotes the expected value of signal X.

The SDG between the input and output of iteration
algorithm, Gr2 , is recognized as the resultant object of the
detection of coding regions which is defined as:

Gr2 ¼ r2
o=r

2
i ð19Þ

Considering the period-3 property of protein-coding
regions, we determine the dimensions of model as follows:

kðkÞ ¼ ½k1ðkÞ k2ðkÞ k3ðkÞ�T

/ðkÞ ¼ ½/1ðkÞ /2ðkÞ /3ðkÞ�
T

v ¼ ½v1 v2 v3�T
ð20Þ

The basis functions with a desired period-3 property pri-
marily perform a good forecast property [23]. In this paper,
we have considered several different selections for the
parameter c of /iðkÞ (c is an uncertain constant, i = 1, 2,
3) for generality. The three orthogonal basis functions have
been illustrated as follows:

/1ðkÞ ¼ ðc 0 0 c 0 0 c 0 0 . . .Þ
/2ðkÞ ¼ ð0 c 0 0 c 0 0 c 0 . . .Þ
/3ðkÞ ¼ ð0 0 c 0 0 c 0 0 c . . .Þ

ð21Þ

Combining the introduced theory [24], the complete
recursive algorithm has been presented as follows:

vðkÞ ¼ vðk � 1Þ þ xðkÞ/ðkÞ ð22aÞ
P ðkÞ ¼ P ðk � 1Þ � P ðk � 1Þ/ðkÞ/T ðkÞP ðk � 1Þ=½1

þ /T ðkÞP ðk � 1Þ/ðkÞ� ð22bÞ
kðkÞ ¼ P ðkÞ/ðkÞ ð22cÞ
yðkÞ ¼ vT ðkÞkðkÞ ð22dÞ
eðkÞ ¼ xðkÞ � vT ðkÞkðkÞ ð22eÞ

The recursive update formula for the gain matrix P ðkÞ3�3

in this paper originated from the matrix lemma shown
below:

ðAþ BCDÞ�1 ¼ A�1 � A�1BðDA�1Bþ C�1Þ�1DA�1 ð23Þ

where A ¼ P ðk � 1Þ�1
; B ¼ /ðkÞ; C ¼ I ; D ¼ /ðkÞT .

The gain matrix P(k) is initialized as matrix I and v(k) is
initialized as v(0) = (0,0,0)T for iterations; where I is the
identity matrix.
Combining our DNA representation of Z-curve and the
SDG amplification operation with the recursive algorithm,
we summarize the brief global iteration implementation
program for locating protein coding regions as shown in
Figure 3.
Results and discussion

Gene datasets

To evaluate the performance of the improved filter model
on the detection of protein-coding regions, we apply the
iteration implementation program to the gene F56F11.4
on the Caenorhabditis elegans chromosome III which con-
tains five known coding exons in positions 928–1039, 2528–
2857, 4114–4377, 5465–5644, and 7255–7605 (GenBank
accession number AF099922 [21].

In this work, one benchmark dataset from the mamma-
lian organism HMR195 dataset has also been considered.
HMR195 is a dataset of 195 sequences with exactly one
complete either single-exon or multi-exon gene. HMR195
has the following characteristics: (1) the ratio of human:-
mouse:rat sequences is 103:82:10, (2) the mean length of
the sequences in the set is 7096 bp, (3) the number of sin-
gle-exon genes is 43, and the number of multi-exon genes
is 152, (4) the average number of exons per gene is 4.86,
(5) the mean exon length is 208 bp, the mean intron length
is 678 bp and the mean coding length of a gene is 1015 bp
(�330 amino acids), and (6) the proportion of coding
sequence in this dataset is 14%, of the intronic sequence
46% and of the intergenic DNA 40%.
Application of the modified model to gene datasets

The proposed algorithm is applied to three gene sequences
with known fragments of exons, respectively. First, for the
long sequence F56F11.4, the sliding window width is set as
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Figure 6 Recognition of the No. 5 mammalian sequence in HMR195

dataset after Class II enhancement using the improved model

The gray regions denote the relative physical positions of CDS features.

Figure 4 Identification of coding regions on F56F11.4

The output SDG of model for c = 1 and c = 0.5 was shown in A and B,
respectively. The binary dot lines illustrate the true coding exons regions
for visualization. The vertical axis shows the SDG, and the horizontal axis
shows the relative base location.
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M = 351 according to the maximum exon length and the
sliding window step is 1 bp. Figure 4 illustrates the predic-
tion performance of the model combined with SDG algo-
rithm under the condition that parameter c equals to 1
and 0.5, respectively. The locations of peak values are rec-
ognized as the predicted exon areas using our method. The
peak values show that the SDG is larger in coding regions.
It is consistent with the theory that the SNR between the
coding regions (signal) and the non-coding regions (noise)
is large [28]. When comparing Figure 4A with B, we
observe that the plots become smoother with the decreas-
ing of parameter c which is very similar to the smooth filter.

Figure 5 illustrate the SDG after Class I and Class II
amplification, respectively. We can see that the non-coding
regions are suppressed effectively, and the accurate border
Figure 5 Identification of coding regions on F56F11.4 with Class I (A) and

Class II (B) amplification
locations of coding regions are visible. From Figure 6, we
can see that the non-coding regions almost tend to zero
after Class II amplification. Therefore, we can say that
the SDG amplification method is effective in recognition
of coding regions.

Figure 6 illustrates the performance of the extracted
1100 bps from the No. 5 mammalian sequence in datasets
HMR195. The true coding regions (57-117, 554-595, 706-
839 and 1022-1067) have been shown intuitively with
CDS feature in GenBank.

Model evaluation

To evaluate the validity of the proposed recognition model
in C. elegans, a modified evaluation scheme is performed
on the basis of the previous publications [18,30]. A thresh-
old th percent smaller than the SDG is viewed as the non-
coding regions, and set to zero similarly as described previ-
ously [18]. The threshold value th is in the range between 1
and 99 to predict the borders of coding regions for calculat-
ing sensitivity (Sn), specificity (Sp) and the precision (P). In
this paper, the best threshold th is 83. Figure 7 illustrates
the nucleotide-level measures of prediction borders. The
black blocks are the actual regions, and the gray blocks
are predicted exon regions.

The formulae are shown as follows
Figure 7 Evaluation of prediction accuracy at nucleotide level

The black blocks represent the actual coding regions, and the gray blocks
represent the predicted exonic regions. TP: true positive; FP: false positive;
TN: true negative; FN: false negative.
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Sn ¼ TP=ðTPþ FNÞ ð24aÞ
Sp ¼ TN=ðTNþ FPÞ ð24bÞ
P ¼ 0:5� ðSnþ SpÞ ð24cÞ

To test the HMR195 data sets, correlation coefficient
(CC) and approximate correlation (AC) are introduced
which have been defined as

CC ¼ ðTP � TN� FN � FPÞ=½ðTPþ FNÞ � ðTNþ FPÞ
� ðTPþ FPÞ � ðTNþ FNÞ�0:5

ACP ¼ 0:25� ½TP=ðTPþ FNÞ þ TP=ðTPþ FPÞ
þ TN=ðTNþ FPÞ þ TN=ðTNþ FNÞ� ð25bÞ

AC ¼ ðACP� 0:5Þ � 2 ð25cÞ
True positive (TP) is the number of coding nucleotides

correctly predicted as coding regions. False negative (FN)
is the number of coding nucleotides predicted as non-cod-
ing regions. True negative (TN) is the number of non-cod-
ing nucleotides correctly predicted as non-coding regions.
False positive (FP) is the number of non-coding nucleo-
tides predicted as coding regions [30]. In the evaluation per-
formance, we compared the DFT method [8], anti-notch
filter and multistage filter [16], the original SONF algo-
rithm [23] and the modified wavelet technique [18]. The
results of the comparison with the method reported previ-
ously [24] are shown in Table 1. Note that the listed data of
DFT, anti-notch filter, multistage filter and the signal
boosting based on DFT are obtained from previous study
[29] using the same evaluation method. From the table, we
observe that the percentages of prediction of the proposed
model are obviously superior to other DSP methods. Max-
imum sensitivities of 0.721, 0.703, 0.673, 0.725 and 0.88
were obtained using the DFT technique, IIR anti-notch fil-
ter, multistage filter, signal boosting based method and
modified Garbor-wavelet, respectively. Compared with
Table 1 Evaluation performance (in %) of different methods for the

C. elegans chromosome III

Gene prediction methods Sn Sp P References

aModified model 91.4 96.0 93.7 This study
SONF model with c = 0.5 90.0 76.9 83.5 [23]
SONF with c = 1 90.0 51.7 70.8 [23]
DFT technique 72.1 39.4 89.7 Table 2 in [29]
IIR anti-notch filter 70.3 35.1 89.4 Table 2 in [29]
Multistage filter 67.3 26.6 88.5 Table 2 in [29]
Signal boosting based on DFT 72.5 47.1 91.1 Table 2 in [29]
Modified Garbor-wavelet 88.0 90.0 91.5 Table 1 in [18]
Time frequency method 88.0 98.0 96.0 Table 2 in [22]
Lengthen-shuffling FFT 78.8 79.9 79.3 Table 4 in [7]
Markov model k = 1 78.4 81.4 79.9 Table 4 in [7]
Markov model k = 2 85.4 94.5 89.9 Table 4 in [7]
Markov model k = 4 91.9 95.6 93.8 Table 4 in [7]
Markov model k = 5 92.6 95.8 94.2 Table 4 in [7]

Note: a Modified SONF model after Class II enhancement; data for
Lengthen-shuffling FFT and Markov models with k = 1, 2, 4 and 5 are the
best conditions where P = (Sn + Sp)/2 is used in evaluation. It is worthy
noting that the values in bold face denote the superior recognitions. Sn,
sensitivity; Sp, specificity; P, precision.
the original SONF algorithm, the Sn is slightly higher while
the Sp and precision P are enhanced significantly except for
the time frequency method based on S-transform which
can achieve an accuracy of 96%. In addition, the parame-
ters value in this paper is slightly lower than the Markov-
based model with high orders. However, it cannot out-
weigh the advantages of this proposed method. The SDG
amplification can also effectively improve the accuracy of
recognition.

Also, the improved model has been used to test the
HMR195 datasets in comparison with GeneMark,
HMM, and FGENES programs [31]. Table 2 lists the index
parameters including Sn, Sp, P, AC, and CC analyzed
using the evaluation scheme. The parameters in this table
are the average values of every sequence in these datasets.
From Table 2, the precision of HMMgen is 93.0%, while
a precision of 90.7% is obtained in this paper. We should
point out that the results for existing methods were
obtained from the corresponding publications. Different
methods have been tested on different gene datasets, the
repetitive work of the existent methods were enormous
and redundant. We simply use the results from the refer-
ences. Therefore, two tables have been presented for two
gene datasets.

The filter model based signal processing method require
neither additional biological information or trained geno-
mic datasets for prediction of coding regions, so it can be
applied to analyze unknown and novel genomes. This
paper focused on identification of long DNA sequences.
From the simulations (see Tables and Figures), we find
out that the proposed algorithm in this paper can effec-
tively recognize the locations of coding regions. Although
not as good as that of the high order Markov model, the
results obtained using the proposed algorithm are accept-
able. It is worth noting that the complexity of this filter
model is lower than the high order Markov-based model
(see the implementation program). In addition, the model
in this paper shares some similarities with Kalman filter
theory. However, the computing complexity of the modi-
fied algorithm is efficiently reduced without calculating
the Jacoby matrix by using partial differential and model-
ing the status equations. Moreover, compared with the
DFT and STDFT spectrum analysis, and time frequency
methods [8–14,22], the window width M of the sliding win-
dow in this study does not require a multiple of 3 due to the
power calculation of S(N/3).

This paper aimed at investigating the validity and feasi-
bility of the proposed model in genome analysis and pre-
diction. To some extent, the Markov chain based model
may be more effective in predicting coding regions by com-
parison with Ref. [4]. Markov model parameters were
trained via a number of gene datasets, thus filter based
methods cannot achieve its prediction ability and robust-
ness, and the Markov chain model has widespread applica-
tions in many technical fields (e.g., the practicable software
on line). Although the prediction accuracy using the pro-
posed model is slightly lower than that using the efficient



Table 2 Exon levels of HMR195 datasets from different gene finding programs

Programs of gene finding Sn (%) Sp (%) CC (%) AC (%) P (%)

Filter model 91.7 87.8 77.9 80.3 90.7

GeneMark.HMM 87.0 89.0 83.0 84.0 88.0
HMMgene 93.0 93.0 91.0 91.0 93.0

FGENES 86.0 88.0 83.0 84.0 87.0
Genie 91.0 90.0 88.0 89.0 90.5
Morgan 75.0 74.0 69.0 70.0 74.5

Note: Data for GeneMark.HMM, HMMgene, FGENES, Genie, and Morgan were obtained from Table 1 [31]. For the HMR195 datasets, the HMMgene
performs the best for recognition. It is worthy noting that the values in bold face denote the superior recognitions. CC, correlation coefficient; AC,
approximate correlation.
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Markov chain model with high orders, the filter model is
superior to the prediction methods based on the frequency
content (e.g., DFT based techniques, IIR anti-notch filter
and multistage filter) in terms of sensitivity, specificity
and precision. We show that the improved filter model
has reliable performance for exon prediction. We con-
ducted the first independent comparative evaluation of
the gene-finding algorithms available and designed a more
convenient and simple algorithm for a broad approach to
gene finding. Obtaining definitive accuracy seems to be
an impossible task, since the performance of the programs
is very sensitive to the datasets tested upon, as observed by
many researchers. Not to mention that we have to assume
that the actual coding exons were correctly annotated in
the GenBank record under the “CDS” feature (annotated
non-coding exons are not considered).

Conclusion

In this paper, a modified filter model is applied to detect
protein-coding regions. To analyze gene sequences using
signal processing theory, Z-curve representation is used
to map DNA bases into digital sequences. Combined with
the filter and the iteration algorithm, a sliding window is
then applied for sampling gene data in order to analyze
DNA sequences for predicting coding regions. We illus-
trated the potential use of the filter model to recognize a
known DNA sequence. Our results strengthen its plausibil-
ity in detection of protein-coding regions. An advantage of
the filter model is that it performs well without the limit of
window width. In addition, the complex computation can
be skipped without considering the Jacoby matrix. Another
advantage is that the proposed filter model can achieve the
identification of coding regions without any prior informa-
tion about the DNA sequences.

To suppress the non-coding regions and enhance the
SNR between coding regions and non-coding regions, a
SDG amplification model with Class I and Class II ampli-
fication is carried out on the output of the filter model.
Simulation results show that the coding regions can be
clearly identified. An evaluation algorithm is then per-
formed on the two models. Results show that the improved
filter model in this paper is effective in predicting protein-
coding regions. However, the SNR is supposed to be infi-
nite in this new model and the gene datasets tested in this
paper are from the gene library and thus can be thought
as pure signal. Certain improvements and adjustments of
the filter structure and more tests on noised gene data are
desired for potential applications to the genome analysis
including genome prediction and signal processing.
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