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a  b  s  t  r  a  c  t

The  shift  in  sensor  signal  measured  by  identical  gas  sensor  array  system  (commonly  called  an electronic
nose)  makes  the analysis  of  merged  measurement  data  difficult.  This  would  grossly  affect  the  gas  quantifi-
cation  accuracy  of such  electronic  nose  (E-nose)  instruments.  Thus,  a  real-time  calibration  transfer  based
on  reference  alcohol  projection  transfer  model  (RAPT)  was  designed  in  this  paper  which  aims  to project
onto  the  hazardous  gas  and  set up  a “bridge”  to transfer  from  instrument  to  instrument  through  three
eywords:
lectronic nose
ensor array
ignal shift
rtificial neural network
tandardization

artificial  neural  networks  (ANN),  and  attempt  to solve  the  problem  of  signal  shift  between  E-nose  instru-
ments  of identical  sensor  array.  Besides,  principal  component  analysis  (PCA)  is  also  used  for  validation  of
different models  in component  space.  For comparison,  previous  four  models  including  univariate  direct
standardization  (UDS),  partial  least  square  (PLS),  neural,  and  global  affine  transformation  based  on  robust
weighted  least  square  (GAT-RWLS)  are  also  presented.  Qualitative  and  quantitative  results  demonstrate
that the  proposed  RAPT  model  is  competitive  in  E-nose  signal  shift  standardization.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Sensor array system or commonly called an electronic nose
E-nose), has already been proved to be effective in air quality mon-
toring applications. Gardner and Bartlett gave a comprehensive
verview of such systems, which also contains a concise defini-
ion of an electronic nose: “an instrument which comprises an
rray of electronic chemical sensors with partial specificity and an
ppropriate pattern recognition algorithm” [1].  Conventional gas
etection methods use mass spectrometers that identify molecules
hrough the characteristic variable deflection from a magnetic field,
r Fourier transform infrared instruments that utilize the infrared
pectral characteristics of gases [2,3]. These instruments are usu-
lly expensive, bulky, high maintenance, slow in terms of response
ime and require skilled operators, making them impractical for air
uality monitoring applications. Recently, great advancement has
lso been made in the field of gas sensor array systems [4,5].

A gas sensor is a miniature transducer that detects gas molecules
nd produces the electrical signal associated with the gas concen-
ration [6].  Due to attractive features such as high sensitivity, fast

esponse time, long life, low cost and simple circuit design, metal
xide semi-conducting sensors are found to be the most widely
sed in sensor array systems [7].  However, due to the inherent

∗ Corresponding author. Tel.: +86 13629788369; fax: +86 23 65111745.
E-mail address: leizhang@cqu.edu.cn (L. Zhang).

925-4005/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.snb.2012.11.113
sensor variability (e.g. sensitivity) during the manufacturing
process, and the environment (e.g. temperature, humidity and
pressure), gas sensors generally reflect diverse selectivity, baseline
difference (signal shift) and nonlinearity with respect to gas con-
centration. Consequently, signal shift occurs in the measurement
data from one instrument to another when using these sensors.
Signal shift may also occur within the same instrument because
of sensor replacement or some temporal change. This instrumen-
tal signal shift would result in false recognition and concentration
estimation of analytes because the associated classification and
estimation algorithms were commonly developed on one E-nose
instrument (commonly called “master instrument”) off-line. Then
incorrect discrimination of analytes and concentrations would be
given when using the well developed prediction parameters on
other E-nose instruments (commonly called “slave instruments”).
The problem of sensor drift, which also often disturbs the classifi-
cation accuracy, has been fully studied [8–13]. Besides, background
noise reduction algorithms in electronic nose signal were also given
full studies [14–17] for improving the precision of an E-nose. How-
ever, baseline and sensitivity difference caused by signal shift of
identical sensors was  still a key problem. Related research about
sensor array calibration for baseline compensation have been pre-
sented, such as univariate direct standardization (UDS) [18], partial

least square (PLS) [18], neural methods [19,20],  and global affine
transformation based on robust weighted least square (GAT-RWLS)
[21]. UDS and GAT-RWLS are straightforward methods based on
linear least square regression, where signal shift compensation

dx.doi.org/10.1016/j.snb.2012.11.113
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:leizhang@cqu.edu.cn
dx.doi.org/10.1016/j.snb.2012.11.113
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odels are created for each unique sensor; PLS can be used for
tandardization in a principal component space; neural method is

 nonlinear based method, which designs shift standardization on
ensor array but not unique sensor. Neural method, PLS and UDS
ethods need a large number of experimental calibration transfer

amples of target contaminants for a high calibration accuracy so
hat the calibration complexity would increases significantly. So,
hese three methods will become very difficult to be implemented
or standardization in mass production of instruments in this way.
AT-RWLS method built with only several calibration transfer sam-
les in on-line use was proposed by our team. Although this method
vercomes the common flaw exists in the first three methods, the
ransfer samples were still obtained from poisonous contaminants.
hus, it inspires us to do this research further on instrument stan-
ardization of electronic nose.

In this paper, a real-time RAPT model was proposed for elec-
ronic nose instrument standardizations in our project. The applied

ethodology of RAPT model is artificial neural network, which is
imple to be applied in electronic nose with the well-trained hyper-
arameters (e.g. weights and biases). Through comparisons with

 neural method (direct calibration using ANN), UDS method, PLS
ethod, and GAT-RWLS method, the presented RAPT model is more

ompetitive relatively.

. Experimental design

.1. Electronic nose sensor array system

Four electronic nose instruments designed with sensors of the
ame types and other associated electronic components were used
n this work. The electronic nose module in this paper has been
ntroduced in detail in our previous work [22]. The sensor array in
ach instrument consists of two auxiliary sensors for the tempera-
ure and humidity embedded in one module (SHT2230 of Sensirion
n Switzerland), four Taguchi semiconductors sensors (TGS2602,
GS2620, and TGS2201 dual sensor), an oxygen sensor (O2A2, type
f electrochemical), and one GSBT11 sensor (Ogam Technology in
orea). The sensing material in TGS gas sensors is metal oxide, most

ypically SnO2. When a metal oxide crystal such as SnO2 is heated
t a certain high temperature in air, oxygen is adsorbed on the crys-
al surface with a negative charge and the crystal surface is formed
o serve as a potential barrier against electron flow. The electrical
esistance of the sensor is attributed to this potential barrier. The
ensing element type of GSBT11 is also semiconductor and it has
imilar sensing principle with TGS sensors.

.2. Samples measurements

.2.1. Hazardous gas measurements
The measurements were carried out on five target gases (five

ata sets), separately. They are carbon monoxide (CO), benzene
C6H6), toluene (C7H8), ammonia (NH3), and nitrogen dioxide
NO2). Moreover, these dataset are made up of variables in R8

pace in which each row denotes one observation, that is, the
xtracted steady state response vector of the sensor array in one
xperiment. The four instruments were placed into a constant tem-
erature and humidity chamber wherein both the temperature
nd humidity are controlled. The experimental platform for sam-
le collection has been clearly illustrated in reference [22]. For all
he measurements, target temperature (T) values (◦C) of 15, 20,
5, 30, and 35 and relative humidity (RH) values of 40%, 60%, and

0% were considered. Thus, the measurements were carried out in
5 different combinations of target temperature and humidity. To
reate a concentration in the chamber, high-precision chromatog-
aphy syringes were used to inject the volume of analyte. The total
ors B 177 (2013) 947– 955

measurement cycle time for a single measurement was set to
20 min, i.e. 2 min  for reference air (baseline), 8 min  for sampling and
10 min for chamber cleaning phase. It is worth noting that clean air
is used for the cleaning phase by an air pump and an extra fan.

2.2.2. Reference alcohol measurements
The analytical pure alcohol (99.99%) is used as reference gas

which aims to replace the contaminants in preparing of cali-
bration transfer samples. For the reference alcohol, the same 15
temperature–humidity conditions as the target gases were still
selected for projection building between alcohol and target gases.
We  carried out the alcohol experiments through injecting alcohol
into the chamber with 10-ml and 20-ml, respectively. Therefore, 30
alcohol gas samples were prepared to build up a relation between
target gases and the reference alcohol gas. Considering the neces-
sity of calibration simplicity and 60% RH is around the constant
value in air, a total of 6 alcohol samples which were carried
out by injecting alcohol into the chamber with 10-ml and 20-ml
under three temperature–humidity combinations (15–60, 25–60,
and 35–60), were used as transfer samples for the bridge. Note that
the concentrations of the 6 alcohol samples can be arbitrary at the
beginning, but they should be fixed once the calibration transfer
has been well-designed.

2.3. Measured target dataset

This section presents five data sets which were measured in the
constant temperature and humidity chamber within one month
using the target gases. Notice that the reproducibility of sensors
in our project is good, and the short-term sensor drift can also
be neglected. To each sample, only one point at the steady state
response of each sensor is extracted as a feature or an observa-
tion in each measurement. All the measurements are carried out at
the 15 combinations of target temperature and humidity. Table 1
presents the detailed test sample sets of five gases. Note that the
“T” denotes temperature, “RH” denotes relative humidity and “C”
denotes concentration for each measurement in Table 1.The first
data set (set-I) including 42 training samples and 16 test samples is
collected in the chamber by injecting CO. The second data set (set-
II) including 50 training samples and 22 test samples is measured
using benzene in the chamber. The third data set (set-III) including
45 training samples and 21 test samples is measured using toluene
in the chamber. The forth data set (set-IV) including 20 training
samples and 9 test samples is measured by injecting NH3 into the
chamber. The fifth data set (set-V) including 20 training samples
and 10 test samples is collected by injecting NO2 into the chamber.
Note that the training and test samples are randomly chosen and
ordered.

2.4. Standardization models

2.4.1. Objective of standardization
Generally, for a given two instruments, a decision that who  will

be used as the slave instrument and who will be declared as the
master instrument needs to be made in study of a standardization
model between the two instruments. So, for easy illustrations, these
four instruments used in this work are labeled as master instru-
ment, slave instrument 1 (slave 1), slave instrument 2 (slave 2) and
slave instrument 3 (slave 3), respectively. For visibility of the sig-
nal shift, the raw data of sensor TGS2620, TGS2602, TGS2201A and
TGS2201B in one measurement are shown in Fig. 1, respectively.
Fig. 1 illustrates the gas sensor response differences and inherent

variability of the raw measured test set using the four instruments.
This figure shows signal shift in the responses of sensors from one
instrument to another, which is an inherent characteristic of semi-
conducting metal oxide sensors. From Fig. 1, we  can see that, both
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Table  1
Experimental environments of temperature (T, ◦C), relative humidity (RH, %) and concentrations (C, ppm).

Sample CO Benzene Toluene NH3 NO2

T RH C T RH C T RH C T RH C T RH C

1 15 60 23 15 60 0.7056 15 60 0.0668 15 60 0.2466 15 60 0.66
2 15  80 12 15 80 0.7056 15 60 0.0865 20 40 0.8014 20 40 0.77
3  20 40 22 20 40 0.7056 15 80 0.0516 20 60 0.7991 20 60 0.28
4 20  60 11 20 40 0.9112 20 40 0.0668 25 40 0.1232 20 80 0.18
5  20 80 12 20 60 0.1721 20 40 0.0865 25 60 0.5528 20 80 0.30
6  25 40 14 20 60 0.7056 20 60 0.0516 25 60 0.7914 25 40 0.20
7  25 60 21 20 80 0.7056 20 60 0.0865 30 60 1.1767 25 60 0.03
8 25  60 33 25 40 0.7056 20 80 0.0516 35 60 0.2662 25 80 0.07
9  25 60 37 25 60 0.7056 25 40 0.1425 35 60 2.1481 25 80 0.17

10 25  60 55 25 80 0.7056 25 60 0.0516 – – – 30 60 1.36
11  25 80 13 30 40 0.1721 25 60 0.1425 – – – – – –
12  30 40 48 30 40 0.9112 25 80 0.1425 – – – – – –
13  30 60 6 30 60 0.1721 30 40 0.0516 – – – – – –
14 30  80 25 30 60 0.9112 30 40 0.0668 – – – – – –
15 35  40 16 30 80 0.4999 30 60 0.1425 – – – –– – –
16  35 60 29 30 80 0.7056 30 80 0.1425 – – – – – –
17 – – – 35 40 0.4999 35 40 0.0516 – – – – – –
18  – – – 35 40 0.7056 35 40 0.0668 – – – – – –
19 –  – – 35 60 0.4999 35 60 0.1425 – – – – – –
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20  – – – 35 60 0.7056 

21  – – – 35 80 0.4999 

22  – – – 35 80 0.7056 

GS2620 and TGS2201B have smaller signal shift compared with
GS2602 and TGS2201A. The mean relative absolute errors (MRAE)
alculated by Eq. (4) between slave 1 and master instrument in the
est set are 0.87%, 12.99%, 5.08% and 2.71% for TGS2620, TGS2602,
GS2201A and TGS2201B, respectively. Similarly, 0.47%, 10.65%,
.14% and 3.04% were obtained between slave 2 and master; 0.85%,
4.07%, 2.62%, and 3.15% were obtained between slave 3 and mas-
er. We  can find that TGS2620 and TGS2201B have smaller signal
hift (≤5%), thus only TGS2602 and TGS2201A are calibrated in
his paper. It is worth noting that the normalization is that sen-
or responses were directly divided by 4095, and the digit of 4095
that is, 212–1) is the maximum value of the 12-bit A/D output for
ach sensor.

.4.2. UDS method
The UDS method [18] treats the signal of each sensor separately

nd employs signal shift calibration models of each unique sensor.
he shift calibration model for sensor i is designed by performing

inear regression from the training sets of the slave instruments to
he training set of the master instrument, respectively. Applying
egression of higher order than 3 is not recommendable because of
he risk of the data overfitting [18]. Through the linear regression

0 10 20 30 40 50 60 70 80
0

0.5

1

TGS26 20

0 10 20 30 40 50 60 70 80
0

0.5

1
TGS26 02

0 10 20 30 40 50 60 70 80
0

0.5

1

TGS22 01A

0 10 20 30 40 50 60 70 80
0

0.5

1

Test set

st
n

e
m

urts
ni

r
u

of
f

o
es

n
o

ps
er

r
os

n
es

d
e

zil
a

mr
o

N

TGS22 01B

Fig. 1. Raw data of four electronic nose instruments without standardization.
35 80 0.0516 – – – – – –
35 80 0.1425 – – – – – –
– – – – – – – – –

operation, two regression coefficients (intercept and slope of the
regression line) would be obtained in standardization process.
However, it will need a number of training samples for calibration,
and this would provide a model that is not robust and therefore
not suitable for the calibration of new measurements or new
instruments.

2.4.3. PLS method
PLS is a multivariate standardization method which has been

presented for instrument standardization in [18]. PLS is operated
for projecting the data set of the slave instruments onto the data
set of the master instrument in a principal component space which
is different from UDS. Note that principal component analysis is an
internally embedded step in PLS algorithm, thus, a reconstruction
step is also contained for transformation from principal component
space to original data space. However, PLS method also needs a
number of training samples for an accurate calibration.

2.4.4. Neural method
Neural method [20] is presented for instrument standardiza-

tion through artificial neural network training from data set of
slave instrument to the data set of master instrument, and hyper-
parameters (weights and biases) which represent the nonlinear
relation between instruments would be obtained for signal shift
reduction. Neural method is a nonlinear method which treats sen-
sor array’s signal non-linearly but not a unique sensor and it is
different from other methods. That is, the sensor array will be
standardized in the whole by a neural method. As we know, a
good robustness of one ANN should be based on a large number
of experimental samples so that the standardization can traverse
environmental conditions as many as possible and will work in
standardization. However, preparations of a large number of sam-
ples are very complex for each target gas being analyzed, and the
experimental burden is also heavy. Especially, when a new instru-
ment comes, repetitive experiments of the same amount of work
would be employed further which is similar with UDS and PLS
method, it would increase the experimental burden in large scale
of instruments standardization.
2.4.5. GAT-RWLS method
To overcome the common flaw of UDS, PLS and neural methods

that a large number experimental calibration samples should be
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ig. 2. Block diagram of RAPT model (validation) in real-time instrument standard-
zation.

eeded in standardization, a GAT-RWLS method was  proposed in
21]. This method is realized using robust weighted least square
lgorithm based on global affine theory. The calibration sample
et was selected as the most representative transfer samples. This
ethod needs less calibration samples, and performs well with a

ood robustness in electronic nose instruments standardizations.

.4.6. Reference alcohol projection and transfer model (RAPT)
Artificial neural network (ANN) is a widely used nonlinear

egression method such as curve regression and approximation
23]. Consider its strong ability of nonlinear regression, ANN

ethodology is used in the proposed RAPT standardization model.
o avoid the heavy work for experimental gas samples and the
armfulness when preparing for the gas samples, a RAPT method to
roject onto hazardous gases and construct the “bridge” to transfer
etween two instruments is presented based on ANN methodology

n this section. For this calibration task, experiments using alcohol
s analyte were carried out because alcohol is nontoxic and metal
xide sensors generally exhibit fast response to it. Data sets from
hese experiments were then used to build up projection relations
etween alcohol and the target gases. Besides, they were also used
o set up the transfer bridge between slave instruments and the

aster instrument. Because of the bridge construction, three neural
etworks were created and trained on a PC to realize the stan-
ardization including projections (ANN 1 and ANN 2) and transfer
ANN 3) for each gas calibration. Three networks denote three pro-
ections: from gas to alcohol, from alcohol to gas and from alcohol
o alcohol. Therefore, the input and target of ANN 1 should be target
as and alcohol, respectively; the input and target of ANN 2 should
e alcohol and target gas, respectively. Then ANN 1 and 2 would be
mbedded into other instruments for real-time gas quantification.

 rationale assumption behind the proposed calibration method is
hat the nonlinear projection between the reference alcohol gas and
he target gas is consistent for each instrument. It means that the
ignal shift between instruments does not influence the relation of
lcohol and target gas. The detailed RAPT model shown in Fig. 2
llustrates the specific calibration block diagram and denotes the

hole process of standardization and validation when an e-nose is
xposed to real-time scenario.

Let X and Y denote the alcohol gas measurement dataset and
he target gases measurement dataset on the master instrument,
espectively. Then the ANN 1 and ANN 2 can be represented as:
ANN 1−→ Y = f1(X) (1)

ANN 2−→ X = f2(Y) (2)

Modules labeled ANN 1 and ANN 2 in Fig. 3 denote the well
rained networks. ANN 3 plays an important role in the calibration
Fig. 3. TGS2602 sensor response after standardization of four e-nose instruments
using RAPT (a) Neural (b), UDS (c), PLS (d) and GAT-RWLS (e), respectively.

transfer as a bridge. The mapping is built up using alcohol data
sets from both the slave instrument and the master instrument.
For instance, suppose that Zslave represents the alcohol dataset
from a slave instrument and Zmaster indicates the alcohol dataset
from the slave instrument, then the following relation for signal
shift compensation, between a master instrument and any slave
instrument, can be elaborated.

Zslave
ANN 3−→ Zmaster, Zmaster = f3(Zslave) (3)

In the calibration transfer, we define the dataset of a new slave
instrument as S, and target dataset M of the master instrument. In
this work, the neural networks contain three layers (input layer,
hidden layer and output layer). The number of input layer and out-
put layer is 6 (the number of sensors); the hidden layer contains
10 neurons. A neural network was  trained using “trainlm” learning
algorithm in Matlab for its fast convergence velocity. The activa-
tion functions in the hidden layer and the output layer are the
“log-sigmoid” and “pure-linear” functions, respectively. The con-
vergence goal and the maximum number of iterations (training
epochs) for each train were set to 0.05 and 2000, respectively.

2.5. Performance analysis of standardization

In this paper, the mean relative absolute error (MRAE), root mean
square error (RMSE), standard deviation of residual and correlation
coefficient between gas sensor responses of the slave and master
instruments are used to evaluate the calibration transfer system.
MRAE can show the relative standardization performance from s
to m because there is a division in calculation |s − m|/m.  RMSE is a
direct way to calculate the difference |s − m|  between two  vectors
s and m.  The MRAE and RMSE are calculated as follows

MRAE = 1
n · N1

n∑
i=1

N1∑
j=1

∣∣∣∣Si,j − Mi,j

Mi,j

∣∣∣∣ × 100 (4)

RMSE =

√√√√ 1
n · N1

n∑
i=1

N1∑
j=1

(Si,j − Mi,j)
2 (5)

where N1 denotes the number of test samples, n denotes the num-
ber of calibrated sensors.

MRAE and RMSE represent the general difference between two

dataset which can be used as good performance measures of stan-
dardization. Smaller values of MRAE and RMSE prove a better
standardization from the slave instruments to the master. How-
ever, MRAE and RMSE only calculate the average error of residuals,
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nd the error distribution, fluctuations, stability and the evident dif-
erence can not be reflected. Therefore, the standard deviation and
orrelation coefficient are calculated. Standard deviation shows the
eneral standardization effectiveness and the deviation rate from
ach sample’s standardization error to the center of all samples’
tandardization errors. Correlation coefficient shows the standard-
zation from the angle of similarity between two vectors such as
uclidean distance. Smaller standard deviation value demonstrates
he better stability of standardization for each sample. Larger cor-
elation coefficients demonstrate the stronger similarity of two
ectors, the Euclidean distance will also be smaller and the stan-
ardization should be better.

Assume x and y are the average sensor response vectors of slave
nstrument and master instrument, respectively. Then, the statis-
ical standard deviation of residual and the correlation coefficient
re calculated as follows

tandard derivation =

√
n ·

∑n
i=1|xi − yi|

2 − (
∑n

i=1|xi − yi|)
2

n2

(6)

orrelation coefficient

= n ·
∑n

i=1xiyi −
∑n

i=1xi

∑n
i=1yi√

(n ·
∑n

i=1x2
i

− (
∑n

i=1xi)
2
)(n ·

∑n
i=1yi

2 − (
∑n

i=1yi))
2

(7)

here n denotes the number of data points.
Besides, in order to evaluate the statistical significance of

mprovement in performance, statistical analysis using Student’s
-test performed by Matlab was employed on the RMSE and MRAE,
espectively. The statistical H value between two  cases is calcu-
ated with a confidence level of 95%, and statistical difference exists
etween two cases if H = 1.

. Results and discussion

.1. Standardization of sensor signal shift

The sensor signal shifts between slave instruments and the mas-

er were treated using the presented five standardization models.
ig. 3 illustrates the reduced TGS2602 signal shift of the test set
ncluding 78 samples of five target gases. Fig. 3(a)–(e) denotes
APT, Neural, UDS, PLS and GAT-RWLS standardization method,

able 2
GS2602 sensor signal shift after standardization between slave instruments and the mas

Method Slave 1-master instrument Slave 

RMSE MRAE (%) RMSE 

Raw 0.0717 12.985 0.0606
RAPT  0.0352 4.4937 0.0348
Neural 0.0439 7.3751 0.0423
UDS  0.0295 5.1103 0.0509
PLS  0.0339 5.7958 0.0614
GAT-RWLS 0.0303 5.0005 0.0321

able 3
GS2201A sensor signal shift after standardization between slave instruments and the m

Method Slave 1-master instrument Slave 

RMSE MRAE (%) RMSE 

Raw 0.0358 5.0779 0.0357
RAPT  0.0209 1.8150 0.0173
Neural 0.0613 8.1041 0.0225
UDS  0.0260 3.1449 0.0199
PLS 0.0462 5.9412 0.0489
GAT-RWLS 0.0144 1.5675 0.0146
Fig. 4. TGS2201A sensor response after standardization of four e-nose instruments
using RAPT (a), Neural (b), UDS (c), PLS (d) and GAT-RWLS (e), respectively.

respectively. In each subfigure of Fig. 3, four curves including the
master, calibrated slave 1, calibrated slave 2, and calibrated slave
3 were shown. Similarly, Fig. 4 illustrates the reduced TGS2201A
signal shift of the test set. From Figs. 3(a) and (e) and 4(a) and (e),
we can see that signal curves of four instruments almost overlap
after standardization between the slave instruments and the mas-
ter instrument. Seemingly, both RAPT and GAT-RWLS methods are
superior to other three methods. We  may  not clearly find out the
significant difference among the five methods through the qualita-
tive analysis of Figs. 3 and 4, except for some segments and some
obvious points. Therefore, Table 2 presents the quantitative results
(RMSE and MRAE)  of TGS2602 sensor signal shift after standard-
ization between the slave instruments and the master using these
five methods. Similarly, Table 3 presents the quantitative results
of TGS2201A sensor signal shift after standardization. Table 2 and
3 demonstrate that the proposed RAPT method is competitive to
other methods.

Besides, statistical analysis including standard deviations (std.
dev) and correlation coefficients (corr. coef) is also calculated to
check the performance of standardization models. Table 4 presents

the statistical analysis results of TGS2602 sensor signal shift after
standardization between the slave instruments and the master. The
statistical results of TGS2201A sensor are illustrated in Table 5.

ter.

2-master instrument Slave 3-master instrument

MRAE (%) RMSE MRAE (%)

 10.649 0.0796 14.070
 4.2496 0.0343 5.0471
 6.6364 0.0309 5.2061

 8.7223 0.0491 8.2925
 9.8336 0.0625 10.397
 5.2919 0.0280 4.6997

aster.

2-master instrument Slave 3-master instrument

MRAE (%) RMSE MRAE (%)

 5.1376 0.0199 2.6196
 1.6992 0.0179 1.7440
 2.6103 0.0264 3.1363
 2.3178 0.0136 1.2642
 5.9231 0.0461 5.3975
 1.6689 0.0126 1.1322
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Table 4
Statistical quantization results (standard deviation, correlation coefficient) of TGS2602 using different standardization methods between slave instruments and master
instrument on the test samples.

Method Slave 1-master instrument Slave 2-master instrument Slave 3-master instrument

std. dev corr. coef std. dev corr. coef std. dev corr. coef

Raw 0.0251 0.9756 0.0250 0.9679 0.0263 0.9732
RAPT 0.0258 0.9502 0.0268 0.9532 0.0232 0.9534
Neural  0.0252 0.9658 0.0282 0.9270 0.0169 0.9717
UDS 0.0190 0.9756 0.0253 0.9679 0.0230 0.9732
PLS  0.0214 0.9694 0.0385 0.9333 0.0334 0.9492
GAT-RWLS 0.0175 0.9756 0.0197 0.9679 0.0155 0.9732

Table 5
Statistical quantization results (standard deviation, correlation coefficient) of TGS2201A using different standardization methods between slave instruments and master
instrument on the test samples.

Method Slave 1-master instrument Slave 2-master instrument Slave 3-master instrument

std. dev corr. coef std. dev corr. coef std. dev corr. coef

Raw 0.0106 0.9887 0.0116 0.9900 0.0096 0.9917
RAPT  0.0165 0.9745 0.0123 0.9827 0.0133 0.9815
Neural  0.0214 0.9662 0.0148 0.9800 0.0140 0.9774
UDS  0.0171 0.9887 0.0141 0.9900 0.0115 0.9917
PLS 0.0268 0.8888 0.0304 0.8801 0.0312 0.8879
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GAT-RWLS 0.0103 0.9887 

hrough the statistical standard deviation and correlation between
ignals of the master instrument and calibrated slave instrument,
e can see that the RAPT model is slightly weak by comparing

he std. dev and corr. coef after RAPT standardization with the raw
alue without standardization. However, the phenomena can be
nderstood that RAPT is designed based on ANN which is not very
table globally and therefore affect the standard deviations and
orrelation coefficients. Technically, the correlation coefficients
f calibrated signal remain the same as the raw data using UDS
nd GAT-RWLS methods, because of their principle of linear least
quare regression. Statistical significance analysis using t-test at

 confidence level 95% on the RMSE and MRAE are illustrated
n Tables 6 and 7, respectively. The statistical significance exists
etween any two cases when H value is equal to 1. Both RAPT and

AT-RWLS methods have statistical significance with case of raw
ata, while other three methods have no statistical significance.
APT also have significance with cases of neural and PLS methods.

able 6
tatistical significance analysis on RMSE using t-test method with a confidence level
.95.

H Raw RAPT Neural UDS PLS GAT

Raw 0 1 0 0 0 1
RAPT 1 0 0 0 1 0
Neural 0 0 0 0 0 1
UDS  0 0 0 0 1 0
PLS  0 1 0 1 0 1
GAT  1 0 1 0 1 0

able 7
tatistical significance analysis on RMAE using t-test method.

H Raw RAPT Neural UDS PLS GAT

Raw 0 1 0 0 0 1
RAPT 1 0 1 0 1 0
Neural 0 1 0 0 0 1
UDS 0 0 0 0 0 0
PLS  0 1 0 0 0 1
GAT 1 0 1 0 1 0
1 0.9900 0.0101 0.9917

3.2. Results of principal component analysis

Principal component analysis (PCA) is an unsupervised method
which transforms the original data into the space of the principal
components through a linear projection [24]. It is a multi-
dimensional signal analysis method in statistical learning by
projecting correlated variables into another orthogonal feature
space and thus a group of new variables with the largest variance
(global variance maximization) were obtained with dimensional-
ity reduction. Although the direct calibration results have been
presented, the calibration property in the data space can not be
expressed. Therefore, PCA is employed to validate the standard-
ization performance further in a principal component space. The
PCA plots of the first two principal components can represent the
difference of the whole dataset clearly.

Figs. 5–7 illustrate the PCA plots of the four target gases tested on
the slave 1, the slave 2 and the slave 3 instruments, respectively. In
each figure, (a)–(f) show the PCA plots with raw data, RAPT, Neural,
UDS, PLS and GAT-RWLS corrected data, respectively. Note that the
score of PCA is first obtained using the data on the master instru-
ment and it is used to project the data set of the slave instruments
onto the PCA space for coefficients. Figs. 5(b)–7(b) show that the
cluster of benzene becomes narrow and the separation is clearer
after RAPT standardization than other methods.

3.3. Complexity analysis of standardization methods

For an effective standardization model in mass calibration of
instruments, calibration complexity should be considered. In terms
of the experimental time for one measurement, 10 min  are needed
in a single measurement. Take the set I as an example, 42 train-
ing samples and 15 test samples would totally consume 570 min
for experiments. Thus, for UDS, PLS and neural methods, 570 min
would be necessary in standardization. In this paper, 30 alcohol
samples for projection between harmful gases and alcohol are

used in RAPT model. So, 300 min  are consumed for building of
the projection between harmful gases and alcohol. But in subse-
quent calibration in mass production, 6 alcohol transfer samples
are enough to obtain some information of one new instrument
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3.4. Discussion
In this paper, five instrument related signal shift standardiza-
tion methods are presented. Among the five methods, the RAPT
model using alcohol as reference gas is competitive relatively from
the experiments and simulations. In implementations, UDS  was
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circle’,  ‘star’, ‘triangle’ and ‘square’ denote carbon monoxide, benzene, toluene and

imple and easier to be used based on linear least square regres-
ion. Though it can reduce some instrument related variations, this
ethod may  not be applicable to the new instruments or new
easurements. The reason is that the metal oxide semi-conductor

as sensors are sensitivity to temperature, relative humidity, envi-
onmental background noise and sensor drift (e.g. time drift and
ensitivity drift). Then the UDS based model will fail to fit with the
oise disturbed sensor signal. PCA based PLS was also employed as

 standardization model which is more complex than UDS. Besides,
 number of training samples should also be necessary to calculate
he PCA coefficients and promise the calibration accuracy. Another
roblem is the determination of the principal components which

nfluences the robustness due to the overfitting [18]. GAT-RWLS
ethod was developed as a linear method for consideration of the

xperimental complexity of electronic nose instrument calibration.
t has been proved to be feasible in on-line calibration and overcome
he flaw of complex experiments of UDS and PLS in standardization.

Neural method is a nonlinear calibration technique which is
ifferent from UDS and PLS. The nonlinear characteristic, such as
NN, may  make the standardization of the new measurements for

he same instrument applicable, only if we have enough measure-
ents to train the nonlinear model. However, the standardization

or new instruments can still not be solved by a direct neural
ethod, because of the difficulties in repeated employment of a

arge number of hazardous gas measurements on one new instru-
ent for a new standardization. It certainly becomes more difficult

o achieve standardization of mass production of instruments, and
ven become impossible. Choice of the number of training sam-
les, which is similar with the choice of the number of hidden
eurons, is difficult to make decision in theory. Indeed, the com-
lexity of the model grows with the number of hidden neurons

nd so also the number of samples needed to train the ANN with-
ut overfitting. Thus, we attempt to find another functional way
o reduce the possible number of hazardous gas measurements for
ew standardizations through reference alcohol gas. We  introduce
onia, respectively.

ANN to solve the problem of the instrument signal shift based on
the strong nonlinear regression ability and generality.

Alcohol is chosen as reference gas (to be equivalent to trans-
fer set) to project it onto the measured hazardous gases. We  select
alcohol for three reasons: first, alcohol is nontoxic compared with
the target gases; second, metal oxide sensors have fast response to
alcohol; another reason may  be conservative for that the relation
between alcohol and the target gases appears to be approximately
linear under the same temperature and humidity. However, alco-
hol is not a unique reference gas and other reference gases such
as clean air may  also be used. This will be included in our future
research. One of the attractive features of the model is its simplic-
ity which promotes its functional use in actual E-nose applications.
Though more alcohol transfer samples would be beneficial for high
calibration accuracy, six alcohol transfer samples with humidity of
60%RH are enough in mass production and reduce the complexity
of repeated experimental measurements to a large extent. The pre-
sented model can be used not only on sensor array, but also on a
single sensor if other sensors show no signal shifts.

4. Conclusions

Sensor arrays play an important role in electronic nose (E-nose)
systems. Generally, due to the temporal and spatial variability in the
responses of chemical sensors, E-nose instruments with the same
sensor array may  provide significantly different smell prints. There-
fore, this paper aims to find out the solution of the sensor signal
shift problem. For reducing the number of transfer samples, time
complexity, experimental complexity and harmfulness of chemical
gases in mass calibrations, this paper addresses the critical issue of
instrument related signal shift and a simple RAPT standardization

model based on ANN is proposed and compared with previous UDS,
PLS, Neural and GAT-RWLS methods. The most important advan-
tage of RAPT is that only nontoxic alcohol is considered in mass
standardizations, and a large number of harmful gases experiments
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an also be avoided due to the design of ANN “bridge”. Four instru-
ents based on identical metal oxide semi-conductor sensor array,

ne master instrument and three slave instruments were used to
valuate the performance of the presented standardization meth-
ds. Standardization results on the measured data sets demonstrate
APT method is more competitive. Standardization models on com-
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