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 
Abstract—Constant sensor-heating voltage is commonly used in 

electronic nose, such that multiple sensors should be integrated as 
a sensor array in order to differentiate multiple odor analytes. 
However, supplying a constant heating voltage for each sensor 
cannot provide rich pattern information, resulting in high cost 
and weak capability of an E-nose in detection. To address this 
issue, this work aims at introducing an optimal temperature 
modulation technique of gas sensors for achieving low-cost, fast 
and accurate detection. The contributions of this paper include: 1) 
the temperature modulated gas sensing system proposed in this 
work operates in a linearly dynamical region by generating a 
linear control signal waveform of sensors’ heating voltage. 2) 
With a highly-efficient extreme learning machine that follows a 
random projection based learning mechanism, the proposed 
system is developed for simultaneous gas classification and gas 
concentration prediction. 3) The optimal heating voltage analysis 
of gas sensors is explored by using machine learning methods for 
providing some perspective and insight for optimal heating 
voltage selection. Experimental results and comparisons in terms 
of gas classification accuracy, concentration prediction error, 
system cost and power consumption significantly demonstrate the 
high precision and efficacy of our proposed E-nose system. The 
data is available in http://www.escience.cn/people/lei/index.html 
 

Index Terms—Electronic nose, temperature modulation, gas 
detection, extreme learning machine 
 

I. INTRODUCTION 
LECTRONIC nose (E-nose), as a typical machine olfaction 
application, is a gas sensing system consisting of a metal 

oxide semiconductor gas sensor array and a pattern recognition 
unit. E-nose technology has been widely applied in different 
fields during recent years. In environmental controls, Lamagna 
et al. [1] used an E-nose to characterize emissions from a highly 
polluted river. Yang et al. [2] used electronic nose based on 
porous In2O3 microtubes sensor array to discriminate VOCs. 
The recent work of E-nose for detection of gases includes [3, 4, 
5, 37]. In medical diagnosis, Roine et al. [6] realize the 
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detection of Prostate Cancer by electronic nose. Jia et al. [7] 
used an electronic nose to discriminate bacterial types of wound 
infections. Westenbrink et al. [8] developed a new electronic 
nose instrument to detect colorectal cancer. In agricultural area, 
Hui et al. [9] forecast the quality of winter jujube by electronic 
nose. Pan et al. [10] combined electronic nose and gas 
chromatography mass spectrometry to realize the early 
detection and classification of pathogenic fungal disease in 
post-harvest strawberry fruit. In food quality and security field, 
Yang, et al. [11] applied electronic nose to discriminate and 
characterize different intensities of goat flavor in goat milk. 
Wei et al. [12] used electronic nose to detect the internal quality 
of peanuts during storage. Brudzewskim et al. [30] applied a 
differentiated electronic nose to recognize the quality of coffee. 
In environmental monitoring, a portable E-nose instrument for 
gas classification was designed in [26], which contains QCM 
sensors. Leo et al. [36] proposed a large-scale sensor array data 
with an artificial olfactory system and explored the data 
processing method for mixture detection. Lujan et al. [40] 
proposed a calibration system of sensors using the minimal 
number of experiments and SVM. In our previous study [22], 
an IAQ (Indoor Air Quality) E-nose was built to monitor gases 
qualitatively and quantitatively with a MOS sensor array. 

In our existing E-nose, a prototype of IAQ detection device 
was provided [25]. By using MOS sensor array and machine 
learning algorithms, classification and prediction of indoor air 
contaminants can be implemented in diffusion way. However, 
the cost and power consumption of an E-nose, especially for the 
sensor array, are still relatively high for real-time users. With 
the motivation of achieving low-cost and fast IAQ detection, 
this work applied a novel extreme learning machine and 
temperature self-modulation in order to narrow down the scale 
of sensor array, without degrading the prediction performance.  

Temperature modulation is a known technique during recent 
years. The physicochemical mechanism on sensor film surface 
under temperature modulation was discussed in [13, 27], which 
show the temperature dependence of MOS sensors [28]. Also in 
[29], a model is proposed to predict the behavior of sensors 
exposed to CO and O2 during fast temperature variations. Due 
to the improved selectivity of sensors, temperature modulation 
technique was used in various applications, such as fish 
spoilage evaluation [14], quantitative analysis of pesticide 
residue [31], and odor recognition [15, 16, 18, 21, 32, 33, 34]. 
Fonollosa et al. [35] proposed a temperature optimization of 
metal oxide sensors based on mutual information for improving 
the odor recognition performance. Generally, there are many 
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branches for the research of temperature modulation, such as 
heating voltage optimization, selection of waveform, 
modulation with feedback structure, and feature extraction, etc.  

The motivation of this paper is to lower the system cost but 
with high precision of detection. Technically, we modulate 
sensors to narrow down the scale of sensor array for low-cost 
by introducing an easily transferred temperature modulation 
technique. We treat the sensor at different temperature as a 
virtual sensor, such that we can obtain more information by 
scanning the temperature range. A detailed analysis of the 
optimal heating voltage is given in Section IV.D. In this work, a 
new temperature modulated E-nose system of low cost, low 
energy consumption and high efficiency, is proposed in this 
paper for gas sensing application (e.g. IAQ monitoring). 

In our proposed E-nose system, several widely used learning 
techniques are systematically investigated. Among machine 
learning theory, support vector machine/regression (SVM/SVR) 
and BP neural network (BP-NN) were widely used in many 
fields. However, BP-NN is prone to get trapped in local minima 
for complex regression problems, so that a local optimal 
solution is commonly obtained. Besides, due to the random 
generated initial connected weights in BP-NN, different 
solutions are to be solved in gradient descent based searching. 
Support vector machines perform structural risk minimization 
in the framework of regularization theory, which can obtain 
unique globally optimal solution with a convex optimization 
problem. Similar to SVM, extreme learning machine (ELM) 
was proposed for solving a single-layer feed-forward network 
(SLFN), which has been proven to be an very effective and 
efficient algorithm for pattern classification and regression in 
different fields [19, 20]. With least square loss defined in model, 
ELM can analytically determine the output weights between 
the hidden layer and the output layer by constructing a hidden 
matrix with a nonlinear and differentiable mapping function 
(e.g. sigmoid, radial basis function, etc.). 

To prove the effectiveness of the proposed E-nose system, 
experiments on three gases were conducted. Several machine 
learning techniques mentioned above are implemented for 
simultaneous classification and concentration prediction using 
5-fold cross-validation and leave-one-out cross-validation 
strategies, respectively. The merits of this paper include: 
(1) A simple but effective and scalable temperature modulated 

gas sensing system is proposed for very low concentration 
detection and indoor air quality (IAQ) monitoring. 

(2) The proposed E-nose system is a high precision and 
low-cost gas sensing system that only integrates two metal 
oxide semiconductor gas sensors for multi-gas detection.  

(3) With a very highly-efficient extreme learning machine 
model (ELM), the proposed E-nose can well accomplish 
both qualitative classification and quantitative prediction 
tasks simultaneously in real-time. 

(4) The proposed E-nose is of high precision in detection (e.g. 
classification & prediction) and of high competitiveness in 
speed, cost and power consumption. 
The rest of this paper is organized as follows. In Section II, 

the proposed E-nose system and experiments are presented. In 
Section III, the methodology of some popular machine learning 

TABLE I 
CHARACTERISTIC OF THE TWO SENSORS 

Sensor type Detection objectives 
TGS2602 VOCs, odorous gases, gaseous air contaminants 
TGS2620 Alcohol , organic solvent vapors 

 

 
Fig. 1. Schematic diagram of temperature modulation gas sensing system 

 
Fig. 2. Temperature self-modulated gas sensing system. The left one is the 

sensor array system and the right one is the data collection system. 

techniques are briefly reviewed. In Section IV, the results and 
comparisons are presented. Section V concludes the paper. 

II. PROPOSED E-NOSE SYSTEM AND EXPERIMENTS 

A. Proposed Temperature Self-modulated Gas Sensing System 
Different from the existing E-nose system that the sensors 

work at constant heating voltage (e.g. 4V), a temperature 
modulation gas sensing system in an E-nose was proposed for 
IAQ monitoring, with block diagram shown in Fig.1. Generally, 
the system consists of three parts: voltage control (sensor 
temperature control), sensor array (TGS2620 and TGS2602) 
and data acquisition. In addition, a module (SHT2230 of 
Sensirion in Switzerland) with two auxiliary sensors for the 
temperature (T) and humidity (H) are used for compensation. 
Table I shows the function of the two sensors. 

The printed circuit board (PCB) comprises of 2 
semiconductor gas sensors (TGS2620, TGS2602), DC power 
supply interface, voltage control interface and data acquisition 
interface. The temperature self-modulated gas sensing system 
that comprises of integrated sensor circuits PCB board (left) 
and data acquisition (right) is shown in Fig.2. It is worth noting 
that 3 sensors of each type (three same sensor arrays) were 
integrated in practical PCB for avoiding the possible sensor 
fault. However, in algorithm analysis and monitoring, only one 
sensor array was used. In the voltage control part, two DC 
power modules (DF1730SB2A) are used to supply sensors’ 
operating voltage and heating voltage through the DC power 
supply interface. For convenient description, DCop (operating) 
and DCH (heating) are nominated. DCop is directly connected to 
the operating voltage pin of gas sensors, while DCH is connected 
to the drain electrode of the N-channel MOSFET (IRF1010E), 
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Fig. 3. Electrical circuit for generating modulated heating voltage 

 
operating in a linear region, the source electrode is connected to 
the heating voltage pin of gas sensors, and the grid electrode is 
connected to an arbitrary function generator (AFG310) for 
generating control signal. Specifically, the electrical circuit for 
generating modulated heating voltage is shown in Fig.3. Thus, 
heating voltage can be controlled by changing the output signal 
of the function generator. Data acquisition is accomplished by 
an A/D sampling card (USB2002) (see the right part in Fig.2), 
which transfers data to PC through USB cable.  

The reasons for selection of the TGS2620 and TGS2602 are: 
 The two sensors show better stability with experience of our 

existing E-nose. 
 TGS2201 in the existing E-nose has only one voltage pin, 

such that the heating and working voltage use the same pin, 
which is unstable if modulated. Besides, the recommended 
voltage of TGS2201 is 7v, while that of the others’ are 5V. 
Therefore, a power chip can be omitted for lower cost. 

 TGS2620 and TGS2602 have wider detection range and 
higher sensitivity for multiple gases monitoring due to their 
characteristic of broad spectrum response. 

B. Experimental Setup and Data Acquisition 
The experimental platform mainly consists of the proposed 

temperature self-modulated gas sensing system, temperature 
and humidity controlled gas sampling chamber (LRH-150-S) 
with a volume of 150L, humidifier, test gas bag, flow meter, air 
pump, standard target gas detector, standard 
temperature-humidity detector, etc. The specific experimental 
setup is shown in Fig.4. The humidifier is for adjusting the 
ambient condition of the gas chamber. The air pump is used to 
pumping test gas into chamber and the flow meter (100L/h) is 
used to control the gas injection velocity. The function of the 
mixing fan (3000rpm/min) is to keep the gas uniformly 
distributed in the chamber. The concentration of the injected 
gas in the chamber is obtained via the standard instrument, such 
as PPM, which is made by PPM Technology company. It is 
developed based on electrochemical sensor with voltage output 
and an approximately linear model embedded inside. The 
temperature and humidity in the chamber are measured by a 
temperature-humidity detector (APRESYS-TH). 

Before the experiment, we first let the system operate at a 
stable heating voltage (usually 4v) for 1 hour, and then set the 
function generator as ramp function with suitable bias, 
amplitude and frequency, such that a ramp heating waveform 
can be obtained, where the voltage increases linearly from 3v 
up to 5v whose frequency is 20mHz. The sensing experiments 
in this paper can be summarized into three steps: first, set the  

 
Fig. 4. E-nose experimental platform of the proposed system 

target temperature and humidity of the gas sampling chamber; 
second, turn off the control power of the temperature and 
humidity in the chamber and begin to collect data continuously 
for 30 minutes, during which the target gas should be injected 
every 5 minutes. During data collection, gas concentration, 
ambient temperature and humidity should be recorded per 
minute; third, clean the chamber using clean air and return the 
first step to conduct the next experimental cycle. 

For each experiment, 30 minutes (1800 seconds) will be 
taken for samples collection. The sensor response data can be 
divided in multiple periods according to the modulated heating 
period. In this study, three common indoor air contaminants 
such formaldehyde (HCHO), nitrogen dioxide (NO2) and 
carbon monoxide (CO) were selected for IAQ monitoring 
application by using our proposed E-nose system. For each gas, 
samples were collected under different ambient conditions (i.e. 
temperature and humidity). Specifically, 10, 15, 20, 25, 30 and 
35℃ are considered as target temperatures. 40%, 50%, 60% and 
70% are considered as target humidity. The number of samples 
for HCHO, NO2 and CO is 100, 113 and 96, respectively. The 
concentration of each sample with target temperature (T) and 
relative humidity (H) for three target gases is presented in Table 
II. We can see that the distribution of the concentration is 
almost uniformly configured from low to high concentration. 
The concentration range for HCHO samples and NO2 samples 
are between 0 and 3 ppm, and the concentration range of CO 
samples is between 0 and 100 ppm. Additionally, the sensor 
response in one experimental cycle with 1800s is illustrated in 
Fig.5 (a), (b) and (c), which show the sensor response curve of 
multiple continuous periods (multiple samples) for each gas. 

In addition, to show the sensor response curve under 
different gases, the sampling rate of sensor response is set to 
100 Hz, such that 5000 sampling points will be obtained for 
each sample. The sensor response curves of TGS2620 and 
TGS2602 under three different gases are shown in Fig.6(a), 
which shows that under the temperature modulation of sensors’ 
heating voltage, the patterns for different gases are visually 
separated. For statistical data analysis, principal component 
analysis (PCA) [39] is used. The PCA scatter diagram of all 
samples for three gases is shown in Fig.6(b), which shows that 
the gases can be separated, but HCHO and NO2 are weakly 
overlapped. PCA is for dimension reduction but not for 
classification, therefore, classification techniques (e.g. SVM) 
should be used for pattern classification and regression. 
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TABLE II 
THE TEMPERATURE, HUMIDITY AND CONCENTRATION INFORMATION OF THE EXPERIMENTAL DATA 

Formaldehyde (HCHO) samples: concentrations under different target temperature and humidity (T,H) (concentration unit: ppm) 
(15,75) (15,70) (15,65) (15,60) (20,65) (20,60) (20,55) (25,65) (25,60) (25,55) (25,50) (25,45) (30,50) (30,55) (30,45) 

0.97 
0.91 
1.16 
1.37 
1.73 

- 
- 
- 

0.90 
1.11 
0.51 
1.41 
2.06 

- 
- 
- 

0.75 
0.78 
1.00 
0.86 
0.84 
0.53 

- 
- 

0.63 
0.54 
0.43 
0.67 
0.98 
1.42 

- 
- 

1.29 
1.55 
1.16 
0.87 
0.57 
1.03 

- 
- 

0.58 
1.16 
1.04 
0.75 
0.49 

- 
- 
- 

0.44 
1.68 
1.77 
1.59 
2.30 
1.60 

- 
- 

1.77 
1.22 
1.20 
0.89 
2.44 
2.01 
0.97 

- 

1.36 
1.08 
1.10 
1.34 
1.98 
0.88 
1.50 
1.32 

0.72 
0.56 
1.27 
0.74 
0.76 
0.52 
1.82 
1.16 

0.05 
1.44 
0.99 
0.79 
1.49 
0.71 
1.31 
0.62 

1.25 
2.01 
0.51 
0.83 
2.29 
1.95 
0.73 
1.23 

1.27 
1.09 
1.91 
0.85 
0.09 
1.55 
1.06 
1.38 

0.73 
0.18 
1.88 
1.39 
1.84 
0.91 
0.63 
0.79 

0.88 
0.72 
0.47 
1.14 
0.40 
0.60 

- 
- 

Carbon monoxide (CO) samples (concentration unit: ppm) 
13.0 
32.0 
49.0 
68.0 
83.0 
53.0 
51.0 

- 

5.00 
17.0 
32.0 
44.0 
61.0 
70.0 

- 
- 

23.0 
13.0 
42.0 
87.0 
70.0 
34.0 

- 
- 

66.0 
54.0 
42.0 
34.0 
3.00 
13.0 
34.0 

- 

15.0 
35.0 
52.0 
66.0 
78.0 
83.0 
65.0 
46.0 

88.0 
70.0 
17.0 
30.0 
44.0 
51.0 
100.0 
44.0 

51.0 
1.00 
32.0 
8.00 
97.0 
80.0 
66.0 
47.0 

53.0 
22.0 
8.00 
23.0 

- 
- 
- 
- 

76.0 
63.0 
46.0 
27.0 

- 
- 
- 
- 

70.0 
59.0 
46.0 
47.0 
25.0 
30.0 
64.0 

- 

20.0 
58.0 
44.0 
30.0 
17.0 
5.00 
30.0 
41.0 

87.0 
70.0 
54.0 
35.0 
10.0 
51.0 
11.0 
76.0 

46.0 
30.0 
30.0 
10.0 
30.0 

- 
- 
- 

46.0 
27.0 
8.00 
75.0 
59.0 
6.00 

- 
- 

11.0 
10.0 
66.0 
61.0 
53.0 
44.0 
32.0 
20.0 

Nitrogen oxide (NO2) samples (concentration unit: ppm) 
1.43 
1.78 
1.52 
1.66 
1.43 
1.77 
1.49 
1.63 

1.77 
1.53 
1.29 
1.06 
0.90 
1.23 
1.06 
1.69 

0.45 
0.36 
0.93 
0.77 
0.88 
1.25 
0.76 
1.05 

2.10 
1.77 
1.47 
2.10 
1.21 
1.82 
2.17 
1.36 

1.89 
2.21 
1.92 
2.44 
2.11 
2.42 
2.11 
1.56 

1.78 
1.99 
1.72 
1.29 
1.45 
2.14 
1.24 
1.04 

1.87 
1.47 
1.27 
0.55 
2.28 
2.00 
1.67 
0.89 

1.40 
1.83 
0.60 
2.37 
1.54 
1.41 
1.64 
1.27 

2.08 
2.49 
1.84 
2.14 
2.01 
1.76 
1.60 
1.82 

0.95 
2.22 
1.51 
1.13 
1.31 
0.80 
0.94 
1.66 

2.00 
1.20 
1.47 
1.03 
1.25 
0.76 
0.91 
0.25 

1.98 
2.26 
1.88 
0.35 
2.18 
1.80 
2.06 
1.66 

1.93 
2.22 
1.80 
2.06 
1.60 
1.86 

- 
- 

1.89 
1.46 
1.64 
1.10 
1.20 
0.61 

- 
- 

0.61 
1.32 
1.50 
0.89 
0.97 

- 
- 
- 

 
Fig. 5. Temperature-modulated sensor response curves for [0.03, 0.56, 1.08, 1.20, 1.6, 1.68] ppm formaldehyde (a), [0.05, 0.35, 0.91, 1.25, 1.47, 2.0] ppm Nitrogen 

dioxide (b) and [0.06, 8, 27, 46, 63, 76] ppm Carbon monoxide (c) gases in one experimental cycle (i.e. 6 samples/1800s) 
 

    
           (a) Modulated sensor signal  (b) PCA scatter points (PC1: 81.1%; PC2: 13.3%; PC3: 2.9%) 
Fig. 6. Sensor response by modulating the heating voltage from 3v to 5v (a) and 

PCA result (b) 

III. CLASSIFICATION AND REGRESSION METHODOLOGY 
In this section, we briefly review back-propagation artificial 

neural network (BP-ANN), support vector machine/regression 
(SVM vs. SVR) and extreme learning machine (ELM). 

A. BP-ANN 
BP-ANN is one kind of neural network trained by gradient 

descent based back-propagation algorithm (BP). It has been 
widely used in pattern recognition and function approximation. 
However, BP-ANN is still with some inherent flaws. First, BP 
algorithm can easily get trapped in local minima for solving 
complex non-convex function approximation problems [23]. 
Second, the solutions are not stable due to the randomly 
generated initial weights and bias. Third, the training phase is 
time consuming due to its slow convergence in gradient search. 

B. SVM and SVR 
Support vector machines (SVM) perform structural risk 

minimization in the framework of regularization theory [24]. 
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For linearly inseparable cases, SVM applies a non-linear kernel 
function to transform the input space to a higher dimensional 
feature space, such that the classes may be linearly separable 
and prior to calculate the separating hyper-plane. The kernel 
function can be sigmoid function, Gaussian radial basis 
function (RBF), etc. The brief principle of SVM is as follows. 

Given a dataset ܆ = ,ଵܠ] ,ଶܠ ⋯ ,  ே] consisting of N samplesܠ
and their corresponding label [ݐଵ , ଶݐ , ⋯ , [ேݐ , where ܠ௜ =
,௜ଵݔ] ,௜ଶݔ ⋯ , ௜௡]୘ݔ ∈ ,௡܀ ݅ = 1, ⋯ , ܰ  and ݐ௜ ∈ {+1, −1} .The 
separating hyperplane can be defined as ܅୘܆ + ܊ = ૙ሬሬ⃑ , where 
܅ ∈  ௡ is the normalized vector of hyper-plane and b is the܀
bias. The goal of SVM is to maximize the distance ଶ

 మ‖܅‖
between hyperplane and the two classes, which is equivalent to 
minimize ଵ

ଶ
ଶ‖܅‖ . Therefore, the optimization problem of a 

linear SVM can be formulated as follows. 
min܅

ଵ
ଶ

 ଶ                                 (1)‖܅‖
s. t.   ݕ௜[࢏ܠ܂܅ + ܾ] − 1 ≥ 0, ݅ = 1, ⋯ , ܰ 

The dual optimization of (1) is generally solved in SVM.  
The decision function of SVM for classification of an 

observation x can be formulated as 
(ܠ)݂ = sign൫(܅୘ܠ) + ܾ൯ = sign൫∑ હ∗ݕ௜൫ܠ௜

୘ܠ൯ + ܾ∗௠
௜ୀଵ ൯  (2) 

where sign(∙) denotes symbol function. Note that (2) belongs 
to a linear SVM. For linearly inseparable case (i.e. nonlinear 
problem), a non-linear function φ(∙) can be used to map data 
into a feature space of high dimensionality, however, it is not 
explicit. With Mercer condition, kernel function, represented 
by inner product 〈߮(ܠ௜), 〈(ܠ)߮ , is introduced. Then the 
decision function (6) can be written as 

(ܠ)݂ = sign(∑ હ∗ݕ௜߮(࢏ܠ)୘߮(ܠ) + ܾ௠
௜ୀଵ )               (3) 

Note that ߮(࢏ܠ)୘߮(࢏ܠ) can be used as kernel function ܠ)ߢ,  .(௜ܠ
Support vector regression (SVR) is used for solving function 

approximation problems, which is an extension of SVM. 

C. ELM 
Extreme learning machine (ELM) was proposed to solve a 

single-layer feed-forward network, which has been proven to 
be an effective and efficient algorithm for pattern classification 
and regression [19, 20, 38]. ELM can analytically determine the 
output weights (solutions) between the hidden layer and the 
output layer using Moore–Penrose generalized inverse by 
adopting the least square loss of prediction error, which then 
involves solving a regularized least square problem efficiently 
in closed form. The brief principle of ELM for multi-class 
classification is presented as follows. 

Given a dataset ܆ = ,ଵܠ] ,ଶܠ ⋯ ,  ே] of N samples and theܠ
ground truth is denoted as [ܜଵ, ,ଶܜ ⋯ ,  ே], where each dataܜ
௜ܠ = ,௜ଵݔ] ,௜ଶݔ ⋯ , ௜௡]୘ݔ ∈ ௡܀  and ܜ௜ = [1,0, ⋯ ,0]୘ ∈ ௠܀ , ݅ =
1, ⋯ , ܰ, if ti belongs to the class 1. ݊ and ݉ denote the number 
of input and output neurons, respectively. Specifically, n is the 
number of dimension and m is the number of classes. The 
output matrix of the hidden layer with respect to X is denoted 
as ۶ = ܆܅)ܪ + (܊ ∈  is the number of hidden ܮ ே×௅, where܀
nodes, ܪ(∙)  is the activation function (e.g., RBF function, 
sigmoid function, etc.), ܅ ∈ ௅×௡܀  is a randomly selected 
matrix, and ܊ ∈ ௅܀  is the bias of hidden layer. The output 
weights between the hidden layer and the output layer being 
learned is denoted as ઺ ∈  .௅×௠܀

Algorithm 1. ELM algorithm 
Input: 
Training samples {܆୲୰,܂୲୰}, ܆୲୰ ∈ ௡×ே܀ ୲୰܂  , ∈  .ே×௠܀
The penalty constant C and the number of hidden nodes L. 
Output: 
The output weight matrix ઺ ∈  .௅×௠܀
Procedure: 
1. Initialize the ELM network with random input weights ܅ ∈ ௅×௡܀  and 
hidden bias ܊ ∈  .௅܀
2. Calculate the output matrix H of hidden layer as H = sigmoid(܆܅୲୰ + ۰).  
3. Compute the output weights ઺ using (5). 
end 

 
Regularized ELM aims to solve ઺ by minimizing the squared 

loss and the norm of ઺, which is formulated as follows 
min઺ ୉୐୑ܮ   = ଵ

ଶ
‖઺‖ଶ + ܥ ∙ ଵ

ଶ
∑ ௜‖ଶேߦ‖

௜ୀଵ              (4) 
.ݏ ઺(௜ܠ)۶   .ݐ = ࢏ܜ − ,௜ߦ ݅ =   1, ⋯ , ܰ 

where ߦ௜ denotes the prediction error with respect to the ݅ th 
training pattern, and ܥ  is a penalty constant on the training 
errors. The solution ઺ of (4) can be represented as 

઺∗ = ቐ
ቀ۶୘۶ + ۷ಽ×ಽ

஼
ቁ

ିଵ
۶୘܂, if ܰ ≥ ܮ

۶୘ ቀ۶۶୘ + ۷ಿ×ಿ
஼

ቁ
ିଵ

,܂ if ܰ < ܮ
�             (5) 

In decision of an observation x, the predicted output of ELM 
can be obtained by feed-forward computation, i.e. 

௢௨௧ܡ = ܅)ܪ ∙ ܠ +  ઺∗                         (6)(܊
More details of ELM theory can be referred as [19]. The ELM 
algorithm is summarized in Algorithm 1. 

D. Model Establishment and Parameter Setting 
MATLAB R2011b software is used to code and carry out all 

the algorithms for odor classification and concentration 
prediction. BP-ANN with one hidden layer is established by a 
built-in neural network toolbox using the “trainlm” algorithm. 
SVM/SVR is implemented by an open source LIBSVM 
toolbox. For BP-ANN, the number of hidden nodes is tuned 
from {5, 7, 8, 9}. For SVR/SVM, penalty factor C and kernel 
parameter G are optimized by using grid search method with 
cross-validation, where C and G are tuned from {2-8, 2-7,…,28}. 

The ELM algorithm is implemented as Algorithm 1. 
Similarly, the parameters C (regularization coefficient) and L 
(the number of hidden nodes) are also optimized by grid search 
method, where C is tuned from {10-10, 10-3,…, 1010}, and L is 
tuned from {10, 102, 103, 104}. 

All the algorithms mentioned above are evaluated in terms of 
the average classification accuracy (for qualitative odor 
classification) and prediction error (for quantitative 
concentration prediction) of 10 times cross-validation. Note 
that the prediction error is shown in three metrics, such as Mean 
absolute Relative Error (MRE), Mean Absolute Error (MAE) 
and Mean Square Error (MSE), which can be calculated by 

MRE = ଵ
௡

∑ ௜ݕ| − |௜ݐ ௜⁄௡ݐ
௜ୀଵ × 100%                     (7) 

MAE = ଵ
௡

∑ ௜ݕ| − ௜|௡ݐ
௜ୀଵ                                (8) 

MSE = ଵ
௡

∑ ௜ݕ) − ௜ݐ )ଶ௡
௜ୀଵ                              (9) 

where yi and ti denote the predicted value and true value of the 
i-th sample, and n denote the number of test samples.  

The pseudo-code of the cross-validation and grid search in 
evaluation is presented in Algorithm 2, which takes ELM as an 
example. For SVM/SVR, similar pseudo-code is used. For each  
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Algorithm 2. Grid search and cross-validation 
Input: Data X, label vector T, parameter sets C, G, and L. 
for i=Cmin:Cmax 
     for j=Lmin:Lmax 

C=10i; 
L=10j; 

          for repeat_time=1:10 
               for cross_fold=1:N 
                     Training phase: call ELM Algorithm 1. 
                     Testing phase: Compute the output for each fold. 
               end for 
               Record the average results of cross-validation. 

     end for 
     end for 
end for 
Output: Classification accuracy, MRE, MAE, MSE. 

 
method, the best results are reported in this paper. Note that for 
classification, 5-fold cross-validation is used; for concentration 
prediction leaver-one-out (LOO) cross-validation is used. The 
data partition of the 5-fold CV is illustrated in Fig.7. 

E. On-line Usage for Real-time Application 
First, the machine learning model (e.g. ELM) is trained 

off-line by solving Eq.(4). The well-trained model parameters β 
are then stored in E-nose system. Then, in real-time application, 
new sample x will be collected continuously by an E-nose, and 
the predicted label or concentration y is obtained via Eq.(6). 

IV. EXPERIMENTAL RESULTS 

A. Feature Extraction 
As shown in Fig.6(a), 5000 points are included in each 

modulated sensor response sequence in one sample, which 
demonstrates that the odor pattern is represented as a matrix (i.e. 
the row denotes the sensors and the column denotes the 
modulation). For convenient analysis, we uniformly 
down-sample K points with the same intervals in each sensor 
sequence (5000 points) of each sample, and concatenate the 
extracted points from the two sensors into a 2K-dimensional 
feature vector of together with temperature and humidity for 
recognition of each sample. To explore the influence resulting 
from the number of sampling points in gas classification and 
concentration prediction, we have shown the results by 
changing the number K of sampling points for better insight of 
how the number of sampling points influences the performance 
in part C. In this paper, we have discussed the results by tuning 
K=5,…,20. If K=5, for example, the 1th, 1001th, 2001th, 3001th 
and 4001th points would be selected. Note that the sensor 
response, measured temperature and humidity have been 
normalized into [0,1] in data processing. 

B. Qualitative Classification 
In this work, three kinds of different contaminants are 

involved, which is recognized as a multi-class problem. The 
experiments by using BP-ANN, SVM and ELM algorithms are 
established. Under the framework of Algorithm 2, the average 
accuracies of 5-fold cross-validation for each method with the 
best parameters are provided in Table III. From this table, we 
can see that all methods can classify these three gases quite well. 
For CO, 100% accuracy can be obtained by three algorithms, 
and it is consistent with the PCA result in Fig.6(b) that the 
cluster of CO is separated from others. 

 
Fig. 7. Data partition scheme for 5-fold cross-validation 

 
Fig. 8. MREs with different number of sampling points by using SVM and 
ELM methods. The digits in x-axis denote the number of sampling points. 
 
We can also see that HCHO can be accurately identified with 
100% by SVM and ELM, and BP-ANN becomes slightly 
weaker. For NO2, the classification accuracies for all methods 
are more than 99%. We see that for both SVM and ELM, a 
larger penalty parameter C is more beneficial to the model. 
Additionally, ELM shows better recognition ability when the 
number of sampling points is equal to 5, 10, and 15. The results 
from different learning models demonstrate that the proposed 
temperature self-modulated gas sensing system is very 
effective for representing odor patterns. 

C. Quantitative Concentration Prediction 
For quantitative analysis, we present the concentration 

prediction of HCHO, NO2 and CO by using BP-ANN, SVR and 
ELM, respectively. Fig.8 shows the error variation of MRE 
with the increasing number of sampling points by using SVM 
and ELM, due to their ability of fast implementation. 

From Fig.8 we clearly observe that when the number of 
sampling points selected from the sensor response curve is 
larger than 20, higher MRE of prediction is obtained for each 
gas. This may be caused by redundant information (noises) 
when more sampling points are extracted as features, which are 
not beneficial to machine learning for prediction. Therefore, in 
this paper, we present the performance comparison of the 
proposed system in detail by determining K as 5, 10, 15, and 20, 
respectively. Numerically, the average MRE, MAE, MSE and 
their standard deviation (i.e. Std) of 10 times running by using 
leave-one-out cross-validation strategy for three gases are 
reported in Table IV, from which we can have the following 
observations: 
 For HCHO, ELM obtains the lowest MRE (11.98%) of 

prediction, and the mean absolution error (MAE) is 0.1ppm, 
when the number K of sampling points is less than 10. 

 For NO2, SVR obtains the lowest prediction error of 3.18% 
and the MAE of prediction is 0.034ppm. The prediction error 
of ELM is slightly higher than SVR. 

 For CO, ELM still performs the best result with MRE of 
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TABLE III  
CLASSIFICATION ACCURACY OF ALL ALGORITHMS BY USING OUR PROPOSED E-NOSE SYSTEM 

Number of 
Sampling Points Model Parameters Average accuracy of 5-fold cross-validation 

Formaldehyde (%) Nitrogen oxide (%) Carbon monoxide (%) Average 

5 
BP-ANN Hidden nodes=5 99.07 98.96 100.0 99.34 

SVM C=7, G=0 100.0 97.60 100.0 99.20 
ELM C=10, L=3 100.0 99.92 100.0 99.97 

10 
BP-ANN Hidden nodes=7 99.43 100.00 100.0 99.81 

SVM C=8, G=0 100.0 98.40 100.0 99.47 
ELM C=7, L=3 100.0 99.60 100.0 99.87 

15 
BP-ANN Hidden nodes=8 99.43 99.52 100.0 99.65 

SVM C=8, G=0 100.0 98.40 100.0 99.47 
ELM C=9, L=3 100.0 99.60 100.0 99.87 

20 
BP-ANN Hidden nodes=9 99.14 99.84 100.0 99.66 

SVM C=8, G=-2 100.0 99.20 100.0 99.73 
ELM C=10, L=3 100.0 97.92 100.0 99.31 

TABLE IV 
CONCENTRATION PREDICTION PERFORMANCE FOR FORMALDEHYDE (HCHO), NITROGEN DIOXIDE (NO2) AND CARBON MONOXIDE 

(CO) CONTAMINANTS WITH LEAVE-ONE-OUT (LOO) CROSS-VALIDATION 

Gas Formaldehyde (HCHO) 
K Model Parameters MRE (%) Std MAE (ppm) Std MSE (ppm2) Std 

5 
BP-ANN Hidden nodes=5 17.55 3.07 0.11 0.005 0.020 0.0025 

SVR C=8, g=3 19.68 0 0.11 0 0.022 0 
ELM C=8, L=3 11.98 0.30 0.10 0.001 0.016 0.0005 

10 
BP-ANN Hidden nodes=7 17.55 2.28 0.11 0.007 0.020 0.0023 

SVR C=8, g=3 18.15 0 0.10 0 0.017 0 
ELM C=9, L=4 14.29 0.62 0.09 0.001 0.015 0.0007 

15 
BP-ANN Hidden nodes=8 19.45 3.10 0.11 0.010 0.020 0.0030 

SVR C=7, g=3 20.00 0 0.10 0 0.017 0 
ELM C=9, L=4 20.69 0.86 0.15 0.002 0.034 0.0009 

20 
BP-ANN Hidden nodes=9 18.06 2.67 0.11 0.008 0.019 0.0020 

SVR C=8, g=2 18.50 0 0.10 0 0.017 0 
ELM C=10, L=3 37.61 2.12 0.20 0.008 0.074 0.0070 

Gas Nitrogen Dioxide (NO2) 
K Model Parameters MRE (%) Std MAE (ppm) Std MSE (ppm2) Std 

5 
BP-ANN Hidden nodes=5 7.14 0.5 0.080 0.004 0.010 0.0011 

SVR C=9, g=4 3.29 0 0.036 0 0.002 0 
ELM C=10, L=3 3.81 0.15 0.040 0.001 0.003 0.0002 

10 
BP-ANN Hidden nodes=7 7.54 0.57 0.085 0.005 0.012 0.0010 

SVR C=9, g=3 3.18 0 0.034 0 0.002 0 
ELM C=10, L=3 4.63 0.11 0.050 0.001 0.005 0.0003 

15 
BP-ANN Hidden nodes=8 7.40 0.57 0.085 0.006 0.011 0.0015 

SVR C=9, g=2 3.29 0 0.035 0 0.002 0 
ELM C=9, L=4 5.25 0.16 0.056 0.001 0.006 0.0002 

20 
BP-ANN Hidden nodes=9 7.54 0.49 0.085 0.005 0.012 0.0017 

SVR C=9, g=2 3.46 0 0.036 0 0.002 0 
ELM C=10, L=3 11.7 0.56 0.110 0.006 0.020 0.0020 

Gas Carbon Monoxide (CO) 
K Model Parameters MRE (%) Std MAE (ppm) Std MSE (ppm2) Std 

5 
BP-ANN Hidden nodes=5 5.83 1.26 0.10 0.006 0.016 0.0016 

SVR C=8, g=2 6.25 0 1.43 0 4.120 0 
ELM C=9, L=4 5.48 0.32 0.97 0.030 1.560 0.120 

10 
BP-ANN Hidden nodes=7 5.62 1.03 0.10 0.006 0.016 0.002 

SVR C=7, g=2 7.64 0 1.85 0 6.770 0 
ELM C=9, L=4 8.61 0.96 1.21 0.060 2.430 0.210 

15 
BP-ANN Hidden nodes=8 5.73 0.49 0.10 0.005 0.016 0.002 

SVR C=7, g=2 8.57 0 1.82 0 6.140 0 
ELM C=8, L=4 24.3 1.92 4.17 0.160 28.87 2.080 

20 
BP-ANN Hidden nodes=9 5.58 1.00 0.10 0.009 0.015 0.002 

SVR C=6, g=2 10.3 0 2.46 0 11.99 0 
ELM C=10, L=4 53.6 6.83 9.45 0.730 141.0 21.35 

 
5.48%, and MAE of 0.97ppm. BP-ANN ranks the second. 

 The MRE, MAE, MSE increase with the rising of sampling 
points for SVM and ELM, which demonstrates that a 
smaller number of sampling points can better represent odors. 
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Fig. 9. Performance analysis with different heating voltage for each sensor based on three algorithms. 

 

D. Optimal Sensor Heating Voltage Analysis 
In this section, grid search method is used to analyze the 

prediction performance variation with different heating 
voltages of gas sensors. To observe the optimal heating voltage 
of each sensor, one sampling point between 3v and 5v with 
uniform interval is extracted from each sensor, then the three 
algorithms are implemented. The performance for each method 
is described in 3-D plots with TGS2620 (x-axis), TGS2602 
(y-axis) and MRE (z-axis) shown as Fig.9(a), (b) and (c), 
respectively. We have the following observations: 
 For BP-ANN method, the optimal heating voltages of sensors 

with lower MRE are not obvious. This demonstrates that NN 
is not sensitive to the change of sensors’ heating voltage. 

 For SVR and ELM, the optimal heating voltages of TGS2620 
and TGS2602 have similar characteristic. It’s clearly 
observed that the optimal voltage region for NO2 and HCHO 
is in the middle part of the two sensors. 

 From the 3-D curves of SVR and ELM, the near-optimal 
heating voltage of TGS2620 is 3.3v and 4v for CO and 
HCHO, respectively. For NO2, the near-optimal heating 
voltage of TGS2602 is 3.3v. 
It is worth noting that the correlation between the heating 

voltage and temperature of sensors has been studied in [17]. 
The relation between temperature and the sensor resistance was 
demonstrated to be approximately and inversely linear. The 
heating voltage is exponentially proportional to the heating 
temperature of sensors. The sensor array with modulation can 
produce richer patterns of gases than the same array without 
modulation, due to that temperature modulation can change the 
sensitive resistance of gas sensors.  

Note that the temperature modulation is a dynamical process, 
while the traditional single working temperature is static which 
is shown in Fig.10. Therefore, the “4v” in temperature 
modulation is not seriously equivalent to the “4v-constant” in 
traditional way. However, the optimal sensor heating voltage 
analysis is to provide a deep insight of the paper motivation. 
Thus, the performance analysis in Fig.9 by scanning the voltage 
for each sensor is rational for observing the optimal heating 
voltage. The results can clearly show that the heating voltage of  

 
Fig. 10. Conventional temperature modulation process 

 
gas sensors has very important impact on the recognition 
performance of an E-nose. That is, temperature modulation is 
necessary and important for improving the performance of 
electronic noses. It is worth noting that the slight difference 
between temperature self-modulation (dynamical) and 
temperature modulation (static) lies in the modulation 
mechanism. 

E. Performance Comparison 
The comparisons between the existing E-nose [22] and the 

proposed temperature self-modulated gas sensing system in this 
work are presented in Table V. For the proposed system, the 
results of ELM are presented for the proposed system. The 
classification accuracy of the existing E-nose based on SVM 
can be found in [3]. Besides, the relative prediction error of 
existing E-nose can be found in [25], in which the best result 
using PSOAGS-BP is compared in this paper. The results in 
Table V show that the proposed gas sensing system achieves 
better performance than the existing E-nose system in 
classification, prediction, cost and power consumption. In 
production, the existing E-nose can be improved by adding a 
MOSFET and controlling the heating voltage by signal via I/O 
port of MCU. Note that the ∆Cost and ∆Power-consumption 
denote the differences in cost and power consumption between 
the proposed system and the existing system. We can observe 
that the cost and power consumption of the proposed system is 
near 50% lower than the existing system.  
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TABLE V 
PERFORMANCE COMPARISONS BETWEEN OUR EXISTING E-NOSE AND THE PROPOSED GAS SENSING SYSTEM 

System 
Classification accuracy (%) Prediction error, MRE (%) 

∆Cost ∆Power consumption Method HCHO NO2 CO Method HCHO NO2 CO 
Previous [3, 25] HSVM 94.23 83.33 100 PSOAGS-BP 17.56 5.49 7.80 

46% 50.7% The proposed ELM 100 99.92 100 ELM 11.98 3.18 5.48 
 

V. CONCLUSION AND FUTURE WORK 
In this work, a temperature self-modulated gas sensing 

system is proposed in E-nose system for IAQ monitoring 
application. Temperature modulation is realized by generating 
a periodic ramp signal to control the output of the N-channel 
MOSFET, operating in a linear region. In the proposed 
cost-driven IAQ E-nose system, two metal oxide 
semiconductor gas sensors are used to represent and 
differentiate the patterns of multiple gases. 

The differences between this work and others are three-fold:  
 Our E-nose system is designed to operate in indoor 

environment, therefore the gas concentrations in our 
corresponding experiments are relative low according to the 
IAQ detection standard (i.e. the concentration should be less 
than 0.075ppm, 0.049ppm and 8.0ppm for formaldehyde, 
nitrogen dioxide and carbon monoxide, respectively, for a 
standard IAQ). On the contrary, the concentrations in other 
literatures are really high. For examples, the concentration is 
about 105 ppm in [15], 25-100 ppm in [18], 10-250 ppm in 
[32], and 200-400 ppm in [33]. 

 The modulation method in the proposed gas sensing system 
is designed as simple as possible, such that the existing 
E-nose can be extended by adding a MOSFET, whose output 
can be linearly controlled by generating a signal from MCU. 

 Extreme learning machine, as a novel brain-alike learning 
technique, is incorporated into our E-nose system for fast 
pattern classification and concentration prediction. 
Experiments on three air contaminants including HCHO, 

NO2 and CO are conducted for data acquisition and 
performance analysis. For algorithm analysis, several popular 
machine learning techniques such as BP-ANN, SVM/SVR and 
ELM are used in this work for recognition and concentration 
prediction. Results indicate that it is practical and beneficial to 
apply temperature self-modulation technique in E-nose system 
for IAQ monitoring. Additionally, the optimal heating voltages 
of sensors for different gases are also analyzed in Fig.10, which 
clearly demonstrates the optimal heating voltage regions of 
sensors. In the future, we will conduct more experiments on 
other contaminants and new machine learning models for 
further showing the effectiveness and efficiency of our 
proposed E-nose system. 
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