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A novel sensor selection using pattern recognition technique in electronic nose (E-Nose) is
proposed in this paper. This paper studies the portable E-Nose based on metal oxide
semiconductor (MOS) gas sensors for detection of multiple kinds of indoor air
contaminants. The characteristics of portability, low cost, multiple targets detection and
high performance of E-Nose monitor are the main pursuit for home use. Formaldehyde,
benzene, toluene, carbon monoxide, and ammonia are the primary targets of the proposed
E-Nose which benefits from the characteristics of the broad spectrum, reproducibility,
sensitivity and low-cost of MOS gas sensors. Therefore, a potential and full contribution
analysis of the small sized sensor array, in detection of indoor air contaminants coupled
with a kernel principal component analysis (KPCA) based linear discriminant analysis
(LDA) pattern recognition technique, is presented in this paper. Some experimental
findings on the roles of sensors in an E-Nose have also been concluded. The recognition
results clearly demonstrate the contribution of each sensor to gas detection which helps
the sensor selection in E-Nose design.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, electronic nose (E-Nose) with metal
oxide semiconductor (MOS) gas sensors or biosensors has
been widely studied in different research fields such as
air contaminants detection [1–5], food analysis [6–9],
medical diagnosis [10–12], and explosion detection [13–
15]. The characteristics of broad spectrum response and
low-cost of MOS sensors promote the fast development
of E-Nose. However, some limitations still exist. For exam-
ple, one E-Nose can only measure a minority of gases, the
portability and the cost are not optimal due to the larger
sized (12, 16, 32, etc.) sensor array used in E-Nose. It still
doubts that what sized gas sensor array is enough in gen-
eral use of E-Nose? To make it clearer, the portability and
low-cost of E-Nose for home use have to be further studied
in real-time monitoring of indoor air quality.

A number of studies and survey demonstrate that
formaldehyde (CH2O), benzene (C6H6), toluene (C7H8), car-
bon monoxide (CO), ammonia (NH3), stimulus (perfume,
toiletwater, fruit smell, ethanol), nitrogen dioxide (NO2),
and other VOCs (volatile organic compounds) [16–18] are
the principal chemical components that influence the air
quality. This paper will focus on the first 11 kinds of chem-
icals and discriminate them through our designed portable
and low-cost E-Nose instrument with a small sized array of
MOS gas sensors.

Consider the demands of multi-target contaminants
detection and the low-cost of E-Nose, we select four MOS
gas sensors from Figaro Inc. in Japan, they are TGS2620,
TGS2602, and TGS2201 with two channels (TGS2201A

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2014.04.005&domain=pdf
http://dx.doi.org/10.1016/j.measurement.2014.04.005
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and TGS2201B). It is known that the appropriate selection
of sensor type is very important in electronic nose for var-
ious chemicals detection. The criterion for the choice of the
four TGS sensors mainly lies in two aspects: first, TGS sen-
sors have characteristics of cost-effective, cross sensitive
and spectral response; second, the four sensors selected
can detect a wide species such as carbon monoxide, nitric
oxide, nitrogen dioxide, ammonia, toluene, ethanol, hydro-
gen, methane, hydride and VOCs which can basically cover
the target contaminants with cross-sensitivity among sen-
sors. Readers can refer to the sensors’ datasheets in [19] for
details.

With the development of E-Nose study in indoor con-
taminants measurement, a smaller sized sensor array for
detection of more chemicals by an E-Nose with lower cost,
higher predictive accuracy and portability becomes the
desired objective and main pursuit in instrumental analy-
sis. Therefore, finding of a small sized sensor array for
multi-target detection with an E-Nose is meaningful. This
paper systematically conducts the analysis of their
contribution to E-Nose, proposes a novel sensor selection
framework coupled with a KPCA based LDA pattern recog-
nition technique, and proves that the selected small sized
sensor array based E-Nose is competent for multiple gases
detection.
2. Electronic nose and experiments

2.1. Electronic nose system with embedded MOS gas sensor
array

The sensor array in E-Nose system consists of four
metal oxide semiconductor gas sensors with TGS series in
Figaro Inc. including TGS2602, TGS2620 and TGS2201 with
two channels TGS2201A and TGS2201B, which has been
introduced in the E-Nose system in previous study [20].

In addition, considering that MOS gas sensors are sensi-
tivity to ambient temperature and humidity, a module
with two auxiliary sensors for the temperature (T) and
humidity (H) measurement is also used. A 12-bit analog–
digital converter is used as the interface between the
sensors and the Field Programmable Gate Array (FPGA)
processor which can be used for data collection, storage
and processing. The E-Nose system is then connected to a
personal computer (PC) via a Joint Test Action Group
(JTAG) port used for transferring data and debugging pro-
grams. The E-Nose system and the experimental platform
developed in our laboratory are illustrated in Fig. 1 pro-
vided in [21]. The typical response curves of an array in
the sampling process with four phases (1. Baseline, 2. Tran-
sient response, 3. Steady state response, 4. Recover pro-
cess) are also plotted in Fig. 1.
2.2. Experiments

From Fig. 1, the gaseous experiments of electronic nose
in this paper were employed in the constant temperature
and humidity chamber, which can automatically adjust
the temperature and humidity by manually setting up.
The target gas that was injected to the chamber through
a flow meter was collected in a gas bag. A fan is fixed in
the chamber for purging the gas and diffusing evenly.
Totally, 10 min would be consumed in each experiment
and one sample is obtained. The specific experimental pro-
cedures including four stages can be totally illustrated as
follows

Stage 1: Gas preparing and collection.
Collect each target gas in a bag, and dilute each target

gas using pure nitrogen (N2).
Stage 2: Data collection (major part).
In this stage, there are several steps shown as follows

Step 1: Set the initial temperature and humidity of the
chamber. For simulation of the indoor environment, 15,
20, 25, 30 and 35 �C are considered for temperature (T),
and 40%, 60% and 80% are considered for relative
humidity (RH). Therefore, there are 15 combinations
of temperature and humidity considered.
Step 2: Turn on the E-Nose system until the tempera-
ture and humidity in the chamber reach the initial set-
ting, and then collect sensor array’s responses of
baseline for 2 min.
Step 3: Inject target gas by using a flow-meter with
time controlled. Then, the sensors will have quick
response to target gas and the sensors would reach
steady state response after about 8 min. Therefore,
one experiment of sample collection would sustain
10 min. The steady state response is extracted as fea-
ture to represent the gas texture for pattern analysis.

Stage 3: Air exhaust and chamber cleaning.
After one experiment of sample collection, air exhaust

by a pump is necessary for chamber cleaning to recover
the sensor response as soon as possible.

Stage 4: Data transferring to PC.
Sensor response data in one experiment is obtained at

this time through a JTAG which is connected between the
electronic nose and PC. Then the collected data can be
transferred to the PC conveniently for data analysis in
computer.

Reference concentrations of the first six kinds of gases
for all samples can be obtained by specific analysis and
instrumental methods. Specifically, the concentration of
CH2O is analyzed using 721G type of spectrophotometer,
GC analysis is for C6H6, C7H8 and NH3 concentration analy-
sis, and the concentrations of CO and NO2 are obtained
from reference instrument with type of KP826. Consider
the needs of indoor contaminates detection, the concentra-
tion ranges (the lowest and the highest concentration)
in experiments are 0.04–5.32 ppm, 0.17–0.91 ppm,
0.05–0.14 ppm, 5.00–49.0 ppm, 0.09–2.15 ppm and
0.03–1.62 ppm for CH2O, C6H6, C7H8, CO, NH3 and NO2,
respectively.

2.3. Experimental data

In this paper, 11 kinds of chemicals including CH2O,
C6H6, C7H8, CO, NH3, NO2 and stimulus (perfume, toilet-
water, fruit smell and ethanol) are studied. All the
experiments were employed with respect to the described
experimental method. Totally, 721 samples were obtained
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Fig. 1. Portable electronic nose, the experiments and the typical sensor response in this paper.
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for the 11 kinds of gases. In pattern analysis, 455 samples
are used for learning, and the remaining 266 samples are
used for validation. For detail, the concentrations, temper-
ature and relative humidity of the experimental samples
have been briefly referred in recent paper [21]. Note that
the concentrations of stimulus (perfume, toilet-water, fruit
smell and ethanol) are not employed in our experiments.
3. Classification technique

3.1. Kernel based PCA (KPCA)

PCA [22] is an unsupervised method in dimension
reduction by projecting correlated variables into another
orthogonal feature space and thus a group of new vari-
ables with the largest variance (global variance maximi-
zation) were obtained. PCA is an effective dimension
reduction technique which can preserve the most infor-
mation of original data. KPCA is a hybrid feature extrac-
tion method which consists of kernel transformation
and PCA. The original input vectors are mapped to a high
dimensional feature space F by using a kernel function
which can make the original data linearly separable in
the high dimensional space F. The mapping from the ori-
ginal data space to high dimensional feature space can be
represented by calculating the symmetrical kernel matrix
of input training pattern vectors using a Gaussian kernel
function shown as
Kðx; xiÞ ¼ exp
�kx� xik2

r2

 !
ð1Þ

where x and xi denotes the observation vectors, r2 denotes
the kernel parameter.

In general, KPCA is to perform PCA algorithm in the high
dimensional feature space and extract nonlinear feature.
The dimension size depends on the number of training vec-
tors. In this paper, the kernel principal components of ori-
ginal data are used for learning and recognition in
classification tasks with an E-Nose. For easy understanding
of KPCA, the specific procedure for calculating the kernel
principal components (scores) of training and testing vec-
tors can be described as follows:

Step 1: Computation of the symmetrical Kernel matrix
Km�m of the training vectors, where m denotes
the number of training vectors. The element
K(i,j) is calculated between vector xi and xj

(i = 1, . . ., m; j = 1, . . ., m) using Eq. (1).
Step 2: Regularization of kernel matrix K. Regulariza-

tion includes two parts: centralization and nor-
malization. The centralization in this paper can
be shown by:

K ¼ K� 1
m

I � K� 1
m

K � Iþ 1
m

I � K � I ð2Þ

where I is unit matrix of m by m.
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Then, the normalization is realized by
K ¼ K
m

ð3Þ
Step 3: Decomposition of K to obtain eigenvalues and
eigenvectors. The decomposition is to calculate
the equation shown as
K � V ¼ k � V ð4Þ
where k and V denote the eigenvalues and
eigenvectors.

Step 4: Determine the final eigenvectors projection_vec-
tors for kernel principal components in classifica-
tion. Sort the eigenvalues in descending order,
and get the sorted new_eigenvalues and the cor-
responding index used to determine the
new_eigenvectors. Then, calculate the accumula-
tive contribution rate (ACR) which is shown by
ACRj ¼
Pj

k¼1new eigenvalueskPm
i¼1new eigenvaluesi

� 100;

j ¼ 1; . . . ;m ð5Þ
where m denotes the number of training vec-
tors and also the number of eigenvalues, j
should be calculated to determine the number
of kernel principal components for classifica-
tion, according to the following equation.
j ¼ arg minfACRj P CRg ð6Þ
where CR is the given threshold in algorithm,
and 95%, 96%, 97%, 98% and 99% are studied in
this paper. Then, the projection_vectors are
determined as the first j column vectors of
new_eigenvectors.

Step 5: Calculate the kernel principal components Ker-
nelPC_training of training vectors as follows:
KernelPC training¼K�projection vectors ð7Þ
Step 6: Calculate the kernel matrix Kt of testing vectors.
Similar to Step 1, the element Kt(i,j) is calcu-
lated between vector xi and xj (i = 1, . . ., n;
j = 1, . . ., n) using Eq. (1), where n denotes the
number of testing vectors.

Step 7: Regularization of kernel matrix Kt which is sim-
ilar to Step 2, and can be realized using Eqs. (2)
and (3).

Step 8: Calculate the kernel principal components Ker-
nelPC_testing of testing vectors using the pro-
jection_vectors obtained from training vectors
in Step 4 shown by:
KernelPC testing ¼ Kt� projection vectors ð8Þ

Step 1–Step 8 illustrate the specific feature extraction
method which contains kernel mapping and PCA
dimension reduction. In the following, the basic principle
of FLDA classifier will be presented to realize the
classification.
3.2. FLDA based classifier

FLDA aims to maximize the ratio of the between-class
variance and the within-class variance using fisher crite-
rion in any particular data set through a transformation
vector w, and therefore promise the maximum separability
with a linear decision boundary between two classes.

To a binary classification (two classes), assume the
dataset for the two classes to be X1 ¼ fx1

1;x
2
1; . . . ; xN1

1 g and

X2 ¼ fx1
2; x

2
2; . . . ;xN2

2 g, respectively, N1 and N2 denote the

numbers of column vectors for X1 and X2, fxj
i; i ¼ 1;

2; j ¼ 1; . . . ;Nig denotes the column vector (observation
sample). Then, we set the total dataset Z in Rd as
Z ¼ fX1;X2g. The description of FLDA is as follows.

The centroid of each class can be calculated by:

li ¼
1
Ni
�
XNi

j¼1

xj
i; i ¼ 1; 2 ð9Þ

The within-scatter matrix Si of class i is

Si ¼
XNi

j¼1

ðxj
i � liÞðx

j
i � liÞ

T
; i ¼ 1; 2 ð10Þ

where symbol T denotes transpose.
The within-class scatter matrix Sw and the between-

class scatter matrix Sb can be described as

Sw ¼ S1 þ S2 ð11Þ

Sb ¼
X2

i¼1

Ni � ðli � �ZÞ � ðli � �ZÞT ð12Þ

where �Z denotes the centroid of the total dataset Z.
To obtain the optimal transformation vector w*, the

fisher criterion in terms of Sw and Sb is expressed as

JðwÞ ¼ wTSbw=wTSww ð13Þ

where w is the transformation vector in a binary classifica-
tion and the optimal w* is represented as

w� ¼ arg maxfJðwÞg ð14Þ

The w* can be calculated by solving the eigenvalue prob-
lem. In this paper, w* is the eigenvector which corresponds
to the largest eigenvalue of matrix S�1

w Sb. Note that, to a
multi-class problem, w* should be a matrix.

Then, the unknown observation vector x can be trans-
formed through w* according to

x0 ¼ x �w� ð15Þ
Finally, the Euclidean distance is used in the decision of x

if kx0 � l1k2 < kx0 � l2k2; x 2 fclass 1g;
otherwise; x 2 fclass 2g ð16Þ

where symbol k � k2 denotes the l2-norm, l1 and l2 denote
the center vectors of class 1 and class 2, respectively.

3.3. Multi-class classification with an E-Nose

This paper studies the discrimination of k = 6 kinds of
pollutant gases based on one-against-one (OAO) strategy
[23]. Therefore, this paper will build one sub-classifier
between two arbitrary classes, and totally k�(k � 1)/2 = 15
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binary classifiers will be produced using OAO strategy. Fur-
thermore, a majority voting mechanism, in which the class
with the most votes would be the discriminated class of an
unknown sample vector in decision level, is used. The classi-
fication method of FLDA with two classes has been pre-
sented in Section 3.2. The multi-class classification of FLDA
is to perform the same procedure between two arbitrary
classes based on OAO strategy first, and then vote on the
results of each sub-classifier.The diagram of the proposed
classification method with an E-Nose has been illustrated
in Fig. 2, wherein PART I (the top part) represents the
Fig. 2. Diagram of the KPCA-FLD
integral flowchart of the classifications. The region with
red and dashed line is the learning process of KPCA, the
region with blue and dashed line is the FLDA training mod-
ule and the region with green and dashed line is the FLDA
testing module in classification; PART II (the middle part)
presents the internal structure with OAO strategy of FLDA
training module for obtaining the transformation matrix
W*; PART III (the bottom part) presents the internal struc-
ture of FLDA testing module for decision (classification) of
unknown sample. All the algorithms in this paper are imple-
mented in the platform of Matlab software.
A classification technique.
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4. Results and discussion

This paper further presents the contribution analysis of
selective MOS gas sensors to low-cost electronic nose in
recognition of indoor air contaminates. Therefore, with
respect to different combinations of TGS2620, TGS2602,
TGS2201A and TGS2201B, 15 cases are studied totally
and the contributions of sensors have also been analyzed.

Table 1 presents the classification accuracies of each gas
with different sensors considered. ‘‘

p
’’denotes that the

sensor is considered; ‘‘�’’denotes that the sensor is not
considered. From Table 1, we can qualitatively analyze
Table 1
Classification accuracy of multiple kinds of indoor contaminants in 15 cases with

Case Classification accuracy (%)

CH2O C6H6 C7H8 CO NH3 NO2 S

1 57.1 33.3 22.7 90.0 45.0 76.9 4
2 80.9 33.3 22.7 60.0 40.0 30.8 3
3 52.4 33.3 18.2 85.0 60.0 46.2 6
4 50.8 54.1 31.8 90.0 35.0 7.69 5
5 90.5 45.8 81.8 90.0 55.0 53.8 6
6 84.1 50.0 40.9 85.0 65.0 69.2 6
7 95.2 58.3 27.3 75.0 85.0 53.9 7
8 52.4 33.3 63.6 80.0 65.0 0.00 8
9 76.2 62.5 68.2 90.0 40.0 38.5 5

10 73.0 45.8 36.4 90.0 80.0 46.2 8
11 98.4 50.0 77.3 90.0 75.0 84.6 8
12 90.5 66.7 81.8 80.0 95.0 53.9 8
13 84.1 66.7 63.6 90.0 85.0 69.2 8
14 93.7 70.8 90.9 90.0 80.0 76.9 8
15 98.4 75.0 86.4 95.0 90.0 69.2 9

Note: ‘‘
p

’’denotes that the sensor is considered; ‘‘�’’denotes that the sensor is n
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Fig. 3. Variations of recognition rate
the contribution of each sensor to the gas classification
by an E-Nose. From case 1 to case 4, there is only one sen-
sor used in pattern recognition; from case 5 to case 10,
there are two sensors used; from case 11 to case 14, 3
sensors are used in detection; in case 15, totally 4 sensors
are used in E-Nose. It is obvious that the classification
accuracies are improved with the increasing number of
sensors. From Table 1, we can find that TGS2620 contrib-
utes little to formaldehyde (see case 11), while TGS2602
and TGS2201A play a more important role to formaldehyde
detection (see case 8). For benzene, the four sensors have
no obvious roles in detection. TGS2620 and TGS2201A
environmental factors considered.

MOS gas sensors considered
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contribute very well to toluene detection (see cases 3, 7
and 10). The recognition result of CO seems to be more
optimistic for each sensor except the case 2. From the
result of ammonia, we can see that TGS2602 has little con-
tribution (see case 12). For NO2, the recognition results are
not good for every case. The reason may result from the
small number of experimental samples of NO2, which is
less than number of other gases samples. From the results
of stimulus, we can see that the four sensors contribute
equally in detection.

For visually observe the variations of classification
accuracy of each gas with sensor reduction, Fig. 3 with
bar plots of gas recognition rate in the 15 cases is
Table 2
Classification accuracy of multiple kinds of indoor contaminants without consider

Case Classification accuracy (%)

CH2O C6H6 C7H8 CO NH3 NO2

1 4.76 37.5 27.2 45.0 25.0 53.9
2 31.8 37.5 27.3 30.0 50.0 23.1
3 17.5 87.5 0.00 30.0 0.00 69.2
4 36.5 54.2 63.6 75.0 10.0 7.69
5 12.7 58.3 59.1 40.0 55.0 53.9
6 26.9 45.8 40.9 50.0 30.0 84.6
7 57.1 75.0 4.55 30.0 75.0 46.2
8 44.4 45.8 77.3 100.0 35.0 23.1
9 74.6 37.5 63.6 60.0 15.0 23.1

10 55.6 4.17 54.6 70.0 60.0 69.2
11 63.5 70.8 68.2 35.0 90.0 69.2
12 57.1 62.5 54.6 90.0 75.0 46.2
13 73.0 45.8 63.6 75.0 20.0 84.6
14 82.5 54.2 95.5 55.0 90.0 53.9
15 92.1 58.3 90.9 60.0 95.0 100.0

Note: ‘‘
p

’’denotes that the sensor is considered; ‘‘�’’denotes that the sensor is n
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Fig. 4. Variations of recognition rate for each analyte in 15 cases without
presented, wherein Fig. 3(h) illustrates the average recog-
nition rate of gases in each case. From Fig. 3 we can clearly
find the obvious fluctuations of recognition rates of C6H6,
C7H8, CO, NO2, NH3 and stimulus in 15 cases. The contribu-
tion of each sensor to each chemical can be judged posi-
tively or negatively in such qualitative way.

It is worth noting that the classifications presented in
Table 1 are obtained with environmental variables (i.e.
temperature and humidity) considered. In order to show
the importance of environmental factors, we presented
the classification results without considering temperature
and humidity sensor variables in Table 2. Also, the same
15 cases are studied. By comparing the 15th case between
ing environmental factors in 11 cases.

MOS gas sensors considered
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Tables 1 and 2, we can see that the ambient factors (tem-
perature and humidity) have positive effect in E-Nose
detection. Similarly, the bar plots of the recognition rates
of each gas in 15 cases have been visualized in Fig. 4
wherein Fig. 4(h) illustrates the average recognition rate
of seven gases in each case.

Through the contribution analysis of 4 MOS gas sensors
in E-Nose monitor, we can conclude that the selected sensor
array of TGS2620, TGS2602, TGS2201A and TGS2201B are
feasible for monitoring of the common indoor air contami-
nants by a low-cost E-Nose instrument. The characteristics
of low-cost, portability and high performance (classification
accuracy and multiple target detections) with only 3 MOS
gas sensors are very persuasive in this paper.

The quantitative estimation of the gases concentration
should be the fundamental task of E-Nose in most applica-
tion. To discuss the possibility and suitability of the E-Nose
in quantitative application, we will focus on the algorith-
mic aspect. For concentration estimation, regression mod-
els (e.g. artificial neural network) between the sensor
response of an array and the target concentration can be
constructed. In our recent work [21], we have presented
a further analysis in quantitative application of the E-Nose
based on multilayer perceptron neural network and intel-
ligent optimization algorithms for concentration estima-
tion of six contaminants. The estimation results
demonstrate that the proposed low-cost E-Nose is feasible
in real application. Besides, considering the implicit prob-
lems of metal oxide semiconductor based sensors, for
example, drift, environmental interferences and weak
reproducibility, we have developed effective algorithms
to address these issues, such as drift prediction [24], inter-
ference elimination [25] and reproducibility enhancement
[26] in large scale application, etc. Currently, the E-Nose
prototypes have been developed for actual application by
different customers.
5. Conclusions

This paper aims to find the potential of E-Nose with a
small sized sensor array in various detections. A novel sen-
sor selection method is proposed using KPCA based LDA
pattern recognition technique in E-Nose. A potential con-
tribution analysis of TGS2620, TGS2602 and TGS2201 sen-
sors in low-cost electronic nose monitoring for multiple
indoor air contaminants, i.e. formaldehyde, benzene, tolu-
ene, ammonia, carbon monoxide and stimulus, is first pre-
sented. The characteristic of low-cost, portability and high
performance is the main pursuit in our E-Nose, and exper-
imental results fully prove the feasibility in usage of only a
small sized sensor array of four MOS gas sensors in E-Nose.
In addition, we also show that the environmental factors
are also important in classification of indoor air contami-
nants by an E-Nose qualitatively.
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