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Abstract—Subspace learning and reconstruction have been
widely explored in recent transfer learning work. Generally, a
specially designed projection and reconstruction transfer func-
tions bridging multiple domains for heterogeneous knowledge
sharing are wanted. However, we argue that the existing subspace
reconstruction based domain adaptation algorithms neglect the
class prior, such that the learned transfer function is biased,
especially when data scarcity of some class is encountered.
Different from those previous methods, in this paper, we pro-
pose a novel class-wise reconstruction-based adaptation method
called Class-specific Reconstruction Transfer Learning (CRTL),
which optimizes a well modeled transfer loss function by fully
exploiting intra-class dependency and inter-class independency.
The merits of the CRTL are three-fold. 1) Using a class-
specific reconstruction matrix to align the source domain with
the target domain fully exploits the class prior in modeling the
domain distribution consistency, which benefits the cross-domain
classification. 2) Furthermore, to keep the intrinsic relationship
between data and labels after feature augmentation, a projected
Hilbert-Schmidt Independence Criterion (pHSIC), that measures
the dependency between data and label, is first proposed in
transfer learning community by mapping the data from raw
space to RKHS. 3) In addition, by imposing low-rank and sparse
constraints on the class-specific reconstruction coefficient matrix,
the global and local data structure that contributes to domain
correlation can be effectively preserved. Extensive experiments on
challenging benchmark datasets demonstrate the superiority of
the proposed method over state-of-the-art representation-based
domain adaptation methods. The demo code is available in
https://github.com/wangshanshanCQU/CRTL

Index Terms—Transfer learning, cross-domain learning, semi-
supervised learning, image classification.

I. INTRODUCTION

IN statistical machine learning, image classification methods
aim to build a classification model from training samples

and then apply it to classify test samples. Generally, with
the fundamental assumption of machine learning, the fixed
model can work well only if the test samples are in similar
distribution with the training samples [22]. However, in real
world, it is impossible to guarantee that the data with similar
semantics has the same feature distribution.
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Fig. 1: Different distributions from different domain subjects

Various sampling factors, such as resolutions, illuminations,
background, etc., can lead to different distributions, which, in
machine learning, is labeled as domain mismatch. Therefore,
conventional learning methods fail to handle such issues
because the basic assumption of independent identical distri-
bution that general machine learning needs is violated. Fig.1
shows some examples with similar semantics but different
distribution. It is not difficult to understand that if the images
in the first row are used to train a classifier, the model cannot
work well when classifying the images of the second row.

To solve the problem, one straightforward method is to
collect a large amount of labeled source data that have shown
diverse distribution as the unseen testing data and use them
to retrain or fine-tune the classifier model. This is called
data-driven transfer learning (TL), which implies that deep
learning is a special case of TL. However, in many real-
world applications, collecting and labeling sufficient data is
too expensive, and the scarcity of the training data prohibits
the model training (e.g., classifier). Therefore, it is essential
to make full use of the data from another source.

To this end, transfer learning and domain adaptation were
proposed by leveraging a number of data from target domains
for knowledge sharing. This is called model-driven transfer
learning, which tends to explore the knowledge transfer from
source domain to target domain by exploiting their structural
and similar high-level semantic relationship. Generally, one
can use distribution different yet semantic relevant domain
data to enhance the classification performance by fully ex-
ploiting the commonality between domains. By combining
data-driven and model-driven mind together, deep transfer
learning is resulted, which is another quite effective and
understudied method, but it is not the focus of this paper.

Transfer learning, that is proposed to leverage the prior
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Fig. 2: Illustration of our proposed Class-specific Reconstruction Transfer Learning (CRTL). A structural and class-specific
reconstruction matrix Z is expected, in which Z1

c represents reconstructing the 1st class data in target domain by the cth class
data in source domain. Intuitively, we wish that the data of class c in target domain can only be represented by the data of
the same class in source domain using Zc

c, so that a more structural reconstruction matrix Z can be obtained.

knowledge of other different but related domain data, is often
referred to as domain adaptation (DA) [17], [37], [41], [45],
[46], [57], [59] in computer vision. Domain adaptation is one
of the most promising techniques for cross-domain learning
with a well-labeled source domain and a few labeled target
domain. The domain data generally share the same task yet
different distributions [56]. In order to address the problem
of distribution discrepancy, progresses on domain adaptation
and transfer learning have been made by researchers in this
community. In general, DA methods can be approximately
divided into three categories [58]: (1) feature representation
based adaptation; (2) classifier adaptation; (3) deep adaptation.

In this paper, we focus on the representation based feature
adaptation, and propose a class-specific reconstruction transfer
learning (CRTL) model. The proposed method aims at con-
structing a class-specific and statistical dependence preserved
model across domains in reproducing kernel Hilbert space
(RKHS). The ultimate goal is to align the feature distribution
between domains in some projected subspace by modeling a
mutual representation. The general framework of the proposed
CRTL method is described in Fig. 2, in which the correspon-
dence matrix is posed to be class-wise such that the class-
independency in mutual representation is enhanced.

Maximum Mean Discrepancy (MMD) [15], that acts as a
discrepancy metric or criterion to evaluate the distribution
mismatch across domains, has been widely used in many
unsupervised domain adaptation methods and works well in
aligning the global distribution. However, the information of
sample categories that benefits to classification is neglected.
In this paper, inspired by classifier adaptation, to enhance
the correlation between the projected feature and labels, a
statistical method that can describe such intrinsic relationship
is proposed. Specifically, a Hilbert-Schmidt Independence Cri-
terion (HSIC) [16] formulated with Hilbert-Schmidt norm in
RKHS is used to measure the dependency between data and
labels. Instead of MMD, the HSIC is introduced in our CRTL
by projecting the data from the raw space RD to RKHS H,
that can be mathematically defined as ϕ : RD → H.

Due to the domain difference between the source and target
domain, a latent projection [11], [30] is generally expected
for projecting the source and target data into a common
subspace, where the commonality can be easily captured.
However, if only learn a common subspace without domain
correspondence, the domain knowledge transfer performance

can be seriously restricted. To this end, a latent subspace and
a reconstruction (correspondence) matrix are simultaneously
modeled in our CRTL.

For pursuit of model discrimination, the existing domain
adaptation methods [43], [52], [60] attempt to make the
subspace projection discriminative by constructing some reg-
ularizer and discriminative constraints, rather than considering
the class-wise characteristic of the reconstruction matrix. In the
existing reconstruction based transfer learning algorithms [18],
[43], [52], [63], the class prior distributions that is beneficial to
construct a well-designed reconstruction transfer loss function
is generally ignored, such that these models are class-biased.
Different from those methods, we have an idea to make
reconstruction matrix class-specific, which holds a similar
assumption with Yang et al. [55] that the data can be better
represented by the data of the same class. Therefore, in CRTL,
the intra-class dependency and inter-class independency in
domain adaptation have been fully exploited and modeled from
two aspects. First, in modeling, the low-rank and sparsity
constraints can also be imposed for enhancing such intra-
class dependency and inter-class independency. For example,
the sparsity constraint expects that the source data of class c
can robustly reconstruct the target data of the same class and
the low-rank constraint improves the domain correlation. Low-
rank representation (LRR) [29] was originally suggested for
block diagonal solution in subspace segmentation. Different
from LRR, sparse subspace clustering (SSC) [7] was suggested
for data points lying in a union of low-dimensional subspaces,
which not only handles the data points near the intersections
of subspaces, but also avoids the trivial solution. Benefits from
both regularization constraints, the global and local structures
can be captured during domain correspondence. Second,
most importantly, a class-specific reconstruction transfer loss
function is specially constructed, such that the learnt transfer
matrix is more structural and explanatory. Essentially, when
labeled data is deployed by categories, the correspondence
matrix shows an intrinsic block-diagonal structure [8], [35].

This work is substantially an extended version of our
conference paper [49]. We have completely rewritten the
paper to explain the motivation and principle of the proposed
CRTL method. For clearly elaborating the optimization de-
tails, the solving algorithm and learning procedure have been
formulated in the paper. Additionally, more experiments and
algorithmic analysis are presented in our manuscript. The
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contributions of this work are summarized as follows.
• To keep the intrinsic relationship between domain data

and labels, a Hilbert-Schmidt Independence Criterion
(HSIC) instead of the MMD criterion is introduced to
preserve the data-label dependency in reproducing kernel
Hilbert space (RKHS). Specifically, a projected HSIC
(pHSIC) is proposed with feature augmentation.

• In order to model the class prior distributions across do-
mains, a class-specific reconstruction transfer loss func-
tion that fully exploits the intra-class dependency and
inter-class independency is proposed. The class discrim-
ination in data reconstruction between source and target
domains is then guaranteed.

• Using both LRR and SSC based regularization con-
straints, the global and local structures are effectively
preserved with better block diagonal characteristic that
strengthens the domain correlation and stronger robust-
ness that weakens the domain outliers.

• A joint learning framework of the reconstruction trans-
fer matrix and the pHSIC-based common subspace is
formulated and extensive experiments demonstrate the
superiority over other state-of-the-art techniques.

The rest of paper is organized as follows. Section II revisits
the related work and preliminaries. Section III presents the
proposed CRTL with optimization. Section IV presents the
experiments and comparisons. The discussion is presented in
Section V, and finally Section VI concludes this paper.

II. RELATED WORK AND PRELIMINARIES

In recent years, a number of transfer learning methods
have been proposed, which can be summarized as three
categories [58]: classifier adaptation, feature adaptation, and
deep domain adaptation. In classifier adaptation, one rep-
resentative method called ASVM proposed by Yang et al. [54]
tends to learn the perturbation term for adapting the source
classifier to the target classifier. Xue et al. [53] proposed a
method exploiting the common knowledge to share model
parameters across domains based on Dirichlet process prior.
Zhang et al. [61] proposed a domain adaptation ELM method
for classifier adaptation, and also a robust extreme domain
adaptive classifier [62] by using Laplacian graph regularization
for local structure preservation. Duan et al. [5] proposed an
adaptive multiple kernel learning (AMKL) for cross-domain
recognition. Since it is impossible to eliminate the domain
disparity between the source and target domain by using
classifier adaptation, it is rational to consider the domain
adaptation in feature-level.

In feature adaptation, subspace projection and learning
is an appropriate way to achieve the goal, and the classifier
trained on the projected source data is also adaptive to the
projected target data. Hoffman et al. [17] proposed a feature
transformation method for domain shift alignment. Gong et
al. [13] proposed a GFK by using geodesic flow kernel to
modeling domain shift. Shekhar et al. [44] proposed a shared
domain dictionary learning (SDDL) method, which assumes
that one common dictionary can be learned for both domains.
Another way is representation (reconstruction) based feature

adaptation. Shao et al. [43] proposed a LTSL method for
reconstruction transfer based on low-rank constraint, in which
the subspace and reconstruction matrix are learnt separately.
Zhang et al. [63] proposed a latent sparse domain transfer
(LSDT) method for visual adaptation, which jointly pursuits a
latent subspace and domain correspondence based on sparsity
constraint. Xu et al. [52] proposed a supervised discriminative
domain transfer learning method (DTSL) based on the joint
constraint of low-rank and sparsity, which pursuits a classifier
and a reconstruction transfer matrix by adding label infor-
mation. Recently, deep learning is widely recognized to be a
very effective high-level discriminative feature representation
technique, which is also introduced in DA/TL community.

In deep domain adaptation, data-driven transfer learning
method has witnessed a great achievements [47], [12], [38],
[51]. However, when solving domain data problems by using
deep learning technology, massive labeled training data are re-
quired. The data amount is increased with the increase of con-
volutional neural network (CNN) parameters [2]. For the tasks
of small data, deep learning may not work well. Constructing
joint data-driven and model-driven deep transfer learning is
an effective way to face with domain data challenge. The
number of required data is not as much as deep learning
needs by exploiting transfer learning method [36]. On one
hand, a network with fewer parameters and smaller structure
can be easily re-trained from scratch. On the other hand, a
large number of data easily causes overfitting, while transfer
learning allows the model to see different domain data. To
this end, Tzeng et al. [47] proposed a DDC method which
simultaneously achieves knowledge transfer between domains
and tasks by using CNN. Long et al. [31] proposed a deep
adaptation network (DAN) method by imposing MMD loss
on the high-level features across domains. Additionally, Long
et al. [33] also proposed a residual transfer network (RTN)
which tends to learn a residual classifier based on softmax loss.
Very recently, GAN inspired adversarial domain adaptation
has been preliminarily studied for domain confusion. For
example, Tzeng et al. proposed a novel ADDA method [48]
for adversarial domain adaptation based on CNN.

A. HSIC Criterion

In this section, we explicitly minimize the distribution dif-
ference between domains to facilitate the information transfer.
Different from MMD, from another point of view, Hilbert-
Schmidt Independence Criterion [16] is proposed in our paper.
HSIC is an independence criterion based on the eigen spectrum
of cross-covariance operators in reproducing kernel Hilbert
space, which is used to measure the dependency between two
sets X and Y . Let kx and ky denote the kernel function with
respect to the RKHS F and G. According to [16], HSIC
independence Criterion is shown in Equation (1).

HSIC(X ,Y,F ,G)
= ‖ CXY ‖2HS= (N − 1)−2Tr(KXHKYH)

s.t.H = I−N−11N×11
T
N×1

(1)

where N denotes the size of two sets X and Y , ‖ CXY ‖2HS

is Hilbert-Schmidt norm of the cross-covariance operator. KX
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and KY are two kernel Gram matrix w.r.t. F and G in RKHS,
respectively. H is the centering matrix. With characteristic
kernels kx and ky , it can be proved that the value of HSIC is
zero if and only if X and Y are independent [16].

HSIC consists of an empirical estimation of the Hilbert-
Schmidt norm of the cross-covariance operator and it has re-
markable simplicity advantage compared with previous kernel-
based independence criteria. Also, HSIC do not suffer from
slow learning rate. In this paper, we exploit this criterion in a
semi-supervised manner to match object pairs from two sets by
minimizing their dependence based on the HSIC. A projected
HSIC criterion is proposed for improving the dependency
between enhanced features and labels during transfer.

B. Sparse and Low-rank based Reconstruction Transfer

Three representative reconstruction transfer models pro-
posed by Shao et al. [43], Zhang et al. [63], [60], and Xu et al.
[52], respectively, have a common characteristic that the target
domain data is expected to be represented by source domain
data through a transfer loss function. The key difference lies
in the constraint on the reconstruction matrix. Specifically,
Shao et al. [43] imposed the transfer a low-rank character-
istic. Low-rank representation is advantageous in getting the
block diagonal solution for subspace segmentation, so that the
global structure can be preserved. Zhang et al. [63] tends to
sparsely model the reconstruction such that the outliers from
the source domain data can be prevented from transferring
to the target domain by fully exploiting the local structure,
and robustness is guaranteed. Zhang et al. [60] proposed to
model the reconstruction transfer with row sparse by using
l21-norm, such that the outliers are better to be prevented for
eliminating trivial solution. Besides, the discrimination on the
subspace projection is also studied which fully exploits the
domain-class consistency instead of domain difference only.
Xu et al. [52] considers a more general scenario by jointly
modeling the low-rank and sparsity constraint, which takes
into account the global and local structure across domains.
Also, for discrimination, the label information is considered
in guiding the transfer learning phase. The rationale behind of
feature reconstruction transfer lies in the domain correlation
enhancement through the low-rank and sparsity modeling.

In this paper, the proposed CRTL is closely related with the
above four methods, but different in essence. The focus of this
paper is the reconstruction transfer loss function construction
which aims at modeling the intra-class dependency and inter-
class independency. The relation to the above four methods is
specially presented in the following section.

C. Relation to Existing Reconstruction based DA/TL Models

Although a series of feature representation based domain
adaptation models have been proposed for cross-domain learn-
ing [43], [63], [60], [52], they did not consider the fine-
grained transfer loss function construction, the class-wise
feature representation and the data-label dependency, such
that the high-level semantic information is neglected and
the transfer is understudied. Generally, the proposed CRTL
belongs to feature representation based adaptation, but it

is essentially different from these mentioned approaches in
several aspects. 1) a fine-grained domain reconstruction loss
with class prior information considered is constructed by fully
exploiting the intra-class domain dependency and inter-class
domain independency. Then, a class-specific reconstruction
matrix with domain transfer is resulted. 2) In modeling the
subspace projection, the data-label dependency is fully exploit-
ed by proposing a projected HSIC criterion that interprets the
statistical dependency between two sets in RKHS. To our best
knowledge, there is few work on the HSIC criterion [50] for
DA/TL problems instead of the over-studied MMD criterion
[20]. Although the class discrimination is considered in [60],
[52], they only focus on the subspace projection instead of
the reconstruction transfer loss function and the reconstruction
matrix. Owing to the new perspectives, the proposed CRTL
approach yields state-of-the-art performance on challenging
benchmark cross-domain visual datasets.

III. THE PROPOSED CLASS-SPECIFIC RECONSTRUCTION
TRANSFER LEARNING

A. Notations

In this paper, the source and target domain are defined
by subscript S and T . The training set of source and target
domain is defined as XS ∈ Rm×nS and XT ∈ Rm×nT ,
where m denotes dimension of data, nS and nT denote the
number of samples in source and target domain, respectively.
Let X = [XS ,X T ], then X ∈ Rm×N , where N = nS + nT .
Y denotes the data labels. We let P denote the transformation
matrix. Z ∈ RnS×nT represents the reconstruction coefficient
matrix and I denotes the identity matrix. ‖ · ‖p, ‖ · ‖F and
‖ · ‖∗ denote lp -norm, Frobenius norm and nuclear norm,
respectively. The superscript T denotes transpose operator,
and Tr(·) denotes trace operator of matrix. The kernel Gram
matrix K is defined as

[
K
]
i,j

=< ϕ(xi), ϕ(xj) >H=

ϕ(xi)
Tϕ(xj) = k(xi,xj), where k(·) is a kernel function.

B. The Proposed Projected HSIC

What we expect is that after projection, the intrinsic corre-
lation between the projected features and labels can be well
exploited for better preservation of the data-label dependency.
Thus, the observations ZH := {(x1, y1) . . . (xn, yn)} can
be used to construct Hilbert-Schmidt Independency Criterion
after feature augmentation. Note that, the HSIC after feature
augmentation is called projected HSIC (pHSIC), which is
formulated with the same principle as HSIC, but different in
that a projection P is integrated for knowledge transfer. As
described in [16], the proposed pHSIC can be formulated as

pHSIC(ZH ,F ,G)
=(N − 1)−2Tr(KHLH)

=(N − 1)−2Tr(k(PTϕ(X ),PTϕ(X ))HLH)

s.t.H = I−N−11N×11
T
N×1

(2)

where K,L ∈ RN×N , Ki,j = k(x′i, x
′
j), Li,j = l(yi, yj),

Hi,j = δi,j −N−1. k(·) and l(·) denote kernel functions and
Gaussian kernel function is considered in this paper. K =
k(X ′,X ′), X ′ = [X ′

S,X
′
T ] denotes the projected data, L =



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. -, NO. -, JAN 2019 5

l(Y,Y). H is a centering matrix. ϕ is a nonlinear function for
feature augmentation, which maps the data from the raw space
RD to RKHS H defined as ϕ : RD → H. In this paper, by
using Mercer kernel theorem, the nonlinear function ϕ does
not need to be explicit. Thus, by maximizing the pHSIC, the
dependency between data and labels can be well preserved
and improved in domain transfer learning.

C. The Proposed Transfer Loss with Class Dependency
As described in Fig. 2, in this paper, a better reconstruction

transfer matrix Z as well as the discriminative subspace P are
expected. By leveraging class prior information, we wish to
learn a structural and class-specific reconstruction matrix Z ,
instead of learning a general reconstruction matrix Z based
on the whole dataset. As is shown in Fig. 2, the sub-matrix
Zi

j in the reconstruction matrix represents the coefficients that
the ith class data in target domain is reconstructed by the
jth class data in source domain. Intuitively, we wish that the
data of class i in target domain can only be represented by
the data of the same class in source domain using Zi

i, such
that a more structural and class-wise reconstruction matrix Z
can be obtained. Thus, a class-specific transfer loss function
that fully exploits the intra-class dependency and inter-class
independency across domains can be constructed.

For the labeled data X T and XS , we expect that after
projection with P and the nonlinear mapping with ϕ, the
intra-class dependency between the source and target data
of the same class can be effectively enhanced, while the
inter-class dependency of different classes is weakened. To
this end, we achieve this goal, that is, the data of class
c in target domain can be better expressed by the data of
the same class in source domain, by minimizing the domain
reconstruction error ‖ PTϕ(X c

T )−PTϕ(X c
S)Z

c
c ‖2F , where

X c
T represents the target data of class c, X c

S represents the
source data of class c, and Zc

c represents the class-specific
representation coefficient sub-matrix with respect to class c.
Furthermore, for avoiding the inter-class impact from the data
of other classes during domain adaptation, we also consider
to minimize the representation error between classes across
domains. Specifically, we wish that the target data of class c
cannot be expressed by the source data of class k (excluding
class c). Therefore, the class representation error can be for-
mulated as

∑
k=1,k 6=c

‖ PTϕ(X c
S)Z

c
k ‖2F , where Zc

k represents

the reconstruction coefficient sub-matrix between the source
data of class k and the target data of class c. With the
above analysis, the proposed transfer loss function consisting
of domain reconstruction loss (intra-class dependency) and
class representation loss (inter-class independency) can be
formulated as follows.

E(XS ,X T ,P,Z)

=

C∑
c=1

(‖ PTϕ(X c
T )−PTϕ(X c

S)Zc
c ‖2F )

+

C∑
c=1

C∑
k=1,k 6=c

‖ PTϕ(X c
S)Zc

k ‖2F

(3)

In the loss function, we observe that there are two variables P
and Z , which represents that domain adaptation is achieved

by performing class-wise domain reconstruction under some
latent subspace with class-dependency exploited.

D. Model Formulation

As mentioned in [52], [63], the sparsity constraint can help
preserve the local structure of data such that each target sample
can be well reconstructed by a few very associated samples
from the source domain. Furthermore, the sparse subspace
clustering (SSC) theory effectively accounts for the noise
in data corruption and outliers removal with their intrinsic
relevance preserved. In addition, SSC ensures that the data
from different domains can be well interlaced and significantly
reduce the disparity of the domain distributions. Different from
sparsity constraint, low-rank property can better preserve the
global structure of data, and it is advantageous to reveal a
block-diagonal structure. In constructing the reconstruction
matrix Z , in this paper, a joint sparse and low-rank regularizer
is used to better account for the local and global characteristic-
s, simultaneously. Eventually, we have imposed the joint sparse
plus low-rank constraints on the reconstruction matrix Z . By
combining the projected HSIC and the class-wise transfer loss
together, the general objective function of the proposed CRTL
model can be formulated as follows.

min
P,Z

E(XS ,X T ,P ,Z)+ ‖ Z ‖∗

− pHSIC(ZH ,X ,L)+ ‖ Z ‖1
s.t.PTP = I

(4)

Note that, for solving a convex optimization problem, the
sparsity and low-rank property are shown with l1-norm and
nuclear norm, respectively.

Specifically, by substituting the pHSIC criterion in Eq. (2)
and the class-wise transfer loss function in Eq. (3), the general
CRTL model proposed in Eq. (4) can be rewritten as

min
P,Z

C∑
c=1

(‖ PTϕ(Xc
T )−PTϕ(X c

S)Z
c
c ‖2F )+ ‖ Z ‖∗

+

C∑
c=1

C∑
k=1,k 6=c

‖ PTϕ(X c
S)Z

c
k ‖2F + ‖ Z ‖1

− 1

(N − 1)
2Tr(k(P

Tϕ(X ),PTϕ(X ))HLH)

s.t.PTP = I,X = [XS ,X T ],1
1×nSZ = 11×nT

(5)

In this model, the subspace projection P is imposed an
orthogonal constraint and the class-wise reconstruction matrix
Z is imposed a normalization constraint for better solutions.

Generally, we claim that the optimal mapping P∗ can be
represented as (P∗)T = ΦTϕ(X )T , that is, the projection
P is a linear representation of the data ϕ(X ) by using Φ.
Therefore, with Mercer kernel theorem, by substituting P∗
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into the objective function (5), the proposed CRTL model can
be finally reformulated as

min
Φ,Z

C∑
c=1

(‖ ΦTKc
T −ΦTKc

SZ
c
c ‖2F )+ ‖ Z ‖∗

+

C∑
c=1

C∑
k=1,k 6=c

‖ ΦTKc
SZ

c
k ‖2F + ‖ Z ‖1

− 1

(N − 1)
2Tr(Φ

TKHLHKΦ)

s.t.ΦTKΦ = I,11×nSZ = 11×nT

(6)

In the CRTL model, the sub-blocks Zc
k and Zc

c of Z are
modeled, therefore, in the following we show the details of
optimization by introducing some constant matrix.

E. Optimization

In CRTL model, although it seems that three variables are
involved in model (6), both Zc

c and Zc
k are sub-blocks of Z ,

and therefore can be expressed by using some easily designed
constant matrix which is used to represent the sub-matrix by
using Z . Then, the model can be solved with respect to two
variables Φ and Z in (6), respectively. Further, to solve the
problem, we adopt a variable alternating optimization strategy,
i.e. solving one variable while fixing the other one. With the
two updating steps for Φ and Z , the complete optimization
of the proposed method is illustrated as follows.

First, we construct the block matrix Ac, Ak, Bc as

Ac =
[
AT1 AT2 . . . ATc . . . ATC

]T
,

Ak =
[
AT1 AT2 . . . ATk . . . ATC

]T
,

Bc =
[
BS1 BS2 . . . BSc . . . BSC

]
,

where Ac ∈ RnT×nTc , Ak ∈ RnT×nTk(k 6= c), and Bc ∈
RnSc×nS are block matrix, among which ATc ∈ RnTc×nTc ,
ATk ∈RnTk×nTk , and BSc ∈ RnSc×nSc are identity matrix,
and others are all 0 matrix.

With the exact definition of Ac, Ak, and Bc, we can have
Zc = ZAc, Zc

k = BcZk = BcZAk, and Zc
c = BcZc =

BcZAc. By substituting Zc
c and Zc

k into the model, then the
model (6) can be reformulated as follows.

min
Φ,Z

C∑
c=1

(‖ ΦTKc
T − ΦTKc

SBcZAc ‖2F )+ ‖ Z ‖∗

+

C∑
c=1

C∑
k=1,k 6=c

‖ ΦTKc
SBcZAk ‖2F + ‖ Z ‖1

− 1

(N − 1)2
Tr(ΦTKHLHKΦ)

s.t.ΦTKΦ = I,11×nSZ = 11×nT

(7)

Further, to solve the problem (7), a variable alternating
optimization strategy is considered, i.e., one variable is solved
by frozen the other one. In addition, the inexact augment-
ed Lagrangian multiplier (IALM) and alternating direction
method of multipliers (ADMM) can be used to efficiently solve
each variable, respectively. With the two updating steps for Φ
and Z , the optimization details of the proposed method are
illustrated as follows.

First, by introducing two auxiliary variables J and G with
respect to the correspondence matrix Z , the minimization
problem (7) with new equality constraints introduced can be
re-written as follows

min
Φ,Z

C∑
c=1

(‖ ΦTKc
T −ΦTKc

SBcZAc ‖2F )

+

C∑
c=1

C∑
k=1,k 6=c

‖ ΦTKc
SBcZAk ‖2F

− 1

(N − 1)
2Tr(Φ

TKHLHKΦ)

+ ‖ J ‖∗ + ‖ G ‖1
s.t.ΦTKΦ = I,11×nSZ = 11×nT ,Z = J ,Z = G

(8)

Furthermore, with the augmented Lagrange function [27],
the above model (8) can be converted into the following
minimization problem

min
Φ,Z,J ,G

C∑
c=1

(‖ ΦTKc
T −ΦTKc

SBcZAc ‖2F )+ ‖ J ‖∗ + ‖ G ‖1

+

C∑
c=1

C∑
k=1,k 6=c

‖ ΦTKc
SBcZAk ‖2F +Tr(RT

1 (Z −J ))

− 1

(N − 1)2
Tr(ΦTKHLHKΦ) + Tr(RT

2 (Z − G))

+ Tr(RT
3 (11×nSZ − 11×nT )) +

µ

2
(‖ Z −J ‖2F )

+
µ

2
(‖ Z − G ‖2F ) +

µ

2
(‖ 11×nSZ − 11×nT ‖2F )

(9)
where R1, R2, R3 denote the Lagrange multipliers and µ is

a penalty parameter. The above model can be divided into two
sub-problems. For clarity and easy following, we then present
the two updating steps for Φ and Z separately.
• Step 1 (Update Φ)
By fixing Z , J and G, Φ can be updated by solving the

following optimization problem

Φ∗ = argmin
Φ

C∑
c=1

(‖ ΦTKc
T −ΦTKc

SBcZAc ‖2F )

+

C∑
c=1

C∑
k=1,k 6=c

‖ ΦTKc
SBcZAk ‖2F

− 1

(N − 1)
2Tr(Φ

TKHLHKΦ)

s.t.ΦTKΦ = I

(10)

We can derive the solution of the projection vectors in ΦK

one by one. To obtain the ith column in ΦK [denoted as
ΦK(:,i)], we can rewrite the problem (10) as

ΦK+1(:,i) = min
ΦK(:,i)

C∑
c=1

(‖ ΦT
K(:,i)H1c ‖22)

+

C∑
c=1

C∑
k=1,k 6=c

‖ ΦT
K(:,i)H

k
2c ‖22

− 1

(N − 1)
2Tr(Φ

TKHLHKΦ)

+ αi(Φ
T
K(:,i)KΦK(:,i) − I)

(11)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. -, NO. -, JAN 2019 7

Algorithm 1 The Proposed CRTL

Input: XS ∈ Rm×nS , XT ∈ Rm×nT ,
YS ∈ RnS×1, YT ∈ RnT×1

Procedure:
1. Compute KT = ϕ(X )Tϕ(XT ), KS = ϕ(X )Tϕ(XS),

X = [XS ,XT ], K = ϕ(X )Tϕ(X )
2. Construct constant matrixs Ac, Ak , Bc, there is

Zc = ZAc

Zc
k = BcZk = BcZAk

Zc
c = BcZc = BcZAc

3. Initialize: add auxiliary variable J , G, where Z = J = G
add Lag-multipliers R1, R2, R3 and penalty parameter µ.

4. While not converge do
4.1 Step1: Fix J , G and Z , and update Φ by solving

eigenvalue decomposition.
4.2 Step2: Fix Φ, and update Z using ADMM;

Fix Z and G, and update J by using the singular
value thresholding (SVT) [1] operator on problem (14).

Fix Z and J , and update G by shrinkage operator
on problem (17).

Fix J and G, and update Z according to Gradient
descent operator on problem (19).

4.3 Update the multipliers R1, R2 and R3

R1 = R1 + µ(Z −J )
R2 = R2 + µ(Z − G)
R3 = R3 + µ(11×NSZ − 11×NT )

4.4 Update the parameter µ
µ = min(µ× 1.01,maxµ)

4.5 Check convergence
end while
Output: Φ and Z .

where H1c = Kc
T −K

c
SBcZAc,H

k
2c = Kc

SBcZAk. Further,
by setting the derivative of problem (11) with respect to
ΦK(:,i) to be zero, we have

(

C∑
c=1

(H1cH
T
1c) +

C∑
c=1

C∑
k=1,k 6=c

Hk
2c(H

k
2c)

T

− 1

(N − 1)
2KHLHK)ΦK(:,i)

= −αiKΦK(:,i)

(12)

It is clear that ΦK can be obtained by solving an Eigen-
decomposition problem, and ΦK(:,i) is the ith eigenvector
corresponding to the ith smallest eigenvalue.
• Step 2 (Update Z)
First, the updates of JK+1 and GK+1 are introduced.
After dropping out the irrelevant terms with respect to

JK+1, problem (9) can be rewritten as

JK+1 =min
JK

‖ JK ‖∗ +Tr(RT
1K(ZK −JK))

+
µK

2
‖ ZK −JK ‖2F

(13)

It can be further rewritten as

JK+1 = min
JK

‖ JK ‖∗ +
µK

2
‖ JK − (ZK +

R1K

µK
) ‖2F

(14)
The problem (14) can be effectively solved by the singular

value thresholding (SVT) operator [1].
After dropping out the irrelevant terms with respect to

GK+1 , the problem (9) can be rewritten as

GK+1 =min
GK

‖ GK ‖1 +Tr(RT
2K(ZK − GK))

+
µK

2
‖ ZK − GK ‖2F

(15)

It can be further simplified as

GK+1 = min
GK

‖ GK ‖1 +
µK

2
‖ GK − (ZK +

R2K

µK
) ‖2F

(16)
According to the shrinkage operator [28], the solution of

(16) can be obtained as

GK+1 = shrink(ZK +
R2K

µK
,

1

µK
) (17)

By dropping out those terms independent of Z in the
problem (9), we can have

min
Z

C∑
c=1

(‖ ΦTKc
T −ΦTKc

SBcZAc ‖2F ) + Tr(RT
1 (Z −J ))

+

C∑
c=1

C∑
k=1,k 6=c

‖ ΦTKc
SBcZAk ‖2F +Tr(RT

2 (Z − G))

+ Tr(RT
3 (11×nSZ − 11×nT )) +

µ

2
(‖ Z −J ‖2F )

+
µ

2
(‖ Z − G ‖2F ) +

µ

2
(‖ 11×nSZ − 11×nT ‖2F )

(18)

We can see from problem (18) that it is hard to get the
closed-form solution of Z . According to gradient descent
operator [40], the expression of ZK+1 is solved as

ZK+1 = ZK − α ·
5(Z)

‖ 5(Z) ‖
, (19)

where the derivative with respect to Z is expressed as

5(Z) =

C∑
c=1

(−BTc (Kc
S)TΦ(ΦTKc

T −ΦTKc
SBcZAc)AT

c )

+

C∑
c=1

C∑
k=1,k 6=c

(BTc (Kc
S)TΦΦTKc

SBcZAkAT
k )

+
µ

2
(Z −J ) +

µ

2
(Z − G)

+
µ

2
1nS×1(11×nSZ − 11×nT )

+
R1

2
+

R2

2
+

1nS×1R3

2
(20)

In detail, the iterative optimization procedure of the proposed
CRTL is summarized in Algorithm 1.

F. Classification

In this paper, the superiority of the proposed method is
shown through the cross-domain classification performance
on the projected source data and target data, which can
be represented as XS

′ = ΦTϕ(X )Tϕ(XS) and X T
′ =

ΦTϕ(X )Tϕ(X T ), respectively. Then, the general classifiers
(e.g. SVM, least square method, SRC) can be used for
training on the augmented training data [XS

′,X T
′] with label

Y = [YS ,YT ]. Notably, for the COIL-20 experiment, in order
to keep the same experimental setting with DTSL [52], the
classifier is trained only on XS

′ with label YS . Finally, the
recognition performance is verified and compared based on
the unseen target test data X Tu

′ = ΦTϕ(X )Tϕ(X Tu).
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TABLE I: Recognition accuracy (%) of different domain adaptation on Office-31 recognition

Tasks A-SVM GFK [13] SGF [14] SA [9] RDALR [21] LTSL [43] JDA [32] CRTL
A→W 42.2 46.4 45.1 48.4 50.7 53.5 34.8 46.2
D →W 33.0 61.3 61.4 61.8 36.9 54.4 52.1 59.5
W → D 26.0 66.3 63.4 65.7 32.9 59.1 47.3 60.1

AD →W 30.4 34.3 31.0 54.4 36.9 30.2 42.6 59.9
AW → D 25.3 52.0 25.0 37.5 31.2 43.0 44.4 59.0
DW → A 17.3 21.7 15.0 16.5 20.9 17.1 18.3 20.3

Average 29.0 47.0 40.2 47.4 34.9 42.9 39.9 50.8

IV. EXPERIMENTS

In this section, for evaluating the proposed method, ex-
tensive experiments have been conducted on cross-domain
visual recognition tasks with many challenging benchmark DA
datasets. Specifically, we have performed cross-domain object
recognition (Office-31 dataset, 4DA object dataset and COIL-
20 object dataset), heterogeneous image classification (MSRC-
VOC2007 datasets and PACS datasets), cross-pose face recog-
nition (Multi-PIE face dataset), and cross-domain handwrit-
ten digit recognition (USPS dataset, SEMEION dataset and
MNIST dataset). Several closely related methods, such as
SGF [14], GFK [13], SA [9], LTSL [43], DTSL [52], LSDT
[63],and JDA [32] have been compared. Additionally, we have
also compared with deep domain adaptation methods, such as
DDC [47], DAN [31], RTN [33], JAN [34] based on some deep
learned features. Further, two recent deep adversarial domain
adaptation methods, including DANN [10] and ADDA [48]
are compared to demonstrate the superiority of our model.

A. Cross-domain Object Recognition

The benchmark Office-31 dataset, 4DA dataset, 4DA-CNN
office dataset with deep feature representation and COIL-20
object dataset have been tested.

TABLE II: Comparisons (%) with deep transfer and deep
adversarial transfer models on Office-31 dataset

Office-31 A→W D→W W→D A→D D→A W→A Avg.
Source Only 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DDC [47] 75.6 96.0 98.2 76.5 62.2 61.5 78.3
DAN [31] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
RTN [33] 84.5 96.8 99.4 77.5 66.2 64.8 81.6
DANN [10] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
ADDA [48] 86.2 96.2 98.4 77.8 69.5 68.9 82.9
JAN [34] 85.4 97.4 99.8 84.7 68.6 70.0 84.3
CRTL 77.4 95.7 97.6 79.5 81.9 81.8 85.6

Results on Office-31 dataset (Amazon, DSLR and We-
bcam1) [63]: It contains three domains including Amazon
(A), DSLR (D) and Webcam (W). 31 classes are contained
in each domain. Some examples are shown in Fig. 3. By
following the setting in [63], 20 samples per class are selected
if Amazon is chosen as the source domain and 8 samples
per class are selected if other domain is chosen as the source
domain. For target domain, 3 samples in each class are chosen
for training and others are used for testing. The experiments
are employed in single source domain and multiple source

1http://www.eecs.berkeley.edu/∼mfritz/domainadaptation/

Caltech 256 Amazon

DSLR Webcam

Fig. 3: Some images from 4DA datasets

domains, respectively. The experimental results are shown in
Table I. From the results, we can observe that our performance
outperforms several state-of-the-art methods.

Additionally, Office-31 dataset is a common dataset in deep
domain adaptation methods. MMD and adversarial learning
are two mainstreams in deep DA problems. In our method, we
adopt the HSIC criterion instead of the MMD metric. Addi-
tionally, we have mentioned the adversarial learning in related
work. Therefore, we show the comparisons between ours and
deep methods (MMD based and adversarial models) on Office-
31 dataset, including DAN [31] (MMD based method), DANN
[10] and ADDA [48] (adversarial learning based methods) and
some other deep methods such as RTN [33] and JAN [34].
Specifically, for fair comparison, we extract the deep features
of Office-31 from the ResNet50, then compare with some
famous deep methods From Table II, we can observe that
the proposed CRTL, as a shallow transfer learning method,
has shown very good competitiveness. This also demonstrates
that the shallow transfer learning model can be accompanied
with deeply learned features for better addressing domain
discrepancy with less resources.

Results on 4DA dataset (Amazon, DSLR, Webcam and
Caltech 2562) [13]: In 4DA dataset, four domains coming
from Office-31 and an extra Caltech 256 simplified as A, D,
W, and C are included, with each domain 10 object classes
are contained. Some images are shown in Fig. 3. In the
experiment, the standard experimental protocol is used by
following [13]. Specifically, 20 samples per class are selected
from Amazon and 8 samples per class from DSLR, Webcam

2http://www.vision.caltech.edu/Image Datasets/Caltech256/

http://www.eecs.berkeley.edu/~mfritz/domainadaptation/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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Fig. 4: Comparison with deep transfer learning methods

and Caltech are randomly chosen when they are treated as
source domain. 3 samples per class are chosen when they are
used as target domain, while the rest data in target domain is
used for performance test. With the domain adaptation setting,
12 cross-domain tasks are tested, e.g., A → D, C → D,
etc. Note that, the 800-bin SURF features in [63] are used.
Compared with several state-of-the-art methods, as shown in
Table III, our method shows an improvement in average.

Results on 4DA-CNN dataset (Amazon, DSLR, Webcam
and Caltech 256) [3]: In 4DA-CNN dataset, the features are
extracted by feeding the raw 4DA data into the pre-trained
convolutional neural network (i.e., AlexNet) on ImageNet [23],
with 8 layers consisting of 5 convolutional layers and 3 fully
connected layers. The features with dimension of 4096 from
the 6th and 7th layers (i.e., DeCAF-f6 and DeCAF-f7 features
[3]) are explored. We have highlighted the best results in Table
IV, from which we can observe that the average recognition
accuracy of the proposed method outperforms other state-of-
the-art models, and the superiority is demonstrated.

The compared methods in Table IV are shallow transfer
learning. It is interesting but challenging to compare with the
deep transfer learning methods, such as AlexNet [23], DDC
[47], DAN [31] and RTN [33]. In this paper, the features of
the 7th layer are experimented. The comparison is described
in Fig. 4, from which we can observe that our proposed
method ranks the second in average performance (92.5%),
which is inferior to the deep residual transfer network (RTN),
but still better than other three deep transfer learning models.
The comparison shows that the proposed CRTL, as a shallow
transfer learning method, has very good competitiveness.

Results on COIL-20 data: Columbia Object Image
Library [39]: The COIL-20 dataset3 as described in Fig. 5
contains 20 objects with 1440 gray scale images (72 multi-
pose images per object). Each image has 128 × 128 pixels
with 256 gray levels per pixel. In the experiment, by following
the experimental protocol in [52], the size of each image is
cropped into 32× 32. The dataset is divided into two subsets
COIL1 (C1) and COIL2 (C2), with each 2 quadrants are
contained. Specifically, the C1 set contains quadrants 1 and
3, including the directions of [0◦, 85◦] and [180◦, 265◦] and

3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

Fig. 5: Some examples from COIL-20 dataset

the C2 contains quadrants 2 and 4, including the directions of
[90◦, 175◦] and [270◦, 355◦]. The two subsets are distribution
different but relevant in semantic, and result in a DA problem.
We have used two settings in constructing the source and
target data: COIL1 (source) vs COIL2 (target) (C1 → C2)
and COIL2 (source) vs COIL1 (target) (C2→ C1).

The experimental results of cross-domain 3D object recog-
nition are shown in Table V, from which we observe that our
proposed CRTL method achieves the second best performance
over other related methods in both tasks (i.e., 87.0% for C1→
C2 and 86.5% for C2 → C1). The recognition accuracy of
CRTL is lower than the JDA in this benchmark. However,
the improvements over other reconstruction based methods,
such as RDALR, LTSL, LSDT, and DTSL demonstrate that
learning a class-specific reconstruction matrix can effectively
promote the domain adaptation performance. The superiority
of our proposed class-specific transfer loss is demonstrated.

Noteworthily, the performances of our method on 4DA
dataset and COIL-20 data do not have a high improvement
compared with other methods especially with JDA. The reason
may be that JDA considers not only the marginal distribution
but also conditional distribution, while the category discrep-
ancy is large in these two benchmark datasets.

B. Cross-domain Image Classification

In this section, the experiments on MSRC-VOC 2007
dataset and PACS dataset have been conducted for cross-
domain image classification.

Results on MSRC4 and VOC20075 datasets [52]: The
MSRC dataset contains 4323 images with 18 classes and the
VOC2007 dataset contains 5011 images with 20 concepts.
Generally, MSRC consists of standard images for benchmark
evaluation, while VOC2007 composes of arbitrary photos
from Flickr. Therefore, they follow significantly different
distributions. In experiment, for cross-domain classification, 6
common semantic classes: airplane, bicycle, bird, car, cow and
sheep from both datasets have been explored. Several example
images are shown in Fig. 6, which shows the heterogeneous
image feature. For fairness, we follow [52] to construct the
cross-domain image dataset MSRC vs. VOC (M → V ) by
selecting 1269 images from MSRC as the source domain,
and 1530 images from VOC2007 as the target domain. Then

4http://research.microsoft.com/en-us/projects/objectclassrecognition
5http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://research.microsoft.com/en-us/projects/objectclassrecognition
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007
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TABLE III: Recognition accuracy (%) over 10 object categories on 4DA-SURF with hand-crafted feature representation by
using different domain adaptation algorithms

4DA Tasks A-SVM HFA [4] ARC-t [24] SGF [14] GFK [13] LTSL [43] JDA [32] CRTL
A→ D 55.9 52.7 50.2 46.9 50.9 50.4 44.2 52.1
C → D 55.8 51.9 50.6 50.2 55.0 49.5 44.1 54.0
W → D 55.1 51.7 71.3 78.6 75.0 82.6 86.3 72.5
A→ C 32.0 31.1 37.0 37.5 39.6 41.5 44.9 43.0
W → C 30.4 29.4 31.9 32.9 32.8 36.7 29.8 37.5
D → C 31.7 31.0 33.5 32.9 33.9 36.2 34.4 37.4
D → A 45.7 45.8 42.5 44.9 46.2 45.7 44.6 45.6
W → A 45.6 45.9 43.4 43.0 46.2 41.9 42.0 47.0
C → A 45.3 45.5 44.1 42.0 46.1 49.3 59.8 48.4
C →W 60.3 60.5 55.9 54.2 57.0 50.4 50.1 54.5
D →W 62.1 62.1 78.3 78.6 80.2 81.0 83.3 79.0
A→W 62.4 61.8 55.7 54.2 56.9 52.3 47.0 53.5
Average 48.5 47.4 49.5 49.7 51.6 51.5 50.9 52.0

TABLE IV: Recognition accuracy (%) over 10 object categories on 4DA-CNN with deep feature representation by using
different domain adaptation algorithms

Tasks SourceOnly Naive Comb SGF [14] GFK [13] SA [9] LTSL [43] LSDT [63] JDA [32] CRTL
f6 f7 f6 f7 f6 f7 f6 f7 f6 f7 f6 f7 f6 f7 f6 f7 f6 f7

A→ D 80.8 81.3 94.5 94.1 90.5 92.0 92.6 94.3 94.2 92.8 95.5 94.5 96.4 96.0 93.8 94.0 96.4 95.8
C → D 76.6 77.6 92.9 92.8 93.1 92.4 92.0 91.9 93.0 92.1 93.6 93.5 95.4 94.6 93.7 93.0 95.2 94.8
W → D 96.1 96.2 99.1 98.9 97.7 97.6 97.8 98.5 98.6 98.5 99.1 98.8 99.4 99.3 98.9 99.1 99.4 99.3
A→ C 79.3 79.3 84.0 83.4 77.1 77.4 78.9 79.1 83.1 83.3 85.3 85.4 85.9 87.0 84.5 83.3 86.2 87.0
W → C 59.5 68.1 81.7 81.2 74.1 76.8 77.5 76.1 81.1 81.0 82.3 82.6 83.1 84.2 82.1 82.6 83.6 84.9
D → C 67.3 74.3 83.0 82.7 75.9 78.2 78.8 77.5 82.4 82.9 84.4 84.8 85.2 86.2 84.5 82.8 85.5 86.4
D → A 77.0 81.8 90.5 90.9 88.0 88.0 88.9 90.1 90.4 90.7 91.1 91.9 92.2 92.5 91.9 91.7 92.5 92.7
W → A 66.8 73.4 90.1 90.6 87.2 86.8 86.2 85.6 89.8 90.9 90.6 91.0 91.0 91.7 91.3 90.8 91.3 92.2
C → A 85.8 86.5 89.9 90.3 88.5 89.3 87.5 88.4 89.5 89.9 90.4 90.9 92.1 92.5 91.2 91.0 92.0 92.5
C →W 67.5 67.8 91.6 90.6 89.4 87.8 87.7 86.4 91.2 89.0 91.8 90.8 93.3 93.5 91.4 90.4 92.7 93.1
D →W 95.4 95.1 97.9 98.0 96.8 95.7 97.0 96.5 97.5 97.5 98.2 97.8 98.7 98.3 98.9 98.7 98.7 98.5
A→W 70.5 71.6 90.4 91.1 87.2 88.1 89.5 88.6 90.3 87.8 92.2 91.5 92.1 92.9 90.8 90.6 92.3 93.0
Average 76.9 79.4 90.5 90.4 87.1 87.5 87.9 87.8 90.1 89.7 91.2 91.1 92.1 92.4 91.1 90.7 92.2 92.5

TABLE V: Recognition accuracy (%) of different domain adaptation on COIL-20

Tasks SVM TSL RDALR [21] LTSL [43] DTSL [52] LSDT [63] JDA [32] CRTL
C1→ C2 82.7 80.0 80.7 75.4 84.6 81.7 89.3 87.0
C2→ C1 84.0 75.6 78.8 72.2 84.2 81.5 88.5 86.5
Average 83.3 77.8 79.7 73.8 84.4 81.6 88.9 86.8

we switch the two datasets: VOC vs. MSRC (V → M ).
All images are uniformly re-scaled to 256 pixels, and 128-
dimensional dense SIFT (DSIFT) features using the VLFeat
open source package are extracted. Then K-means clustering
is used to obtain a 240-dimensional codebook.

In experiments, the source training data set contains all
the labeled samples in the source domain, the labeled target
training data contains 4 labeled examples per class randomly
selected from the target domain and the rest unlabeled exam-
ples are recognized as the target testing data. The experimental
results by using different domain adaptation methods are
shown in Table XI, from which we can observe that the
proposed method outperforms other state-of-the-art methods.

Results on P-A-C-S dataset6 [25]: The PACS dataset, as
described in Fig. 1, is a recently proposed dataset for cross-
domain image classification tasks. This dataset is practically
relevant, and harder (bigger domain shift) than existing bench-
marks. It is developed by intersecting the classes in Caltech256
(Photo), Sketchy (Photo, Sketch) [42], TU-Berlin (Sketch) [6]

6http://sketchx.eecs.qmul.ac.uk

Fig. 6: Some samples from MSRC and VOC2007 datasets

and Google Images (Art painting, Cartoon, Photo). Eventually,
this new benchmark includes 4 domains (Photo, Art painting,
Cartoon, Sketch) which can be simplified as P, A, C and S,
respectively. Generally, it contains 7 common categories: dog,
elephant, giraffe, guitar, horse, house and person. The total
number of images is 9991. This benchmark dataset brings two
important advancements over the previous ones: (1) it extends
the previously photo-only setting in DA community, and
uniquely includes domains that are maximally distinct from
each other. It spans a wide spectrum of visual abstraction, from
photos with the least abstract to human sketches with the most
abstract; (2) it better approaches real-world scenario where a

http://sketchx.eecs.qmul.ac.uk
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TABLE VI: Recognition accuracy (%) of different domain adaptation on MSRC and VOC2007

Tasks SVM MMDT [17] KMM [19] GFK [13] LSDT [63] JDA [32] CRTL
M → V 36.3 36.0 36.1 29.5 36.9 38.2 37.3
V →M 64.3 62.1 64.8 50.7 59.3 59.3 64.8
Average 50.3 49.1 50.5 40.1 48.1 48.8 51.1

target domain (e.g., sketch) is rare, and domain generalization
from an abundant domain (e.g., photos) is necessary.

In experiment, the deep features are extracted by using a
fine-tuned CNN using the data from multiple domains. Note
that the CNN is the pre-trained AlexNet based on ImageNet.
By following the same experimental setting as [25], three
domains are used as source domain for training and the rest
domain is used as target domain for testing. Therefore, 4
groups of experiments are conducted, alternatively. Note that,
one sample per class from target domain is randomly chosen as
the target training sample. With above settings, the recognition
accuracies of 4 groups by using different DA methods have
been shown in Table VII. It is obvious that the proposed
method outperforms other state-of-the-art DA methods.

C. Cross-poses Face Recognition

Pose alignment is challenging due to the highly non-linear
changes induced by 3D rotation of a face. The cross-pose
face recognition, as a standard DA problem, is therefore
conducted. The CMU Multi-PIE face dataset7 is a popular
dataset consisting of 337 subjects, which contains 4 different
sessions with 15 poses, 20 illuminations, and 6 expressions. In
our experiment, we select the first 60 subjects from Session 1
and Session 2. As a result, a smaller session 1 (S1) of 7 images
with different poses per class under neutral expression and a
smaller session 2 (S2) that is similar to S1 but under smile
expression are constructed. In this way, two tasks with neutral
and smile expression have been formulated. The example
images of one subject in S1 and S2 are illustrated in the
1st and 2nd row of Fig. 7, respectively. Specifically, the
experimental configurations are as follows.
S1: For the faces in Session 1, one frontal face per subject

is used as the source training data, one 60◦ posed face is used
as the target training data, and the rest 5 face images are used
as the target test data.
S2: The experimental configuration is the same as S1,

which is conducted on the faces in Session 2.
S1+S2: The two frontal faces and the two 60◦ posed faces

under neutral and smile expression are used as source training
data and target training data, respectively. The rest 10 face
images are used as target test data.
S1 → S2: The faces per subject in S1 under neural

expression are used as source training data, the frontal and
60◦ posed faces in S2 are used as the target training data, and
the rest data are used as test data.

With above settings, the recognition accuracies of different
experimental configurations have been shown in Table VIII.
It is obvious that the proposed method performs significantly
better over other DA methods in handling such pose change

7http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

Fig. 7: Facial images of one person from CMU Multi-PIE

MNIST  USPS SEMEION

Fig. 8: Some images from handwritten digits datasets

based nonlinear domain transfer problem, which is generally
recognized to be a difficult problem in computer vision.

D. Cross-domain Handwritten Digits Recognition

In this experiment, three handwritten digits datasets: MNIST
(M)8, USPS (U)9 and SEMEION (S)10, as described in Fig. 8
with 10 classes from digit 0 ∼ 9, have been used for evaluating
the proposed CRTL method. The MNIST dataset consists
of 70,000 instances with image size of 28 × 28, the USPS
dataset consists of 9298 examples with image size of 16×16,
and the SEMEION dataset consists of 2593 images with size
of 16 × 16. In experiments, for dimension consistency, the
images in MNIST dataset are cropped into 16 × 16. For
DA setting, by following [63], each dataset is used as the
source and target domain alternatively, and 6 cross-domain
tasks are obtained. Also, 100 samples per class from source
domain and 10 samples per class from target domain are
randomly selected for training. To this end, 5 random splits are
used, and the average classification accuracies are reported in
Table IX. From the results, we observe that our CRTL(81.8%)
significantly outperforms other state-of-the-art representation
based DA methods, and the superiority is therefore proved.

V. DISCUSSION

A. Parameter Setting and Ablation Analysis

Parameter Setting. In CRTL, Gaussian kernel function
k(xi,xj) =exp(− ‖ xi − xj ‖2 /2σ2) is considered,

8http://yann.lecun.com/exdb/mnist/
9http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html
10http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
http://yann.lecun.com/exdb/mnist/
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
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TABLE VII: Recognition accuracy (%) of different domain adaptation models on P-A-C-S dataset

Tasks SVM SGF [14] SA [9] LSDT [63] JDA [32] CRTL
ACP → S 33.0 31.2 31.8 34.7 30.2 37.4
CPS → A 50.5 41.7 42.5 54.2 39.6 54.6
PSA→ C 55.5 43.2 45.5 53.6 41.4 53.6
SAC → P 80.8 70.5 70.0 80.9 64.4 82.4
Average 54.9 46.6 47.5 55.8 43.9 57.0

TABLE VIII: Recognition accuracy (%) of different domain adaptation methods on face recognition across poses

Tasks Naive
Comb

A-SVM SGF [14] GFK [13] SA [9] LTSL [43] LSDT
[63]

JDA [32] CRTL

S1 (0◦ → 60◦) 61.0 57.0 53.7 56.0 51.3 56.0 59.7 33.3 65.7
S2 (0◦ → 60◦) 62.7 62.7 55.0 58.7 62.7 60.7 63.3 39.0 69.0

S1 + S2 (0◦ → 60◦) 60.2 60.1 53.8 56.3 61.7 60.7 61.7 36.5 68.5
S1→S2 93.6 94.3 92.5 96.7 98.3 96.7 95.8 92.0 98.7
Average 69.4 68.5 63.8 67.0 68.5 68.5 70.1 50.2 75.5

TABLE IX: Recognition accuracy (%) of different domain adaptation methods on handwritten digits recognition

Tasks Naive
Comb

A-SVM SGF [14] GFK [13] SA [9] LTSL [43] LSDT [63] JDA [32] CRTL

M → U 78.8 78.3 79.2 82.6 78.8 83.2 79.3 79.8 85.4
S → U 83.6 76.8 77.5 82.7 82.5 83.6 84.7 77.8 86.2
M → S 51.9 70.5 51.6 70.5 74.4 72.8 69.1 62.2 76.2
U → S 65.3 74.5 70.9 76.7 74.6 65.3 67.4 68.4 82.6
U →M 71.7 73.2 71.1 74.9 72.9 71.7 70.5 75.0 82.0
S →M 67.6 69.3 66.9 74.5 72.9 67.6 70.0 73.2 78.4
Average 69.8 73.8 69.5 77.0 76.0 74.0 73.5 72.7 81.8

where σ is the kernel parameter tuned for different tasks
empirically from an appropriate range (0.1,2) in experiments.
Specifically, σ = 1.2 for 4DA-CNN and MSRC-VOC2007
datasets, σ = 0.5 for COIL-20 dataset, σ = 0.2 for CMU
Multi-PIE dataset and σ = 1.0 for handwritten digits dataset.
The dimension of common subspace is set as d = N for better
recognition performance. Note that the least square classifier
is used in DA experiments except that in COIL-20 experiment,
the SVM classifier is used because of its good performance.

Ablation Analysis. For better insight of the impact of the
loss terms including domain reconstruction loss (RECO) term,
class representation loss (REPR) term and the pHSIC term, the
ablation analysis is provided in 4DA-CNN dataset and CMU
Multi-PIE dataset. The ablation analysis results are shown in
Table X and Table XI, respectively, in which “w/o RECO”
denotes that the reconstruction loss is dropped, “w/o REPR”
denotes that the representation loss is dropped, and “w/o
pHSIC” denotes that the data-label dependency preservation
term is dropped. From Table X and Table XI, we can observe
that both the the transfer loss with domain reconstruction and
class representation, and the pHSIC item in our method have
contributed to reducing the domain discrepancy.

B. Dimensionality and Computational Complexity Analysis

Dimensionality Analysis. In CRTL model, a latent common
subspace P is learned. Therefore, the performance variation
with varying subspace dimensions is studied on 4 tasks
of 4DA-CNN (i.e., C → D, W → A, C → W , and
D → W ) and 3 tasks of PIE face datasets (i.e., S1, S2, and
S1+S2). Specifically, the performance curve with decreasing
dimensionality d is shown in Fig. 9 (a) and (b), respectively.
Generally, higher dimension leads to better performance.

TABLE X: Ablation analysis on 4DA-CNN dataset

Dataset CRTL Transfer Loss Function w/o pHSICw/o RECO w/o REPR
A→ D 95.91 95.91 96.02 95.91
C → D 94.49 93.94 94.44 94.45
W → D 99.13 98.66 99.13 99.13
A→ C 87.00 87.03 86.90 87.00
W → C 84.67 84.56 84.59 84.73
D → C 86.12 86.19 86.18 86.17
D → A 92.63 92.45 92.60 92.64
W → A 91.94 91.91 91.86 91.93
C → A 92.41 92.45 92.48 92.51
C →W 92.68 92.42 92.49 92.62
D →W 98.42 97.28 98.51 98.53
A→W 93.34 93.34 93.08 93.32
Average 92.40 92.18 92.35 92.41

Computational Complexity Analysis. In this section, we
present the computational complexity analysis of the Algo-
rithm 1. In general, two steps: update Z and update Φ are
involved. The computation of Φ involves eigen-decomposition
and matrix multiplication, and the complexity is O(N3). The
computation of updating Z involves updating of J , G and
Z . Thus the complexity of computing Z is O(N2). Suppose
that the number of iterations is T , then the total computation
complexity is O(TN3) +O(TN2). Note that the complexity
of kernel Gram matrix computation is excluded.

C. Visualization and Convergence

In this section, the visualization of the learned feature dis-
tribution and reconstruction matrix as well as the convergence
analysis have been discussed.

Visualization of Feature Distribution. For better insight of
the CRTL model, the distribution visualization is explored. We
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TABLE XI: Ablation analysis on CMU PIE dataset

Dataset CRTL Transfer Loss Function w/o pHSICw/o RECO w/o REPR
S1 (0◦ → 60◦) 65.00 65.00 65.33 66.67
S2 (0◦ → 60◦) 69.33 69.33 67.67 67.00

S1 + S2 (0◦ → 60◦) 68.33 68.33 67.50 68.50
S1→S2 99.33 99.33 99.00 99.33
Average 75.62 75.62 74.88 75.38
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Fig. 9: Performance analysis with decreasing dimension in
4DA-CNN (a) and Multi-PIE (b). Generally, higher dimension
leads to better performance.

have shown the visualization of 4DA-CNN feature [3] in A→
W task by using the t-SNE embedding tool in Fig. 10. We
can observe the better domain confusion characteristic after
projection from the range of abscissa axis, that is, the two
domains become much closer.

Visualization of Reconstruction Matrix. The reconstruc-
tion matrix Z is imposed with class-specific, sparse and low-
rank characteristic, such that the domain correlation between
the source and target domain data can be improved with block-
diagonal property. That is, the target data of class c can be
better linearly represented by the source data of the same
class. Fig. 11 shows the visualization of the matrix Z in 4DA-
CNN and PIE datasets, and the block-diagonal structure of Z
is observed. Therefore, it is effective to preserve the class-
wise characteristic by exploiting the intra-class dependency
and inter-class independency, which helps improve the dis-
crimination when domain data is badly corrupted [26].

Convergence. The convergence of CRTL method is studied
by conducting the experiments on COIL-20 (C1 → C2)
and PIE (S1+S2), respectively. In experiments, the number
of iterations is set to be 100, and the objective function (i.e.,
Fmin) as described in Fig. 12 decreases to a constant value
after several iterations. Also, the convergence of regularization
terms in CRTL, i.e., ‖ Z ‖1 and ‖ Z ‖∗ are also presented.
However, small perturbation still exists which is not strange
in non-convex optimization.

VI. CONCLUSION

In this paper, we propose a class-specific reconstruction
transfer learning (CRTL) model, which fully exploits the
intra-class dependency and inter-class independency of the
reconstruction transfer matrix. For pursuit of a latent subspace
where the transfer can be better achieved, we propose a
projected HSIC criterion for exploring statistical dependency
between features and labels. The merits of CRTL are three-
fold. First, we cast the transfer learning problem as a fine-
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Fig. 10: Visualization of distribution on 4DA-CNN (A→W)
task. The red points represents the Amazon feature and the
blue points means the Webcam feature. We see the better
domain confusion characteristic after projection from the range
of abscissa axis. That is, the two domains become closer.
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Fig. 11: Visualization of reconstruction matrix Z , which
shows a block-diagonal structure. The reason is that the target
data of class c can be better linearly represented by the
source data of the same class, such that the domain correlation
between the source and target domain data can be improved.

grained reconstruction modeling and optimization problem.
Second, in order to keep the intrinsic statistical dependency
between the domain data and labels after feature projection, a
Projected Hilbert-Schmidt Independency Criterion (pHSIC)
in RKHS is explored in CRTL. Third, the joint low-rank
and sparse constraints are imposed for characterizing global
and local structure. Extensive experiments on challenging
DA datasets demonstrate the superiority the proposed method
over other state-of-the-art methods. This paper brings a new
perspective that shallow statistical transfer learning models
and deeply learned features extracted with a pre-trained deep
network can be accompanied and promoted with each other,
rather than only over-depending on deep transfer models
trained from scratch or fine-tuned with domain data of interest.
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Fig. 12: Convergence analysis of CRTL model. The objective
function (i.e., Fmin) and the regularization terms in CRTL
decrease to a constant value after several iterations.
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We suggest that for improving real-world application, some
seamless bridging between shallow and deep models can be
studied in the future work.
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