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Abstract—In the supplementary materials, the generally used
benchmarks for testing transfer adaptation learning (TAL) mod-
els in visual classification are presented. Totally, 14 benchmarks
including small-scale and large-scale datasets are summarized.
Further, 61 TAL algorithms in total including baselines and
very recent state-of-the art approaches from shallow learning
to deep learning are introduced and their performances on 10
mainstream benchmarks are presented. This work shows a clear
recognition of the progress in this community.

Index Terms—Transfer adaptation learning, benchmarks, vi-
sual classification

I. BENCHMARK DATASETS OF VTAL

In this section, the benchmark datasets for testing TAL
models are introduced to facilitate readers’ impression on
how to start studies of transfer adaptation learning. Total-
ly, 14 benchmark datasets including Office-31 (3DA) [1],
Office+Caltech-10 (4DA) [1], [2], [3], [4], MNIST+USPS [5],
[6], Multi-PIE [5], [6], COIL-20 [7], MSRC+VOC2007 [8],
IVLSC [9], [10], AwA [11], Cross-dataset Testbed [12], Office
Home [13], ImageCLEF [14], P-A-C-S [9], VisDA-2017 [15]
and DomainNet [16] are summarized, each of which contains
at least 2 different domains. For these benchmarks, classifica-
tion accuracy of target data is commonly used for performance
comparison. Due to the space limitation, the classification
performances of different models are not listed, so that we
can focus more on discussing the methodological advances
and potential issues.

Office-31 (3DA). Office-31 is a popular benchmark for vi-
sual domain transfer, which includes 31 categories of samples
drawn from three different domains, i.e., Amazon (A), DSLR
(D) and Webcam (W). Amazon consists of online e-commerce
pictures, DSLR contains high-resolution pictures and Webcam
contains low-resolution pictures taken by a web camera. There
are totally 4652 images, composed of 2817, 498 and 795
images from domain A, D and W, respectively. In feature
extraction, (1) for shallow features, 800-dimensional feature
vectors extracted by the Speed Up Robust Features (SURF)
were used, and (2) for deep features, 4096-dimensional feature
vectors extracted from pre-trained AlexNet/VGG-net/ResNet-
50 were generally used. In model evaluation, six kinds of
source-target domain pairs are tested, i.e., A→D, A→W,
D→A, D→W , W→A, W→D.

Office+Caltech-10 (4DA). This 4DA dataset contains 4
domains, in which 3 domains (A, D, W) are from the Office-
31 and another domain (C) is from Caltech-256, a benchmark
containing 30,607 images of 256 classes in object recognition.
The common 10 classes among the Office-31 and Caltech-256
were selected to form the 4DA, and therefore 2,533 images
composed of 958, 157, 295 and 1123 images from domain
A, D, W and C were collected. In evaluation, 12 tasks with

different source-target domain pairs are addressed, i.e., A→D,
A→C, A→W, D→A, D→C, D→W, C→A, C→D, C→W,
W→A, W→C, W→D.

MNIST+USPS. MNIST and USPS are two benchmark-
s containing 10 categories of digit images under different
distribution for handwritten digit recognition, and therefore
qualified for TAL tasks. The MNIST includes 60,000 training
pictures and 10,000 test pictures. The USPS includes 7291
training pictures and 2007 test pictures. For TAL tasks, 2000
pictures and 1800 pictures were randomly selected from
MNIST and USPS, respectively. For feature extraction, each
image was resized into 16×16 and a 256-dimensional feature
vector that encode the pixel values was finally extracted. In
evaluation, 2 cross-domain tasks, i.e., MNIST→USPS and
USPS→MNIST are addressed.

Multi-PIE. Multi-PIE is a benchmark with poses, illumi-
nations and expressions in face recognition, which includes
41,368 faces of 68 different identities. For TAL tasks, (1) face
recognition across poses is generally evaluated on five differ-
ent face orientations, including C05: left pose, C07: upward
pose, C09: downward pose, C27: front pose and C29: right
pose. Totally, 3332, 1629, 1632, 3329, and 1632 facial images
are contained in C05, C07, C09, C27 and C29. Therefore, 20
tasks were evaluated, i.e., C05→C07, C05→C09, C05→C27,
etc.; (2) face recognition across illuminations and exposure
conditions is evaluated by randomly selecting two sets: PIE1
and PIE2 from front face images. Two tasks: PIE→PIE2 and
PIE2→PIE1 are evaluated.

COIL-20. COIL-20 is a 3D object recognition benchmark
containing 1440 images of 20 object categories. By rotating
each object class horizontally of 5 degrees, 72 images per
class after rotating 360 degrees were obtained. For TAL tasks,
two disjoint subsets with different distribution i.e., COIL1 and
COIL2 were prepared, where COIL1 contains the images in
[0◦, 85◦] U [180◦, 265◦] and the images of COIL2 are in [90◦,
175◦] U [270◦, 355◦]. Therefore, two cross-domain tasks i.e.,
COIL1→COIL2 and COIL2→COIL1 are evaluated.

MSRC+VOC2007. The MSRC contains 4323 images of
18 categories and VOC2007 contains 5011 images of 20
categories. 1269 and 1530 images w.r.t six common cate-
gories, i.e., aeroplane, bicycle, bird, car, cow and sheep, were
finally selected from MSRC and VOC2007, respectively. In
feature representation, 128-dimensional DenseSIFT features
were extracted for cross-domain image classification tasks, i.e.,
MSRC→VOC2007 and VOC2007→MSRC.

IVLSC. IVLSC is a large-scale image dataset containing
five subsets, i.e., ImageNet (I), VOC2007 (V), LabelMe (L),
SUN09 (S), and Caltech (C). For TAL tasks, 7341, 3376,
2656, 3282, and 1415 samples w.r.t. five common categories
i.e., bird, cat, chair, dog and human, were randomly selected
from I, V, L, S, and C domains, respectively. In feature
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representation, 4096-dimensional DeCaf6 deep features were
extracted for cross-domain image classification under 20 tasks,
i.e., I→V, I→L, I→S, I→C, ..., C→I, C→V, C→L, C→S.

AwA. AwA is an animal identification dataset containing
30,475 images of 50 categories, which provides a benchmark
due to the inherent data distribution difference. This data set
is currently less used in evaluating TAL algorithms.

Cross-dataset Testbed. This benchmark contains 10,473
images of 40 categories, collected from three domains: 3,847
images in Caltech256 (C), 4,000 images in ImageNet (I),
and 2,626 images in SUN (S). In feature extraction, the
4096-dimensional DeCAF7 deep features were used for cross-
domain image classification tasks, i.e., C→I, C→S, I→C,
I→S, S→C, S→I.

Office Home. Office Home is a relatively new benchmark
containing 15,585 images of 65 categories, collected from 4
domains, i.e., (1) Art (Ar): artistic depictions of objects in the
form of sketches, paintings, ornamentation, etc.; (2) Clipart
(Cl): collection of clipart images; (3) Product (Pr): images
of objects without background, akin to the Amazon category
in Office dataset; (4) Real-World (RW): images of objects
captured with a regular camera. In detail, there contains 2421,
4379, 4428 and 4357 images in Ar, Cl, Pr and RW domains,
respectively. In evaluation, 12 cross-domain tasks are tested,
e.g., Ar→Cl, Ar→Pr, Ar→RW, Cl→Ar, etc.

ImageCLEF. This benchmark includes 1800 images of 12
categories, drawn from 3 domains: 600 images in Caltech
256 (C), 600 images in ImageNet ILSVRC2012 (I), and 600
images in Pascal VOC2012 (P). Therefore, 6 cross-domain
tasks i.e., C→I, C→P, I→C, I→P, P→C, P→I are evaluated.

P-A-C-S. PACS is a new benchmark containing 7 common
categories: dog, elephant, giraffe, guitar, horse, house and
person, from 4 domains, i.e., 1670 images in Photo (P), 2048
images in Art Painting (A), 2344 images in Cartoon (C), and
3929 images in Sketch (S). 4096-dimensional VGG-M deep
features were used and 12 cross-domain tasks are evaluated,
e.g., P→A, P →C, P→S, A→P, A→C, etc.

VisDA-2017. VisDA-2017 is a large-scale synthetic-to-real
dataset containing 152397 training images and 55388 vali-
dation images across 12 classes. we take synthetic images
rendered from 3D models as the source domain and real
images cropped from the Microsoft COCO dataset [17] as the
target domain. Following the common protocol [18], [19] to
evaluate on Synthetic → Real task.

DomainNet. DomainNet is the largest and most challenging
dataset over 600,000 images with 345 categories for domain
adaptation so far. It has 6 distinct domains: Clipart (clp),
infograph (inf), Painting (pnt), Quickdraw (qdr), Real (rel) and
Sketch (skt). On DomainNet dataset, 30 cross-domain tasks are
evaluated, e.g., clp→inf, clp→pnt, clp→qdr, clp→rel, clp→skt
inf→clp, inf→pnt, inf→qdr, inf→rel, etc.

II. REPRESENTATIVE METHODS AND PERFORMANCES

We totally overview 61 representative transfer adaptation
learning methods including baselines and state-of-the-arts
from shallow to deep learning ones, which are capable to
represent the current progress of the TAL topic, including

NN (Nearest Neighbor) [20], PCA (Principal Component
Analysis) [21], GFK (Geodesic Flow Kernel) [22], TCA
(Transfer Component Analysis) [23], TSL (Transfer Subspace
Learning) [24], JDA (Joint Domain Adaptation) [25], DT-
SL (Discriminative Transfer Subspace Learning) [26], CDM-
L (Cross-Domain Metric Learning) [27], RTML (Robust
Transfer Metric Learning) [28], DICD (Domain Invariant
and Class Discriminative) [29], DIPDA (Discriminative In-
formation Preservation for Domain Adaptation) [30], GSL
(Guide Subspace Learning) [31], SCA (Scatter Component
Analysis) [32], VDA (Visual Domain Adaptation) [33], KOT
(Kernel Optimal Transport map) [34], LDA (Label Disen-
tangled Analysis) [35], ResNet-50 [36], DAN (Deep Adap-
tation Networks) [37], DANN (Domain-adversarial Neural
Network) [38], MCD (Maximum Classifier Discrepancy) [39],
CDAN (Conditional Domain Adversarial Networks) [18],
SymNets (Domain-symmetric networks) [40], ETD (Enhanced
Transport Distance) [41], BNM (Batch nuclear-norm maxi-
mization) [42], MDD (Margin Disparity Discrepancy) [43],
MEDM (Minimal-entropy Diversity Maximization) [44], CA-
DA (Certainty Attention based Domain Adaption) [45], GS-
DA (Domain Adaptation with Hierarchical Gradient Syn-
chronization) [46], DCAN (Domain Conditioned Adaptation
Network) [47], TCM (Transporting Causal Mechanisms) [48],
MetaAlign [49],ADDA (Adversarial Discriminative Domain
Adaptation) [50], JAN (Joint Adaptation Networks) [51], GTA
(Generate To Adapt) [52], DWL (Dynamic Weighted Learn-
ing) [53], DADA (Discriminative Adversarial Domain Adap-
tation) [54], GVB (Gradually Vanishing Bridge) [19], CAN
(Contrastive Adaptation Network) [55], SRDC (Structurally
Regularized Deep Clustering) [56], RADA (Re-enforceable
Adversarial Domain Adaptation ) [57], RTN (Residual Trans-
fer Networks) [58], MADA (Multi-adversarial Domain Adap-
tation) [59], HAFN ((Hard Adaptive Feature Norm)) [60], CAT
(Cluster Alignment with a Teacher) [61], BCDM (Bi-classifier
Determinacy Maximization) [62], A2LP(Label Propagation
with Augmented Anchors) [63], MinEnt (Minimum En-
tropy) [64], ADR (Adversarial Dropout Regularization) [65],
JADA (Joint Adversarial Domain Adaptation) [66], TPN
(Transferrable Prototypical Networks) [67], AFN (Adaptive
Feature Norm) [60], GICT (Generatively Inferential Co-
training) [68], LPJT (Locality Preserving Joint Transfer) [69],
BSP (Batch Spectral Penalization) [70], SWD (Sliced Wasser-
stein Discrepancy) [71], CGDM (Cross-domain Gradient Dis-
crepancy Minimization) [72], DTA (Drop to Adapt) [73],
SHOT (Source HypOthesis Transfer) [74], STAR (STochastic
clAssifieRs) [75], ADDA (Adversarial Discriminative Domain
Adaptation) [50], MIMTFL (Mutual Information Maximisa-
tion and Transferable Feature Learning) [76], and SCDA
(Semantic Concentration for Domain Adaptation) [77]. These
above TAL algorithms on 10 mainstream benchmarks are
presented in Table I, II, III, IV, V, VI, and VII, respectively.

III. DISCUSSION AND SUMMARY

In this work, to summarize the cross-domain image classi-
fication tasks in evaluating the TAL models, 14 benchmarks
constructed based on some popular datasets in computer vision
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TABLE I
RECOGNITION ACCURACIES (%) ON MULTI-PIE, COIL-20 AND MNIST+USPS. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND

BEST IN BLUE.

Datasets Tasks Compared TL/DA Methods
NN PCA GFK TCA TSL JDA DTSL CDML RTML DICD DIPDA

Multi-PIE

C05 → C07 26.09 24.80 26.15 40.76 44.08 58.81 65.87 53.22 60.12 72.99 85.69
C05 → C09 26.59 25.18 27.27 41.79 47.49 54.23 64.09 53.12 55.21 72.00 81.25
C05 → C27 30.67 29.26 31.15 59.63 62.78 84.50 82.03 80.12 85.19 92.22 95.73
C05 → C29 16.67 16.30 17.59 29.35 36.15 49.75 54.90 48.23 52.98 66.85 67.04
C07 → C05 24.49 24.22 25.24 41.81 46.28 57.62 45.04 52.39 58.13 69.93 88.62
C07 → C09 46.63 45.53 47.37 51.47 57.60 62.93 53.49 54.23 63.92 65.87 84.62
C07 → C27 54.07 53.35 54.25 64.73 71.43 75.82 71.43 68.36 76.16 85.25 93.39
C07 → C29 26.53 25.43 27.08 33.70 35.66 39.89 47.97 37.34 40.38 48.71 72.73
C09 → C05 21.37 20.95 21.82 34.69 36.94 50.96 52.49 43.54 53.12 69.36 84.12
C09 → C07 41.01 40.45 43.16 47.70 47.02 57.95 55.56 54.87 58.67 65.44 83.19
C09 → C27 46.53 46.14 46.41 56.23 59.45 68.45 77.50 62.76 69.81 83.39 95.67
C09 → C29 26.23 25.31 26.78 33.15 36.34 39.95 54.11 38.21 42.13 61.40 77.12
C27 → C05 32.95 31.96 34.24 55.64 63.66 80.58 81.54 75.12 81.12 93.13 96.93
C27 → C07 62.68 60.96 62.92 67.83 72.68 82.63 85.39 80.53 83.92 90.12 97.05
C27 → C09 73.22 72.18 73.35 75.86 83.52 87.25 82.23 83.72 89.51 88.97 92.95
C27 → C29 37.19 35.11 37.38 40.26 44.79 54.66 72.61 52.78 56.26 75.61 86.76
C29 → C05 18.49 18.85 20.35 26.98 33.28 46.46 52.19 27.34 29.11 62.88 74.81
C29 → C07 24.19 23.39 24.62 29.90 34.13 42.05 49.41 30.82 33.28 57.03 76.97
C29 → C09 28.31 27.12 28.49 29.90 36.58 53.31 58.45 36.34 39.85 65.87 78.30
C29 → C27 31.24 30.34 31.33 33.64 38.75 57.01 64.31 40.61 47.13 74.77 86.99

COIL-20 COIL1 → COIL2 83.61 84.72 72.50 88.47 88.06 89.31 88.61 88.93 91.23 95.69 99.86
COIL2 → COIL1 82.78 84.03 74.17 85.83 87.92 88.47 89.17 87.32 90.22 93.33 99.16

MNIST+USPS USPS → MNIST 44.70 44.95 46.45 51.05 53.75 59.65 55.50 52.25 61.82 65.20 67.85
MNIST → USPS 65.94 66.22 67.22 56.28 66.06 67.28 52.33 63.28 69.52 77.83 84.11

TABLE II
RECOGNITION ACCURACIES (%) ON OFFICE+CALTECH-10 (4DA) WITH SURF FEATURE. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND

THE SECOND BEST IN BLUE.

Tasks Compared TL/DA Methods
NN PCA GFK TCA TSL JDA DTSL CDML RTML GSL DICD SCA VDA KOT LDA

C → A 23.70 36.95 41.02 38.20 44.47 44.78 51.25 47.28 49.26 56.60 47.29 45.62 46.14 52.92 53.03
C → W 25.76 32.54 40.68 38.64 34.24 41.69 38.64 36.91 44.72 55.90 46.44 40.00 46.10 45.76 49.49
C → D 25.48 38.22 38.85 41.40 43.31 45.22 47.13 43.93 47.56 49.70 49.68 47.13 51.59 52.23 50.32
A → C 26.00 34.73 40.25 37.76 37.58 39.36 43.37 41.72 43.68 45.40 42.39 39.72 42.21 44.88 44.61
A → W 29.83 35.59 38.98 37.63 33.90 37.97 36.61 38.25 44.32 41.70 45.08 34.92 51.19 43.73 42.03
A → D 25.48 27.39 36.31 33.12 26.11 39.49 38.85 35.92 43.86 44.00 38.85 39.49 48.41 43.95 50.32
W → C 19.86 26.36 30.72 29.30 29.83 31.17 29.83 31.14 34.83 35.30 33.57 31.08 27.60 34.02 37.40
W → A 22.96 31.00 29.75 30.06 30.27 32.78 34.13 32.26 35.28 40.70 34.13 29.96 26.10 36.85 38.52
W → D 59.24 77.07 80.89 87.26 87.26 89.17 82.80 84.84 91.02 88.50 89.81 87.26 89.18 84.71 87.26
D → C 26.27 29.65 30.28 31.7 28.50 31.52 30.11 32.63 34.58 31.80 34.64 30.72 31.26 38.02 32.24
D → A 28.50 32.05 32.05 32.15 27.56 33.09 32.05 29.87 33.26 34.80 34.45 31.63 37.68 38.94 42.07
D → W 63.39 75.93 75.59 86.10 85.42 89.49 72.20 82.34 89.68 84.10 91.19 84.41 90.85 85.76 81.02
Average 31.37 39.79 42.95 43.61 42.37 46.31 44.75 44.80 49.34 50.71 48.96 45.16 49.03 50.15 50.69

TABLE III
RECOGNITION ACCURACIES (%) ON OFFICE-31 (3DA) WITH RESNET-50. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND BEST

IN BLUE.

Tasks Compared Methods
ResNet-50 DAN DANN ADDA JAN GTA CDAN MDD ETD DWL DADA GVB CAN SRDC RADA

A → D 68.9 78.6 79.7 77.8 84.7 87.7 89.8 93.5 88.0 91.2 93.9 95.0 95.0 95.8 96.1
A → W 68.4 80.5 82.0 86.2 85.4 89.5 93.1 94.5 92.1 89.2 92.3 94.8 94.5 95.7 96.2
D → W 96.7 97.1 96.9 96.2 97.4 97.9 98.2 98.4 100.0 99.2 99.2 98.7 99.1 99.2 99.3
W → D 99.3 99.6 99.1 98.4 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0
D → A 62.5 63.6 68.2 69.5 68.6 72.8 70.1 74.6 71.0 73.1 74.4 73.4 78.0 76.7 77.5
W → A 60.7 62.8 67.4 68.9 70.0 71.4 68.0 72.2 67.8 69.8 74.2 73.7 77.0 77.0 77.4
Average 76.1 80.4 82.2 82.9 84.3 86.5 86.6 88.9 86.2 87.1 89.0 89.3 90.6 90.8 91.1



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022 4

TABLE IV
RECOGNITION ACCURACIES (%) ON OFFICE HOME WITH RESNET-50. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND BEST IN

BLUE.

Methods
Tasks

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average
ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1

CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SymNets 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2

ETD 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
BNM 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

MEDM 57.1 76.1 80.0 62.0 72.7 76.0 62.3 53.4 81.2 69.9 59.8 83.9 69.5
CADA 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2
GSDA 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
TCM 58.6 74.4 79.6 64.5 74.0 75.1 64.6 56.2 80.9 74.6 60.7 84.7 70.7

MetaAlign 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3

TABLE V
RECOGNITION ACCURACIES (%) ON IMAGECLEF WITH RESNET-50. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND BEST IN

BLUE.

Tasks
Compared Methods

ResNet-50 DAN RTN DANN MADA JAN HAFN CAT CDAN BCDM A2LP SymNets ETD TCM DWL
I → P 74.8 74.5 75.6 75.0 75.0 76.8 76.9 76.7 77.7 79.5 79.6 80.2 81.0 79.9 82.3
P → I 83.9 82.2 86.8 86.0 87.9 88.0 89.0 89.0 90.7 93.2 92.7 93.6 91.7 94.2 94.8
I → C 91.5 92.8 95.3 96.2 96.0 94.7 94.4 94.5 97.7 96.8 96.7 97.0 97.9 97.8 98.1
C → I 78.0 86.3 86.9 87.0 88.8 89.5 89.6 89.8 91.3 91.3 92.5 93.4 93.3 93.8 92.8
C → P 65.5 69.2 72.7 74.3 75.2 74.2 74.9 74.0 74.2 78.9 78.9 78.7 79.5 79.9 77.9
P → C 91.2 89.8 92.2 91.5 92.2 91.7 92.9 93.7 94.3 95.8 96.0 96.4 95.0 96.9 97.2
Average 80.7 82.5 84.9 85.0 85.8 85.8 86.3 86.3 87.7 89.3 89.4 89.9 89.7 90.5 90.5

TABLE VI
RECOGNITION ACCURACIES (%) ON VISDA-2017 WITH RESNET-101. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND BEST IN

BLUE.

Methods Classes
plane bcycl bus car horse knife mcycl person plant sktbrd train truck Average

ResNet 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MinEnt 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0
DAN 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
ADR 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8
JADA 91.9 78.0 81.5 68.7 90.2 84.1 84.0 73.6 88.2 67.2 79.0 38.0 77.0
TPN 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80..4
AFN 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
BNM 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4
MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
GICT 87.6 60.6 81.6 72.1 87.8 62.9 89.7 68.5 88.8 76.1 83.2 20.0 73.1
LPJT 93.0 80.3 66.5 56.3 95.8 70.3 74.2 83.8 91.7 40.0 78.7 57.6 74.0
BSP 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
DWL 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1
DTA 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5

CGDM 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
SHOT 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
STAR 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
BCDM 95.1 87.6 81.2 73.2 92.7 95.4 86.9 82.5 95.1 84.8 88.1 39.5 83.4
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TABLE VII
RECOGNITION ACCURACIES (%) ON DOMAINNET WITH RESNET-101. IN EACH SUB-TABLE, THE COLUMN-WISE DOMAINS ARE DENOTED AS THE

SOURCE DOMAIN AND THE ROW-WISE DOMAINS ARE DENOTED AS THE TARGET DOMAIN. THE NAMES OF METHODS ARE MARKED IN RED AND
DOMAINS IN BLUE.

ADDA clp inf pnt qdr rel skt Avg. MCD clp inf pnt qdr rel skt Avg. DANN clp inf pnt qdr rel skt Avg. ResNet clp inf pnt qdr rel skt Avg.
clp - 11.2 24.1 3.2 41.9 30.7 22.2 clp - 14.2 26.1 1.6 45.0 33.8 24.1 clp - 15.5 34.8 9.5 50.8 41.4 30.4 clp - 19.3 37.5 11.1 52.2 41.0 32.2
inf 19.1 - 16.4 3.2 26.9 14.6 16.0 inf 23.6 - 21.2 1.5 36.7 18.0 20.2 inf 31.8 - 30.2 3.8 44.8 25.7 27.3 inf 30.2 - 31.2 3.6 44.0 27.9 27.4
pnt 31.2 9.5 - 8.4 39.1 25.4 22.7 pnt 34.4 14.8 - 1.9 50.5 28.4 26.0 pnt 39.6 15.1 - 5.5 54.6 35.1 30.0 pnt 39.6 18.7 - 4.9 54.5 36.3 30.8
qdr 15.7 2.6 5.4 - 9.9 11.9 9.1 qdr 15.0 3.0 7.0 - 11.5 10.2 9.3 qdr 11.8 2.0 4.4 - 9.8 8.4 7.3 qdr 7.0 0.9 1.4 - 4.1 8.3 4.3
rel 39.5 14.5 29.1 12.1 - 25.7 24.2 rel 42.6 19.6 42.6 2.2 - 29.3 27.2 rel 47.5 17.9 47.0 6.3 - 37.3 31.2 rel 48.4 22.2 49.4 6.4 - 38.8 33.0
skt 35.3 8.9 25.2 14.9 37.6 - 25.4 skt 41.2 13.7 27.6 3.8 34.8 - 24.2 skt 47.9 13.9 34.5 10.4 46.8 - 30.7 skt 46.9 15.4 37.0 10.9 47.0 - 31.4

Avg. 28.2 9.3 20.1 8.4 31.1 21.7 19.8 Avg. 31.4 13.1 24.9 2.2 35.7 23.9 21.9 Avg. 35.7 12.9 30.2 7.1 41.4 29.6 26.1 Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.5
CDAN clp inf pnt qdr rel skt Avg. SWD clp inf pnt qdr rel skt Avg. BNM clp inf pnt qdr rel skt Avg. MIMTFL clp inf pnt qdr rel skt Avg.

clp - 17.8 35.7 15.3 51.3 37.2 31.4 clp - 16.6 35.3 12.8 48.7 41.0 30.9 clp - 19.4 35.6 16.1 49.8 36.3 31.4 clp - 15.1 35.6 10.7 51.5 43.1 31.2
inf 25.4 - 28.9 5.8 38.2 22.8 24.2 inf 26.9 - 27.6 2.7 38.1 25.4 24.1 inf 24.6 - 27.8 7.9 35.0 22.0 23.5 inf 32.1 - 31.0 2.9 48.5 31.0 29.1
pnt 37.1 17.9 - 7.9 51.4 34.0 29.7 pnt 37.3 16.9 - 5.9 48.7 34.6 28.7 pnt 36.0 20.2 - 9.7 51.8 34.2 30.4 pnt 40.1 14.7 - 4.2 55.4 36.8 30.2
qdr 20.5 2.3 7.7 - 14.6 12.6 11.5 qdr 19.3 3.0 8.1 - 14.2 13.3 11.6 qdr 21.3 3.8 10.5 - 14.0 12.9 12.5 qdr 18.8 3.1 5.0 - 16.0 13.8 11.3
rel 43.6 19.4 46.1 8.3 - 33.2 30.1 rel 47.0 19.9 47.1 6.1 - 36.8 31.4 rel 43.4 21.7 47.0 9.9 - 32.9 31.0 rel 48.5 19.0 47.6 5.8 - 39.4 32.1
skt 45.4 18.3 40.4 14.5 48.3 - 33.4 skt 48.8 17.3 41.1 12.2 49.1 - 33.7 skt 43.1 19.1 39.5 15.6 47.0 - 32.7 skt 51.7 16.5 40.3 12.3 53.5 - 34.9

Avg. 34.4 15.1 31.7 10.4 40.8 27.9 26.7 Avg. 35.9 14.7 31.8 7.9 39.8 30.2 26.7 Avg. 33.7 16.8 32.1 11.8 39.6 27.7 26.9 Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1
MDD clp inf pnt qdr rel skt Avg. SCDA clp inf pnt qdr rel skt Avg. BCDM clp inf pnt qdr rel skt Avg. MDD+SCDA clp inf pnt qdr rel skt Avg.

clp - 20.5 40.7 6.2 52.5 42.1 32.4 clp - 18.6 39.3 5.1 55.0 44.1 32.4 clp - 19.9 38.5 15.1 53.2 43.9 34.1 clp - 20.4 43.3 15.2 59.3 46.5 36.9
inf 33.0 - 33.8 2.6 46.2 24.5 28.0 inf 29.6 - 34.0 1.4 46.3 25.4 27.3 inf 31.9 - 32.7 6.9 44.7 28.5 28.9 inf 32.7 - 34.5 6.3 47.6 29.2 30.1
pnt 43.7 20.4 - 2.8 51.2 41.7 32.0 pnt 44.1 19.0 - 2.6 56.2 42.0 32.8 pnt 42.5 19.8 - 7.9 54.5 38.5 32.6 pnt 46.4 19.9 - 8.1 58.8 42.9 35.2
qdr 18.4 3.0 8.1 - 12.9 11.8 10.8 qdr 30.0 4.9 15.0 - 25.4 19.8 19.0 qdr 23.0 4.0 9.5 - 16.9 16.2 13.9 qdr 31.1 6.6 18.0 - 28.8 22.0 21.3
rel 52.8 21.6 47.8 4.2 - 41.2 33.5 rel 54.0 22.5 51.9 2.3 - 42.5 34.6 rel 51.9 24.9 51.2 8.7 - 40.6 35.5 rel 55.5 23.7 52.9 9.5 - 45.2 37.4
skt 54.3 17.5 43.1 5.7 54.2 - 35.0 skt 55.6 18.5 44.7 6.4 53.2 - 35.7 skt 53.7 20.5 46.0 13.1 53.4 - 37.1 skt 55.8 20.1 46.5 15.0 56.7 - 38.8

Avg. 40.4 16.6 34.7 4.3 43.4 32.3 28.6 Avg. 42.6 16.7 37.0 3.6 47.2 34.8 30.3 Avg. 40.6 17.8 35.6 10.3 44.3 33.5 30.4 Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3

are presented, such as ImageNet, ILSVRC, PASCAL VOC,
Caltech-256, multi-PIE and MNIST. It is noteworthy that,
despite these endeavors made by researchers, more bench-
marks in cross-domain vision understanding problems we
could see, namely: object detection, semantic segmentation,
visual relation modeling, scene parsing, etc. are still future
challenges for more universal and safe applications. These can
better testify the practicality of TAL methodologies. In this
work, in order to show the status of TAL, only cross-domain
image classification based benchmarks and performances are
summarized for the overview.

The performance on the benchmarks has taken a big step
forward. However, we have to denote a fact that the existing
unsupervised domain adaptation setting has always used target
data for training (even without labels), which, inevitably leads
to overfitting and loses fairness. Therefore, we must be aware
of this, and a reasonable and scientific training and testing pro-
tocol may promote this community. Considering the necessity
of target data, a possible solution is that, as few-shot learning
does, partial unlabeled target samples are used as seen samples
(training) for determining an ideal hypothesis h∗ with small
joint error λ = εS(h

∗)+εT (h
∗), and the unseen target samples

(test) are used for model evaluation. This meets another more
practical challenge of domain generalization (DG), where the
task is to generalize a model trained on single/multiple source
domains to unseen target domains. DG is another independent
branch deserved further research and not the focus of this
work, and hence not discussed.
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