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Abstract—In many practical transfer learning scenarios, the
feature distribution is different across the source and target
domains (i.e. non-i.i.d.). Maximum mean discrepancy (MMD),
as a domain discrepancy metric, has achieved promising per-
formance in unsupervised domain adaptation (DA). We argue
that MMD-based DA methods ignore the data locality structure,
which, to some extent, would cause the negative transfer effect.
The locality plays an important role in minimizing the nonlinear
local domain discrepancy underlying the marginal distributions.
For better exploiting the domain locality, a novel local gener-
ative discrepancy metric (LGDM) based intermediate domain
generation learning called Manifold Criterion guided Transfer
Learning (MCTL) is proposed in this paper. The merits of
the proposed MCTL are four-fold: 1) the concept of manifold
criterion (MC) is first proposed as a measure validating the
distribution matching across domains, and domain adaptation
is achieved if the MC is satisfied; 2) the proposed MC can
well guide the generation of the intermediate domain sharing
similar distribution with the target domain, by minimizing the
local domain discrepancy; 3) a global generative discrepancy
metric (GGDM) is presented, such that both the global and
local discrepancy can be effectively and positively reduced; 4) a
simplified version of MCTL called MCTL-S is presented under a
perfect domain generation assumption for more generic learning
scenario. Experiments on a number of benchmark visual transfer
tasks demonstrate the superiority of the proposed manifold
criterion guided generative transfer method, by comparing with
other state-of-the-art methods. The source code is available in
https://github.com/wangshanshanCQU/MCTL.

Index Terms—Transfer Learning, domain adaptation, manifold
criterion, discrepancy metric, domain generation.

I. INTRODUCTION

STATISTICAL machine learning models rely heavily on
the assumption that the data used for training and test are

drawn from the same or similar distribution, i.e. independent
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identical distribution (i.i.d.). However, in real world, it is
impossible to guarantee that assumption. Hence, in visual
recognition tasks, classifier or model usually does not work
well because of data bias between the distributions of the
training and test data [1], [2] [3], [4], [5], [6], [7]. The
domain discrepancy constitutes a major obstacle in training
the predictive models across domains. For example, an object
recognition model trained on labeled images may not gen-
eralize well on the testing images under various variations
in the pose, occlusion, or illumination. In Machine Learning
this problem is labeled as domain mismatch. Failing to model
such a distribution shift may cause significant performance
degradation. Also, the models trained with only a limit-
ed number of labeled patterns are usually not robust for
pattern recognition tasks. Furthermore, manual labeling of
sufficient training data for diverse application domains may
be prohibitive. However, by leveraging the labeled data drawn
from another sufficiently labeled source domain that describes
related contents with target domain, establishing an effective
model is possible. Therefore, the challenging objective is how
to achieve knowledge transfer across domains such that the
distribution mismatch is reduced. Underlying techniques for
addressing this challenge, such as domain adaptation [8] [9],
which aims to learn domain-invariant models across source
and target domain, has been investigated.

Domain adaptation (DA) [10], [11], [12] as one kind of
transfer learning (TL) perspective, addresses the problem that
data is from two related but different domains [13], [14].
Domain adaptation establishes knowledge transfer from the
labeled source domain to the unlabeled target domain by
exploring domain-invariant structures that bridge different
domains with substantial distribution discrepancy. In terms
of the accessibility of target data labels in transfer learning,
domain adaptation methods can be divided into three cate-
gories: supervised [15], [16], semi-supervised [17], [18], [5]
and unsupervised [19], [20], [21].

In this paper, we focus on unsupervised transfer learning
where the target data labels are unavailable in transfer model
learning phase. Unsupervised setting is more challenging due
to the common data scarcity problem. In unsupervised transfer
learning [22], Maximum Mean Discrepancy (MMD) [23] is
widely used and has achieved promising performance. MMD,
that aims at minimizing the domain distribution discrepancy,
is generally exploited to reduce the difference of conditional
distributions and marginal distributions across domains by
utilizing the unlabeled domain data in a Reproducing Kernel
Hilbert Space (RKHS). Also, in the framework of deep trans-
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fer learning [24], MMD-based adaptation layers are further
integrated in deep neural networks to improve the transferable
capability between the source and domains [25].

MMD actually acts as a discrepancy metric or criterion to
evaluate the distribution mismatch across domains and works
well in aligning the global distribution. However, it only
considers the domain discrepancy and generally ignores the
intrinsic data structure of target domain, e.g. local structure just
as Fig.1(b). It is known that geometric structure is indispens-
able for domain distance minimization, which, thus, can well
exploit the internal local structure of target data. Particularly,
in unsupervised learning, the local structure of target data
often plays a more important role than the global structure.
This is originated from manifold assumption that the data with
local similarity is with similar labels. Motivated by manifold
assumption, a novel manifold criterion (MC) is proposed in
our work, which is similar but very different from conventional
manifold algorithms that the MC actually acts as a generative
transfer criterion for unsupervised domain adaptation.

Intuitively, we hold the assumption that if a new target
domain can be automatically generated by using the source
domain data, the domain transfer issue can be naturally
addressed. To this end, a criterion that measures the generative
effect can be explored. In this paper, considering the locality
property of target data, we wish that the generative target data
should hold similar local structure with the true target domain
data. Naturally, motivated by manifold assumption [26], an
objective generative transfer metric, manifold criterion (MC),
is proposed. Suppose that two samples xi and xj in target
domain are close to each other, and if the generative target
sample xgi by using the source data is also close to xj , we
recognize that the generated intermediate domain data shares
similar distribution with the target domain. This is the basic
idea of our generative transfer learning in this paper.

But how to construct the generative target domain? From the
perspective of manifold learning, we expect that the new target
data is generated by using a locality structure preservation
metric. This idea can be interpreted under the commonly
investigated case of independent identically distribution (i.i.d.)
that the affinity structure in high-dimensional space can still
be preserved in some projected low-dimensional subspace (i.e.
manifold structure embedding). In general, the internal intrin-
sic structure can remain unchanged by using graph Laplacian
regularization [27], which reflects the affinity of the raw data.

Specifically, with the proposed manifold criterion, a
Manifold Criterion guided Transfer Learning (MCTL) is
proposed, which aims to pursue a latent common subspace
via a projection matrix P for source and target domain. In the
common subspace, a generative transfer matrix Z is solved
by leveraging the source domain data and the MC generative
metric, for a new generative data that holds similar marginal
distribution with source data in a unsupervised manner. The
findings and analysis show that the proposed manifold crite-
rion can be used to reduce the local domain discrepancy.

Additionally, in MCTL model, the embedding of low-
rank constraint (LRC) on the transfer matrix ensures that
the data from source domains can be well interpreted during
generation, which can show an approximated block-diagonal

(a)  Original (b)  No Adaptation (c)  Only MMD (d)  Only MC (e)  MCTL

centroid centroid centroid

(a)  No Adaptation (b)  Only MMD (c)  MCTL (d)  MCTL(+MMD)

centroid centroid

Fig. 1: Motivation of MCTL. The lines represent the classi-
fication boundary of source domain. The centroid represents
the geometric center of all data points.

property. With the LRC exploited, the local structure based
MC can be guaranteed as we wish without distortion [28].

The idea of our MCTL is described in Fig.2. In summary,
the main contribution and novelty of this work are fourfold:
• We propose a unsupervised manifold criterion generative

transfer learning (MCTL) method, which aims to generate
a new intermediate target domain that holds similar
distribution with true target data by leveraging source
data as basis. The proposed manifold criterion (MC) is
modeled by a novel local generative discrepancy metric
(LGDM) for local cross-domain discrepancy measure,
such that the local transfer can be effectively aligned.

• In order to keep the global distribution consistency, a
global generative discrepancy metric (GGDM), that offers
a linear method to compare the high-order statistics of t-
wo distributions, is proposed to minimize the discrepancy
between the generative target data and the true target data.
Therefore, the local and global affinity structures across
domains are simultaneously guaranteed.

• For improving the correlation between the source data
and the generative target data, LRC regularization on the
transfer matrix Z is integrated in MCTL, such that the
block-diagonal property can be utilized for preventing the
domain transfer from distortion and negative transfer.

• Under the MCTL framework, for a more generic case,
a simplified version of MCTL (i.e. MCTL-S) method
is proposed, which constrains that the generative data
should be seriously consistent with the target domain
in a simple yet generic manner. Interestingly, with this
constraint, the LGDM loss in MCTL-S is naturally de-
generated into a generic manifold regularization.

The remainder of this paper is organized as follows. In
Section II, we review the related work in transfer learning. In
Section III, we present the preliminary idea of the proposed
manifold criterion. In Section IV, the proposed MCTL method
and optimization are formulated. In Section V, the simplified
version of MCTL is introduced and preliminarily analyzed. In
Section VI, the classification method is described. In Section
VII, the experiments in cross-domain visual recognition are
presented. The discussion is presented in Section VIII. Finally,
the paper is concluded in Section IX.

II. RELATED WORK

A. Shallow Transfer Learning

A lot of transfer learning methods are proposed to tackle
heterogeneous domain adaptation problems. Generally, these
methods can be divided into three categories in the follows.
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Classifier based approaches. A generic way is to directly
learn a common classifier on auxiliary domain data by lever-
aging a few labeled target data. Yang et al. [29] proposed
an adaptive SVM (A-SVM) to learn a new target classifier
fT (x) by supposing that fT (x) = fS(x) + ∆f(x), where
the classifier fS(x) is trained with the labeled source samples
and ∆f(x) is the perturbation function. Bruzzone et al. [30]
developed an approach to iteratively learn the SVM classifier
by labeling the unlabeled target samples and simultaneously
removing some labeled samples in the source domain. Duan et
al. [8] proposed an adaptive multiple kernel learning (AMKL)
for consumer video event recognition from annotated web
videos. Also, a domain transfer MKL (DTMKL) [5], which
learn a SVM classifier and a kernel function simultaneously
for classifier adaptation. Zhang et al. [31] proposed a robust
classifier transfer method (EDA) which was modelled based
on ELM and manifold regularization for visual recognition.

Feature augmentation/transformation based approaches.
Li et al. [32] proposed a heterogeneous feature augmentation
(HFA)which tends to learn a transformed feature space for
domain adaptation. Kulis et al. [9] proposed an asymmetric
regularized cross-domain transform (ARC-t) method for learn-
ing a transformation metric. In [33], Hoffman et al. proposed a
Max-Margin Domain Transforms (MMDT) which a category
specific transformation was optimized for domain transfer.
Gong et al. proposed a Geodesic Flow Kernel (GFK) [34]
method which integrates an infinite number of linear subspaces
on the geodesic path to learn the domain-invariant feature
representation. Gopalan et al. [35] proposed an unsupervised
method (SGF) for low dimensional subspace transfer in which
a group of subspaces along the geodesic between source
and target data is sampled, and the source data is project-
ed into the subspaces for discriminative classifier learning.
An unsupervised feature transformation approach, Transfer
Component Analysis (TCA) [11], was proposed to discover
common features having the same marginal distribution by
using Maximum Mean Discrepancy (MMD) as non-parametric
discrepancy metric. MMD [23], [36], [37] is often used in
transfer learning. Long et al. [38] proposed a Transfer Sparse
Coding (TSC) approach to construct robust sparse representa-
tions by using empirical MMD as the distance measure. The
Transfer Joint Matching (TJM) proposed by Long et al. [19]
tends to learn a non-linear transformation by minimizing the
MMD based distribution discrepancy.

Feature representation based approaches. Different from
those methods above, domain adaptation is achieved by rep-
resenting across domain features. Jhuo et al. [39] proposed
a RDALR method, in which the source data is reconstructed
with target domain by using low-rank modeling. Similarly,
Shao et al. [40] proposed a LTSL method by pre-learning a
subspace using PCA or LDA, then low-rank representation
across domain is modeled. Zhang et al. [41], [42] proposed
Latent Sparse Domain Transfer (LSDT) and Discriminative
Kernel Transfer Learning (DKTL) methods for visual adap-
tation, by jointly learning a subspace projection and sparse
reconstruction across domain. Further, Xu et al. [43] proposed
a DTSL method, which combines the low-rank and sparse
constraint on the reconstruction matrix.

In this paper, the proposed method is different from the
existing shallow transfer learning methods that a generative
transfer idea is motivated, which tends to achieve domain
adaptation by generating an intermediate domain that has
similar distribution with the true target domain.

B. Deep Transfer Learning

Deep learning, as a data-driven transfer learning method, has
witnessed a great achievements in many fields [44], [45], [46],
[47]. However, when solving domain data problems by deep
learning technology, massive labeled training data are required.
For the small-size tasks, deep learning may not work well.
Therefore, deep transfer learning methods have been studied.

Donahue et al. [48] proposed a deep transfer method for
small-scale object recognition, and the convolutional network
(AlexNet) was trained on ImageNet. Similarly, Razavian et
al. [49] also proposed to train a network based on ImageNet
for high-level feature extractor. Tzeng et al. [44] proposed
a DDC method which simultaneously achieves knowledge
transfer between domains and tasks by using CNN. Long et al.
[25] proposed a deep adaptation network (DAN) method by
imposing MMD loss on the high-level features across domains.
Additionally, Long et al. [21] also proposed a residual transfer
network (RTN) which tends to learn a residual classifier based
on softmax loss. Oquab et al. [46] proposed a CNN architec-
ture for middle level feature transfer, which is trained on large
annotated image set. Additionally, Hu et al. [24] proposed a
non-CNN based deep transfer metric learning (DTML) method
to learn a set of hierarchical nonlinear transformations for
achieving cross-domain visual recognition.

Recently, GAN inspired adversarial domain adaptation has
been preliminarily studied. Tzeng et al. proposed a novel
ADDA method [50] for adversarial domain adaptation, in
which CNN is used for adversarial discriminative feature
learning, and achieves the state-of-the-art performance.

In this work, although the proposed MCTL method is a
shallow transfer learning paradigm, the competitive capability
comparing to these deep transfer learning methods has been
validated on the pre-extracted deep features.

C. Differences Between MCTL and Other Reconstruction
Transfer Methodologies

The proposed MCTL is partly related by reconstruction
transfer methods, such as DTSL [43], LSDT [41] and LTSL
[40], but essentially different from them. These methods aim
to learn a common subspace where a feature reconstruction
matrix between domains is learned for adaptation. Sparse
reconstruction and low-rank based constraints were consid-
ered, respectively. Different from reconstruction transfer, the
proposed MCTL is a generative transfer learning paradigm,
which is partly inspired by the idea of GAN [51] and manifold
learning. The differences and relations are as follows.

Reconstruction Transfer. As the name implies, a recon-
struction matrix is expected for domain correspondence. In
LTSL, subspace projection W is pre-learned by off-the-shelf
methods such as PCA, LDA, etc. Then projected source data
WXS is used to reconstruct the projected target data WXT
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via low-rank constraint. The subspace may be suboptimal
leading to a possible local optimum of Z . Further, the LSDT
method was proposed for realizing domain adaptation by
exploiting cross-domain sparse reconstruction in some latent
subspace, simultaneously. The DTSL was proposed by posing
hybrid regularization of sparsity and low-rank constraints for
learning a more robust reconstruction transfer matrix. Recon-
struction transfer always expresses target domain by leveraging
source domain, however, this expression is not accurate due
to the limited number of target domain data in calculating the
reconstruction error loss, and the robustness is decreased.

Generative Transfer. The proposed MCTL method intro-
duces a generative transfer learning concept, which aims to
realize an intermediate domain generation by constructing a
Manifold Criterion loss. The motivation is that the domain
adaptation problem can be solved by generating a similar
domain that shares the same distribution with the true target
domain. The essential differences of our work from reconstruc-
tion lie in that: (1) Domain adaptation is recognized to be a
domain generation problem, instead of a domain alignment
problem. (2) The manifold criterion loss is well constructed
for generation, instead of the least-square based reconstruction
error loss. In addition, the GGDM based global domain
discrepancy loss and LRC regularization are also integrated
in MCTL for global distribution discrepancy reduction and
domain correlation enhancement, simultaneously.

Similarity and Relationship. The reconstruction transfer
and generative transfer are similar and related in three aspects.
(1) Both aim at pursuing a more similar domain with the
target data by leveraging the source domain data. (2) Both
are unsupervised transfer learning, which do not need the data
label information in domain adaptation. (3) Both have simi-
lar model formulation and solvers for obtaining the domain
correspondence matrix and transformation.

III. MANIFOLD CRITERION PRELIMINARY

Manifold learning [20], [27] as a typical unsupervised
learning method has been widely used. Manifold hypothesis
means that an intrinsic geometric low-dimensional structure is
embedded in high-dimensional feature space and the data with
affinity structure own similar labels. This demonstrates that
manifold hypothesis works but under the data of independent
identically distribution (i.i.d.). Therefore, we could have a try
to build a manifold criterion to measure the i.i.d. condition
(i.e. domain discrepancy minimization) and guide the transfer
learning across domains through an intermediate domain.

In this paper, manifold hypothesis is used in the process
of generating domain as shown in Fig.2. Essentially different
from manifold learning and regularization, we propose a
novel manifold criterion (MC) that is utilized as generative
discrepancy metric. In semi-supervised learning (SSL), man-
ifold regularization is often used but under i.i.d. condition.
However, transfer learning is different from SSL that domain
data does not satisfy i.i.d. condition. In this paper, it should
be figure out that if the intermediate domain can be generated
via the manifold criterion guided objective function, then the
distribution of the generated intermediate domain and the true
target domain is recognized to be matched.
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Fig. 2: Illustration of the proposed Manifold Criterion Guided
Transfer Learning (MCTL). (a) represents the source domain
XS which is used to generate an intermediate target domain
XGT shown as (b), that is similar to the true target domain
X T shown in (c). The intermediate domain generation is
carried out by the learned generative matrix Z based on
the manifold criterion (MC) in an unsupervised manner. MC
interprets the distribution discrepancy, which implies that if the
local discrepancy is minimized, the distribution consistency is
then achieved. Further, a projection matrix P is learned for
domain feature embedding. Notably, the ϕ(.) is used as the
implicit mapping function of data, which can be kernelized in
implementation with inner product.

The idea of manifold criterion is described in Fig.2. We
observe that a projection matrix P is first learned for some
common subspace projection, and then a generative transfer
matrix Z is learned for intrinsic structure preservation and
distribution discrepancy minimization between the true target
data and generative target data by source domain data. That is,
if the generative data has similar affinity structure with the true
target domain, i.e. manifold criterion is satisfied, we can have
a conclusion that the generative data shares similar distribution
with target domain. Notably, different from reconstruction
based domain adaptation methods, in this work, we tend to
generate an intermediate domain by leveraging source domain,
i.e. generative transfer instead of reconstruction transfer.

Moreover, we show Fig.1 to imply that MC (local) and
MMD (global) can be jointly considered in transfer learning
models. Frankly, the idea of this paper is intuitive, simple and
easy to follow. The key point lies in that how to generate
the intermediate domain data such that the generated data
complies with manifold assumption originated from the true
target domain data. If the manifold criterion is satisfied (i.e.
i.i.d. is achieved), then domain adaptation or distribution
alignment is completed, which is the principle of MCTL.

IV. MCTL: MANIFOLD CRITERION GUIDED TRANSFER
LEARNING

A. Notations

In this paper, source and target domain are defined by
subscript S and T . Training set of source and target do-
main are defined as ϕ(XS) ∈ Rm×nS and ϕ(XT ) ∈
Rm×nT . ϕ(XGT ) ∈ Rm×nT denotes generative target do-
main, where ϕ denotes an implicit but generic transformation,
m denotes dimensionality, nS and nT denote the number
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of samples in source and target domain, respectively. Let
X = [XS ,XT ], then ϕ(X) ∈ Rm×n, where n = nS + nT .
Let P ∈ Rm×d(m ≥ d) be the basis transformation that
maps raw data space from Rm to a latent subspace Rd.
Z ∈ RnS×nT represents generative transfer matrix, I denotes
identity matrix, ‖ • ‖F and ‖ • ‖2 denote lF -norm and
l2-norm, respectively. The superscript T denotes transpose
operator and Tr(•) denotes matrix trace operator.

In RKHS, the kernel Gram matrix K is defined as[
K
]
i,j

=< ϕ(xi), ϕ(xj) >H= ϕ(xi)
Hϕ(xj) = k(xi,xj),

where k is a kernel function. In the following sections,
let K=ϕ(X)

T
ϕ(X), KS = ϕ(X)

T
ϕ(XS) and KT =

ϕ(X)
T
ϕ(XT ), and it is easy to get that K ∈ Rn×n,

KS ∈ Rn×nS and KT ∈ Rn×nT .

B. Problem Formulation

In this section, the proposed MCTL method is presented in
Fig.2, in which the same distribution between the Generated
intermediate Target domain (DGT ) and the true Target do-
main (DT ) under common subspace is what we expected. That
is, the intermediate target domain is generated to share the ap-
proximated distribution as the true target domain by exploiting
the proposed Manifold Criterion as domain discrepancy met-
ric. Specifically, two generative discrepancy metrics (LGDM
vs. GGDM) for measuring the domain discrepancy locally and
globally are proposed. Overall, the model is composed of three
items. The 1st item is MC-based LGDM loss which is used
to measure the local domain discrepancy with the manifold
criterion by exploiting the locality of target data. The 2nd

item is the GGDM loss which is applied to minimize the
global domain discrepancy of marginal distributions between
the generated intermediate target domain and the true target
domain. The 3rd item is the LRC regularization (low-rank
constraint) which is carried out to keep the generalization of
Z . A detailed MCTL method is described in the follows.

1) MC based Local Generative Discrepancy Metric: The
MC based local generative discrepancy metric (LGDM) loss
is used to enhance the distribution consistency between source
and target domain indirectly, by constraining the generative
target data with manifold criterion. For convenience, ϕ(xpGT )
is defined as a sample in ϕ(XGT ) and ϕ(xqT ) is defined as a
sample in ϕ(XT ). We claim that the distribution consistency
between ϕ(XGT ) and ϕ(XT ) is achieved, i.e. domain transfer
is done, only if two sets satisfy the following manifold
criterion, which can be formulated as

LGDM(DGT , DT ) =

nT∑
p,q

Wpq ‖ϕ(xpGT )− ϕ(xqT )‖22

= Tr(ϕ(XGT )D(ϕ(XGT )T)

+ Tr(ϕ(XT )D(ϕ(XT )T)

− 2Tr(ϕ(XGT )W(ϕ(XT )T)

(1)

where W ∈ RnT×nT is the affinity matrix described as

Wpq =

{
1, if xpGT ∈ NNk(xqT )or xqT ∈ NNk(xpGT )

0, otherwise
and

NNk(x) represents the kth nearest neighbors of sample x. The
matrix D ∈ RnT×nT is a diagonal matrix with entries Dpp =

∑
q
Wpq , p = 1, ..., nT . As claimed before, PT=ΦTϕ(X)

T,

the projected source data and target data can be expressed
as ΦTϕ(X)

T
ϕ(XS) and ΦTϕ(X)

T
ϕ(XT ). By substituting

ϕ(XGT ) = ϕ(XS)Z and the Gram matrix after projection
(i.e. ΦTKS and ΦTKT ) into Eq. (1), the MC based LGDM
loss can be further formulated as

min
Φ,Z

1

(nT )
2 Tr(Φ

TKSZD(ΦTKSZ)T)

+
1

(nT )
2 Tr(Φ

TKTD(ΦTKT )
T)

− 2

(nT )
2 Tr(Φ

TKSZW(ΦTKT )
T)

(2)

From Eq.(2), the motivation is clearly demonstrated which
tends to achieve local structure consistency (i.e. manifold
consistency) between the generative target data and the true
target data. The intrinsic difference between Eq.(2) and the
manifold embedding or regularization is that we aim to pro-
duce the i.i.d. assumption with a manifold criterion, while the
conventional manifold learning relies on this assumption.

2) Global Generative Discrepancy Metric Loss: In order
to reduce the distribution mismatch between the generative
target data and the true target data, a generic MMD for
global generative discrepancy metric (GGDM) is proposed by
minimizing the discrepancy as follows.

GGDM(DGT , DT ) =
1

nT

nT∑
i=1

∥∥∥(ϕ(X
i
GT )−ϕ(X

i
T ))
∥∥∥2
2

(3)

where DGT and DT denote the distribution of generated
target domain and true target domain, respectively. However,
model may not transfer knowledge directly and it is unclear
where a test sample is from ( source or target domain ) if
there is not a common subspace. We consider to find a latent
common subspace for source and target domain by using a
projection matrix P . Therefore, by projecting ϕ(XGT ) and
ϕ(XT ) to the subspace, the GGDM loss after projection can be
formulated as follows. Considering that ϕ(XGT ) = ϕ(XS)Z ,
by substituting it in the equation, there is

GGDM(DGT , DT ) =
1

nT

nT∑
i=1

∥∥∥PT(ϕ(X
i
GT )−ϕ(X

i
T ))
∥∥∥2
2

=
1

nT

∥∥PT(ϕ(XS)Z − ϕ(XT ))1
∥∥2
2

(4)
where 1 represents a full one column vector.

The projection matrix P is a linear transformation, which
can be represented as some linear combination of the train-
ing data, i.e. PT=ΦTϕ(X)

T, where Φ denotes the linear
combination coefficient matrix. Then the projected source
data can be expressed as ΦTϕ(X)

T
ϕ(XS) and the projected

target data can be expressed as ΦTϕ(X)
T
ϕ(XT ). With the

kernel trick, the inner product of implicit transformation
is represented as Gram matrix, from raw space to RKHS.
As described in section 4.1, let KS = ϕ(X)

T
ϕ(XS) and

KT = ϕ(X)
T
ϕ(XT ), the source domain and target domain
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can be expressed simply as ΦTKS and ΦTKT , respectively.
Therefore, the GGDM loss is formulated as

min
Φ,Z

1

nT

∥∥ΦT(KSZ −KT )1
∥∥2
2

(5)

3) LRC for Domain Correlation Enhancement: In domain
transfer, the loss functions are designed for interpreting the
generative target data and the true target data. Significantly,
the generative target data plays an critical role in the proposed
model. In this work, a general transfer matrix Z is used
to bridge the source domain data and the generative data
(intermediate result). It is known that for structural consistency
between different domains is our goal, therefore, it is natural to
consider the low-rank structure of Z as a choice for enhancing
the domain correlation. In our MCTL, low-rank constraint
(LRC), that is effective in showing the global structure of
different domain data, is finally used. The LRC regularization
ensures that the data from different domains can be well
interlaced during domain generation, which is significant to
reduce the disparity of domain distributions. Furthermore, if
the projected data lies in the same manifold, each sample in
target domain can be represented by its neighbors in source
domain. This requires that the generative transfer matrix Z
is approximately block-wise. Therefore, LRC regularization
is necessary. Considering the non-convexity property of rank
function which is NP-hard, the nuclear norm ||Z||∗ is used as
a rank approximation in this work.

4) Completed Model of MCTL: By reviewing the MC based
LGDM loss in Eq.(2), the GGDM loss in Eq.(5), and the LRC
regularization, the objective function of our MCTL method is
finally formulated as follows.

min
Φ,Z

1

(nT )
2 Tr(Φ

TKSZD(ΦTKSZ)T)

+
1

(nT )
2 Tr(Φ

TKTD(ΦTKT )
T)

− 2

(nT )
2 Tr(Φ

TKSZW(ΦTKT )
T)

+ τ
1

nT

∥∥∥ΦT(KSZ −KT )1
∥∥∥2

2

+ λ1||Z||∗
s.t.ΦTKΦ = I

(6)

where τ and λ1 are the trade-off parameters. The rows
of P are required to be orthogonal and normalized to unit
norm for preventing trivial solutions by enforcing PTP = I,
which can be further rewritten as ΦTKΦ = I, an equality
constraint. Obviously, the model is non-convex with respect to
two variables, but can be solved with the variable alternating
strategy, and the optimization algorithm is formulated.

C. Optimization
There are two variables Φ and Z in the MCTL model (6),

therefore an efficient variable alternating optimization strategy
is naturally considered, i.e. one variable is solved while frozen
the other one. First, when Z is fixed, a general Eigen-value
decomposition is used for solving Φ. Second, when Φ is
fixed, the inexact augmented Lagrangian multiplier (IALM)
and gradient descent are used to solve Z . In the following,
the optimization details of the proposed method are presented.

By introducing an auxiliary variable J , the problem (6)
can be written as follows. Furthermore, with the augmented
Lagrange function [52], the model can be written as

min
Φ,Z,J

1

(nT )
2 (Tr(Φ

TKSZD(ΦTKSZ)T)

+ Tr(ΦTKTD(ΦTKT )
T)− 2Tr(ΦTKSZW(ΦTKT )

T))

+
τ

(nT )
2 ΦT(KSZ1(KSZ)T −KSZ1(KT )

T

−KT1ZT(KS)
T + KT1(KT )

T)Φ + λ1||J ||∗
+ Tr(RT

1 (Z −J )) +
µ

2
(||Z −J ||2F )

(7)
where 1 represents a full one matrix instead of a full one

vector as the problem (6) is unfolded. R1 denotes the Lag-
multiplier and µ is a penalty parameter.

In the following, we present how to optimize the three
variables Φ, J , and Z in the problem (7) based on Eigen-
value decomposition, IALM and gradient descent in step-wise.

1) Update Φ: By frozen Z and J , Φ can be solved as

Φ∗ = argmin
Φ

1

(nT )
2 (Tr(Φ

TKSZD(ΦTKSZ)T)

+ Tr(ΦTKTD(ΦTKT )
T)− 2Tr(ΦTKSZW(ΦTKT )

T))

+
τ

(nT )
2 ΦT(KSZ1ZT(KS)

T −KSZ1(KT )
T

−KT1ZT(KS)
T + KT1(KT )

T)Φ

s.t.ΦTKΦ = I
(8)

We can derive the solution ΦK of the Kth iteration in
column-wise. To obtain the ith column vector in ΦK , by
setting the partial derivative of problem (8) with respect to
ΦK(:,i) to be zero, there is

1

(nT )
2 (KSZDZT(KS)

T + KTD(KT )
T −KSZW(KT )

T

−KTWZT(KS)
T)ΦK(:,i) +

τ

(nT )
2 (KSZ1ZT(KS)

T

−KSZ1(KT )
T −KT1ZT(KS)

T + KT1(KT )
T)ΦK(:,i)

= −λKΦK(:,i)

(9)
It is clear that ΦK can be obtained by solving an Eigen-

decomposition problem, and ΦK(:,i) is the ith eigenvector
corresponding to the ith smallest eigenvalue.

2) Update J : By frozen Φ and Z , the problem is solved
with respect to J . After dropping out the irrelevant terms with
respect to J , JK+1 in iteration K + 1 can be solved as

JK+1 =min
JK

λ1 ‖ JK ‖∗ +Tr(RT
1K(ZK −JK))

+
µK
2
‖ ZK −JK ‖2F

(10)

It can be further rewritten as

JK+1 = min
JK

λ1 ‖ JK ‖∗ +
µK
2
‖ JK − (ZK +

R1K

µK
) ‖2F

(11)

Problem (11) can be efficiently solved using the singular
value thresholding (SVT) operator [53], which contains two
major steps. First, singular value decomposition (SVD) is con-
ducted on matrix S = ZK + R1K

µK
, and get S = US

∑
SVS,
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Algorithm 1 The Proposed MCTL

Input: XS ∈ Rm×nS , XT ∈ Rm×nT , τ , λ1
Procedure:
1. Compute KT = ϕ(X )Tϕ(XT ), KS = ϕ(X )Tϕ(XS),

K = ϕ(X )Tϕ(X ), X = [XS ,XT ]
2.Initialize: J =Z=0
3. While not converge do

3.1 Step1: Fix J and Z , and update Φ by solving
eigenvalue decomposition problem (9).

3.2 Step2: Fix Φ, and update Z using IALM:
3.2.1. Fix Z and update J by using the singular value
thresholding (SVT) [53] operator on problem (11).
3.2.2. Fix J and update Z according to gradient
descent operator, i.e. Equation (13).

3.3 Update the multiplier R1:
R1 = R1 + µ(Z −J )

3.4 Update the parameter µ:
µ = min(µ× 1.01,maxµ)

3.5 Check convergence
end while
Output: Φ and Z .

where
∑

S = diag({σi}1≤i≤r), σi is the singular value
with rank r. Second, the optimal solution JK+1 is then
obtained by thresholding the singular values as JK+1 =
USΩ(1/µk)(

∑
S)VS, where Ω(1/µk)(

∑
S) = diag({σi −

(1/µk)}+), and {•}+ denotes the positive value operator.
3) Update Z: By frozen Φ and J , the problem is solved

with respect to Z . By dropping out those terms independent
of Z in (7), there is

min
Z

1

(nT )
2 (Tr(Φ

TKSZD(ΦTKSZ)T)

− 2Tr(ΦTKSZW(ΦTKT )
T)) + Tr(RT

1 (Z − J))

+
µ

2
(||Z − J||2F ) +

τ

(nT )
2 ΦT(KSZ1ZT(KS)

T

−KSZ1(KT )
T −KT1ZT(KS)

T)Φ

(12)

We can see from problem (12) that it is hard to obtain a
closed-form solution of Z . Therefore, the general gradient
descent operator [54] is used, and the solution of ZK+1 in
the (K + 1)th iteration is presented as

ZK+1 = ZK − α • 5(Z) (13)

where 5(Z) denotes the gradient, which is calculated as

∇(Z) =
2

(nT )
2 ((KS)TΦΦTKSZD− (KS)TΦΦTKTW)

+ R1 + µ(Z − J) +
2τ

(nT )
2 (KS)TΦΦTKSZ1

− 2τ

(nT )
2 (KS)TΦΦTKT1

(14)
In detail, the iterative optimization procedure of the pro-

posed MCTL is summarized in Algorithm 1.

V. MCTL-S: SIMPLIFIED VERSION OF MCTL
As illustrated in MCTL, which aims to minimize the distri-

bution discrepancy between the generative target data and the
true target data as close as possible, by using the manifold
criterion. In this section, considering the generic manifold
embedding, for model simplicity, we rewrite a simplified
version of MCTL (MCTL-S in short) as illustrated in Fig.3.

PT

MCTL MCTL-S

TD
GTD

TX
PT

Before Projection:

After Projection: '

TX

Fig. 3: Difference between MCTL (left) and MCTL-S (right).
In MCTL, there is error between the true target domain DT

and the generative target domain DGT . In MCTL-S, the DGT

is supposed to be coincided with the true target domain DT .

A. Formulation of MCTL-S

With the description of Fig.3 (right), suppose an extreme
case of perfect domain generation, that is, the generated target
data is strictly the same as the true target data, i.e. XGT = XT
(DGT coincides with DT ), then MCTL-S is formulated as,

min
Φ,Z

2

(nT )
2Tr(Φ

TKSZL(ΦTKSZ)T)

+ τ

∥∥∥∥ 1

nT
ΦT(KSZ −KT )1

∥∥∥∥2
2

+ λ1||Z||∗

(15)

where L=D−W is the conventional Laplacian matrix.
Also, the objective function (15) contains three items such as
the MC based LGDM loss, the GGDM loss and LRC regular-
ization. From the MC-S loss term in Equation (15), we observe
a generic manifold regularization term with Laplacian matrix.
Therefore, the MC loss can be degenerated into a conventional
manifold constraint by implying ΦTKT=ΦTKSZ , which
shows that MCTL-S model is harsher than MCTL model.

The following experimental results in Table VIII and IX also
prove that both the harsh MCTL-S model and the MCTL can
achieve good performance. This demonstrates that manifold
criterion based intermediate domain generation is a very
effective scheme for transfer learning.

B. Optimization of MCTL-S

MCTL-S has a similar mechanism with MCTL, therefore,
the MCTL-S optimization is almost the same as MCTL. With
two updating steps for Φ and Z , the optimization procedure
of the MCTL-S method is illustrated as follows.
• Update Φ. In the MCTL-S model, by frozen Z and J ,

the derivative of the objective function (15) w.r.t. ΦK(:,i) is
set as zero, there is

2

(nT )
2 (KSZLZT(KS)T)ΦK(:,i) +

τ

(nT )
2 (KSZ1ZT(KS)T

−KSZ1(KT )T −KT 1ZT(KS)T + KT 1(KT )T)ΦK(:,i)

= −λKΦK(:,i)
(16)

Therefore, ΦK in iteration K can be obtained by solving
an Eigenvalue decomposition problem, and ΦK(:,i) is the ith

eigenvector corresponding to the ith smallest eigenvalue.
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Caltech 256 Amazon

DSLR Webcam

Fig. 4: Some images from 4DA datasets

• Update J . The variable J can be effectively solved by
the singular value thresholding (SVT) operator [53], which is
similar to the problem (11).
• Update Z . The variable Z can be updated according to

section 4.3.3 by using gradient descent algorithm. The gradient
with respect to Z can be expressed as

∇(Z) =
4

(nT )
2 (KS)TΦΦTKSZL + R1 + µ(Z − J)

+
2τ

(nT )
2 ((KS)TΦΦTKSZ1− (KS)TΦΦTKT 1)

(17)

VI. CLASSIFICATION

For classification, the projected source data and target data
can be represented as XS

′ = ΦTϕ(X )Tϕ(XS), X T
′ =

ΦTϕ(X )Tϕ(XS)Z . Then, existing classifiers (e.g., SVM,
least square method [55], SRC [56]) can be trained on the
domain aligned and augmented training data [XS

′,X T
′] with

label Y = [YS ,YT ] by following the experimental setting as
LSDT [41]. Notably, for the COIL-20, MSRC and VOC2007
experiments, in order to follow the same experimental setting
with DTSL [43], the classifier is trained only on XS

′ with
label YS . Finally, classification on those unlabeled target test
data, i.e. X Tu

′ = ΦTϕ(X )Tϕ(X Tu), is achieved, and the
recognition accuracy is reported and compared.

VII. EXPERIMENTS

In this section, the experiments on several benchmark
datasets [57] have been exploited for evaluating the proposed
MCTL method, including (1) cross-domain object recognition
[58], [59]: 4DA office data, 4DA-CNN office data, COIL-
20 data, and MSRC-VOC 2007 datasets [38]; (2) cross-pose
face recognition: Multi-PIE face dataset; (3) cross-domain
handwritten digit recognition: USPS, SEMEION and MNIST
datasets. Several related transfer learning methods based on
feature transformation and reconstruction, such as SGF [35],
GFK [34], SA [60], LTSL [40], DTSL [43], and LSDT [41]
have been compared and discussed.
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W → D
A → C
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D → C
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Fig. 5: Comparison with deep transfer learning methods

Fig. 6: Some examples from COIL-20 dataset

A. Cross-domain Object Recognition

For cross-domain object/image recognition, 5 benchmark
datasets are used, where several sample images in 4DA office
dataset are shown in Fig. 4, several sample images in COIL-
20 object dataset are shown in Fig. 6, several sample images
in MSRC and VOC 2007 datasets are described in Fig. 7.

Results on 4DA Office dataset (Amazon, DSLR, Web-
cam1 and Caltech 2562) [34]:

Four domains such as Amazon (A), DSLR (D), Webcam
(W), and Caltech (C) are included in 4DA dataset, which
contains 10 object classes. In our experiment, the configuration
is followed in [34] where 20 samples per class are selected
from Amazon, 8 samples per class from DSLR, Webcam and
Caltech when they are used as source domains; 3 samples per
class are chosen when they are used as target training data,
while the rest data in target domains are used for testing. Note
that the 800-bin SURF features [34], [61] are extracted.

The recognition accuracies are reported in Table I, from
which we observe that the propose MCTL ranks the second
(54%) in average but slightly inferior to LTSL-LDA (54.9%).
The reason may be that the discrimination of LDA helps

1http://www.eecs.berkeley.edu/∼mfritz/domainadaptation/
2http://www.vision.caltech.edu/Image Datasets/Caltech256/

http://www.eecs.berkeley.edu/~mfritz/domainadaptation/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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TABLE I: Recognition accuracy (%) of different domain adaptation in 4DA Setting

4DA Tasks Naive Comb HFA [15] ARC-t [9] MMDT [33] SGF [35] GFK [34] SA [60] LTSL
-PCA [40] LTSL

-LDA [40] LSDT [41] MCTL

A→ D 55.9 52.7 50.2 56.7 46.9 50.9 55.1 50.4 59.1 52.9 56.1
C → D 55.8 51.9 50.6 56.5 50.2 55.0 56.6 49.5 59.6 56.0 57.3
W → D 55.1 51.7 71.3 67.0 78.6 75.0 82.3 82.6 82.6 75.7 73.4
A→ C 32.0 31.1 37.0 36.4 37.5 39.6 38.4 41.5 39.8 42.2 43.0
W → C 30.4 29.4 31.9 32.2 32.9 32.8 34.1 36.7 38.5 36.9 37.5
D → C 31.7 31.0 33.5 34.1 32.9 33.9 35.8 36.2 36.7 37.6 37.8
D → A 45.7 45.8 42.5 46.9 44.9 46.2 45.8 45.7 47.4 46.6 47.0
W → A 45.6 45.9 43.4 47.7 43.0 46.2 44.8 41.9 47.8 46.6 48.8
C → A 45.3 45.5 44.1 49.4 42.0 46.1 45.3 49.3 50.4 47.7 42.8
C →W 60.3 60.5 55.9 63.8 54.2 57.0 60.7 50.4 59.5 57.6 59.6
D →W 62.1 62.1 78.3 74.1 78.6 80.2 84.8 81.0 78.3 83.1 82.1
A→W 62.4 61.8 55.7 64.6 54.2 56.9 60.3 52.3 59.5 57.2 55.7
Average 48.5 47.4 49.5 52.5 49.7 51.6 53.7 51.5 54.9 53.3 54.0

TABLE II: Recognition accuracy (%) of different domain adaptation of the 7th layer in 4DACNN Setting

4DA-CNN Tasks(f7) SourceOnly Naive Comb SGF [35] TCA GFK [34] LTSL [40] LSDT [41] MCTL
A→ D 81.3 94.1 92.0 82.8 94.3 94.5 96.0 95.9
C → D 77.6 92.8 92.4 87.9 91.9 93.5 94.6 94.8
W → D 96.2 98.9 97.6 99.4 98.5 98.8 99.3 99.3
A→ C 79.3 83.4 77.4 81.2 79.1 85.4 87.0 87.1
W → C 68.1 81.2 76.8 75.5 76.1 82.6 84.2 84.7
D → C 74.3 82.7 78.2 79.6 77.5 84.8 86.2 86.4
D → A 81.8 90.9 88.0 90.4 90.1 91.9 92.5 92.7
W → A 73.4 90.6 86.8 85.6 85.6 91.0 91.7 92.1
C → A 86.5 90.3 89.3 92.1 88.4 90.9 92.5 92.7
C →W 67.8 90.6 87.8 88.1 86.4 90.8 93.5 93.1
D →W 95.1 98.0 95.7 96.9 96.5 97.8 98.3 98.5
A→W 71.6 91.1 88.1 84.4 88.6 91.5 92.9 92.8
Average 79.4 90.4 87.5 87.0 87.8 91.1 92.4 92.5

TABLE III: Recognition accuracy (%) of different domain adaptation methods on COIL-20

Tasks SVM TSL RDALR [62] DTSL [43] LTSL [40] LSDT [41] MCTL
C1→ C2 82.7 80.0 80.7 84.6 75.4 81.7 84.8
C2→ C1 84.0 75.6 78.8 84.2 72.2 81.5 83.7
Average 83.3 77.8 79.7 84.4 73.8 81.6 84.3

MSRC VOC 2007

Fig. 7: Some examples from MSRC and VOC 2007 datasets

improve the performance, because LTSL-PCA only achieves
51.5%, and our MCTL also outperforms other methods. No-
tably, the 4DA task is a challenging benchmark, which attracts
many competitive approaches for evaluation and comparison.
Therefore, excellent baselines have been achieved.

Results on 4DA-CNN dataset (Amazon, DSLR, Webcam
and Caltech 256) [63], [61]:

In 4DA-CNN dataset, the CNN features are extracted by
feeding the raw 4DA data (10 object classes) into the well
trained convolutional neural network (AlexNet with 5 convo-
lutional layers and 3 fully connected layers) on ImageNet [63].

The features from the 6th and 7th layers (i.e. DeCAF [48]) are
explored. The feature dimensionality is 4096. In experiments, a
standard configuration and protocol is used by following [34].
In this paper, the features of the 7th layer are experimented.
The recognition accuracies by using the 7th layer outputs for
12 cross-domain tasks are shown in Table II, from which
we can observe that the average recognition accuracy of the
proposed method shows the best performance. The superiority
of generative transfer learning is demonstrated. We can see
that our MCTL outperforms LTSL-LDA, this may be because
there has been a better discrimination of CNN features, and
discriminative learning may not significantly work.

The compared methods in Table II are shallow transfer
learning. It is interesting to compare with deep transfer learn-
ing methods, such as AlexNet [63], DDC [44], DAN [25]
and RTN [21]. The comparison is described in Fig.5, from
which we can observe that our proposed method ranks the
second in average performance (92.5%), which is inferior
to the residual transfer network (RTN), but still better than
other three deep transfer learning models. The comparison
shows that the proposed MCTL, as a shallow transfer learning
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TABLE IV: Recognition accuracy (%) of different domain adaptation methods on MSRC and VOC 2007 Datasets

Tasks SVM TSL RDALR [62] DTSL [43] LTSL [40] LSDT [41] MCTL
M → V 37.1 32.4 37.5 38.0 38.0 47.4 47.4
V →M 55.5 43.2 62.3 56.4 67.1 63.9 64.8
Average 46.3 37.8 49.9 47.2 52.6 55.6 56.1

Fig. 8: Facial images of one person from CMU Multi-PIE

MNIST  USPS SEMEION

Fig. 9: Some images from handwritten digits datasets

method, has a good competitiveness.
Results on COIL-20 dataset3: Columbia Object Image

Library [64]:
The COIL-20 dataset contains 20 objects with 1440 gray

scale images (72 multi-pose images per object). The image
size is 128 × 128 of 256 gray levels. In experiments, by
following the experimental protocol in [43], the size of each
image is cropped into 32× 32 and the dataset is divided into
two subsets C1 and C2, with each 2 quadrants are included.
Specifically, the C1 set contains the directions of [0◦, 85◦] and
[180◦, 265◦], from quadrants 1 and 3. The C2 set contains the
directions of [90◦, 175◦] and [270◦, 355◦], from quadrants 2
and 4. The two subsets are distribution different but relevant in
semantic, and therefore come to a DA problem. By taking C1
and C2 as source and target domain alternatively, the cross-
domain recognition rates of different methods are shown in
Table III, from which we see that the proposed MCTL (84.3%)
is a little inferior to DTSL (84.4%), but shows a superior
performance over other related methods, especially the recent
LSDT method (81.6%).

Results on MSRC4 and VOC 20075 datasets: [43]:
The MSRC dataset contains 4323 images with 18 classes

and the VOC 2007 dataset contains 5011 images with 20
concepts. The two datasets share 6 semantic classes: airplane,
bicycle, bird, car, cow and sheep. We follow [19] to construct
a cross-domain image dataset MSRC vs. VOC (M → V )
by selecting 1269 images from MSRC as the source domain,
and 1530 images from VOC 2007 as the target domain. Then
we switch the two datasets: VOC vs. MSRC (V → M ).
All images are uniformly rescaled to 256 pixels, and 128-

3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://research.microsoft.com/en-us/projects/objectclassrecognition
5http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007

dimensional dense SIFT (DSIFT) features using the VLFeat
open source package are extracted. Then K-means clustering
is used to obtain a 240-dimensional codebook. In this way,
the source and target domain data are constructed to share the
same label set. The experimental results of different domain
adaptation methods are shown in Table IV, from which we
observe that the performance of our method is 0.5% higher
than state-of-the-art LSDT method and 3.5% higher than LTSL
method in average cross-domain recognition performance.

B. Cross-poses Face Recognition

It is known that 3D pose change in faces is a nonlinear
transfer problem, general recognition models are very sensitive
to pose change. Therefore, it is challenging to handle the pose
based face recognition issue. In this section, the popular CMU
Multi-PIE face dataset6 with 337 subjects is used. Each subject
contains 4 different sessions with 15 poses, 20 illuminations,
and 6 expressions. The facial images in Session 1 and Session
2 of one person are shown in Fig. 8. In our experiment, we
select the first 60 subjects from Session 1 and Session 2. As
a result, a smaller session 1 (S1) with 7 images of different
poses per class under neutral expression and a smaller session
2 (S2) that is similar to S1 but under smile expression are
constructed as domain data. Notably, the raw image pixels are
used as features. Specifically, the experimental configurations
are set as follows.

S1: One frontal face (0◦) per subject is used as source data,
one 60◦ posed face is used as the target training data, and the
remaining 5 facial images are used as the target test data.

S2: The experimental configuration is the same as S1.
S1+S2: The two frontal faces (0◦) and the two 60◦ posed

faces under neutral and smile expression are used as source
data and target training data in the two sessions, respectively.
The remaining 10 facial images are used as target test data.

S1 → S2: S1 is used as source data, the frontal and 60◦

posed faces in S2 are used as the target training data, and the
remaining data in S2 are used as test data.

With above settings, the recognition accuracies of different
methods have been shown in Table V. It is clear that the
proposed method performs significantly better, which is 5%
over other DA methods in handling such pose variation based
nonlinear transfer problem. This also demonstrates that the
proposed intermediate domain generation based transfer learn-
ing can better interpret local generative discrepancy metric
(LGDM) and improve the nonlinear local transfer problem.
The manifold criterion is then validated.

6http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://research.microsoft.com/en-us/projects/objectclassrecognition
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
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TABLE V: Recognition accuracy (%) of different domain adaptation methods on face recognition across poses

Tasks Naive Comb A-SVM SGF [35] GFK [34] SA [60] LTSL [40] LSDT [41] MCTL
S1 (0◦ → 60◦) 61.0 57.0 53.7 61.0 51.3 56.0 59.7 65.3
S2 (0◦ → 60◦) 62.7 62.7 55.0 58.7 62.7 62.7 63.3 70.0

S1 + S2 (0◦ → 60◦) 60.2 60.1 53.8 56.3 61.7 60.2 61.7 68.3
S1→ S2 93.6 94.3 92.5 96.7 98.3 97.2 95.8 98.7
Average 69.4 68.5 63.8 67.0 68.5 70.3 70.1 75.6

TABLE VI: Recognition accuracy (%) of different domain adaptation on handwritten digits recognition

Tasks Naive Comb A-SVM SGF [35] GFK [34] SA [60] LTSL [40] LSDT [41] MCTL
M → U 78.8 78.3 79.2 82.6 78.8 83.2 79.3 87.8
S → U 83.6 76.8 77.5 82.7 82.5 83.6 84.7 84.8
M → S 51.9 70.5 51.6 70.5 74.4 72.8 69.1 74.0
U → S 65.3 74.5 70.9 76.7 74.6 65.3 67.4 83.0
U →M 71.7 73.2 71.1 74.9 72.9 71.7 70.5 81.2
S →M 67.6 69.3 66.9 74.5 72.9 67.6 70.0 74.0
Average 69.8 73.8 69.5 77.0 76.0 74.0 73.5 80.8

TABLE VII: Average performance of all transfer tasks

All Transfer Tasks LTSL [40] LSDT [41] MCTL
Average (%) 69.45 71.08 73.88

C. Cross-domain Handwritten Digits Recognition

Three handwritten digits datasets including MNIST (M)7,
USPS (U)8 and SEMEION (S)9 with 10 classes from digit
0 ∼ 9 are used for evaluating the proposed MCTL. The
MNIST dataset consists of 70,000 instances of 28 × 28, the
USPS dataset consists of 9298 examples of 16× 16, and the
SEMEION dataset consists of 2593 images of 16 × 16. The
MNIST dataset is cropped into 16× 16. Several images from
three datasets are shown in Fig. 9. Each dataset is used as
source and target domain alternatively, and 6 cross-domain
tasks are explored. Also, 100 samples per class from source
domain and 10 samples per class from target domain are
randomly selected for training. 5 random splits are used, and
the average classification accuracies are reported in Table VI.
From the results, we observe that our MCTL outperforms
other state-of-the-art methods with 3%, and the significant
superiority is therefore proved.

From the whole experiments on 4DA, 4DA-CNN, COIL-20,
MSRC and VOC2007, Multi-PIE, and Handwritten digits, we
can see that the proposed MCTL shows competitive perfor-
mance. Although our MCTL shows very slight improvement
on several tasks by comparing to state-of-the-art method, the
comprehensive superiority of MCTL in all datasets is clearly
demonstrated in Table VII, which shows the mean value of
all the cross-domain tasks in the datasets. From the results,
we can observe that our MCTL outperforms state-of-the-art
LTSL and LSDT about 2.8% in average performance on all
the transfer tasks explored in this paper.

7http://yann.lecun.com/exdb/mnist/
8http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html
9http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

VIII. DISCUSSION

A. Analysis of MCTL-S
When the condition XGT = XT is strictly satisfied, i.e.

perfect domain generation, our model is degenerated into the
MCTL-S model, which can be simply formulated as problem
(15). The MC-S loss is more similar to a generic manifold
regularization, which is built in an ideal condition focusing on
the locality structure. Under this case, domain generation relies
more on local manifold, regardless of the global property.
Therefore, the performance of the MCTL-S with ideal and
perfect condition will degrade when global shift of domain
data is encountered. The GGDM loss that measures the global
structure can be an effective relaxation.

The experimental comparisons on 4DACNN dataset be-
tween MCTL and MCTL-S are presented in Table VIII and the
comparisons on COIL-20 dataset are shown in Table IX. From
the results, we observe that the proposed MCTL and the harsh
MCTL-S performs similar performance. This demonstrates
that domain generation is a feasible way for unsupervised
domain transfer learning. It is also encouraging for us to use
deep generative method (e.g. GAN) for transfer learning in the
future. The potential problem of GAN is that the similar high-
level semantic information across domain may be generated,
but the distribution may still be inconsistent.

B. Parameter Setting and Ablation Analysis
In our method, the trade-off coefficients τ and λ1 are fixed

as 1 in experiments. Dimensions of common subspace is set
as d = n. The Gaussian kernel function k(xi,xj) =exp(− ‖
xi − xj ‖2 /2σ2) is used, where σ can be tuned for different
tasks, e.g. σ = 1.2 for 4DA-CNN and σ = 0.8 for COIL-
20. But the linear kernel function is adopted for discussion
as it can effectively avoid the influence of kernel parameter.
The least square classifier [55] is used in DA experiments
except that in COIL-20 experiment, the SVM classifier is used
because of its good performance.

In MCTL model, three items such as MMD loss based
GGDM term, MC loss based LGDM term and LRC regular-
ization term are included. For better interpreting the effect of

http://yann.lecun.com/exdb/mnist/
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
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TABLE VIII: Recognition accuracy (%) in 4DACNN dataset

4DA-CNN Tasks MCTL MCTL-S
A→ D 95.67 95.71
C → D 94.69 94.72
W → D 99.25 99.29
A→ C 87.11 87.05
W → C 84.73 84.74
D → C 86.37 86.34
D → A 92.66 92.65
W → A 92.06 92.07
C → A 92.68 92.06
C →W 93.08 93.04
D →W 98.49 98.51
A→W 92.79 92.83
Average 92.47 92.47

TABLE IX: Recognition accuracy (%) in COIL-20

COIL-20 MCTL MCTL-S
C1→ C2 84.83 85.00
C2→ C1 83.67 83.67

Average 84.25 84.34

each term, the ablation analysis by removing one of them is
discussed. Therefore, some extra experiments on the COIL-
20 object recognition task (i.e. C1 → C2), Handwritten
Digits recognition task (i.e. M → U ) and MSRC-VOC 2007
image recognition task (i.e. V →M ) are studied for ablation
analysis. The experimental results are shown in Table X. We
can observe that the LGDM loss plays more important role
than GGDM loss, with 2.4% improvement in average. This
is reasonable because in many real cross-domain tasks, global
transfer may result in negative transfer, due to the local bias
problem of domain discrepancy. This further demonstrates the
superiority and validity of the proposed MCTL because local
discrepancy metric is deserved for transfer learning.

C. Model Dimensionality and Parameter Analysis

Dimensionality Analysis. In MCTL model, a latent com-
mon subspace P is learned. Therefore, the performance vari-
ation with different subspace dimensions is studied on the
COIL-20 (C1→ C2 and C1→ C2) and CMU Multi-PIE face
datasets including S1, S2, and S1+S2 tasks. The performance
curve with increasing number of the dimensionality d is shown
in Fig. 10 (a) and (b). Generally, the recognition performance
can be improved with increasing number of dimension.

Parameter Sensitivity Analysis. In MCTL model, there
are two trade-off parameters τ and λ1 involved in parameter
tuning. To have an insight of their sensitivity to model,
the parameter sensitivity analysis is studied on COIL-20
(C1 → C2 and C2 → C1) task by tuning the parameters
from {0, 1, 10, 100, 1000}, respectively. Fig. 10 (c) shows the
parameter analysis of λ1 by fixing τ = 1. Fig. 10 (d) shows
the parameter analysis of τ by fixing λ1 = 1. For tuning the
two parameters simultaneously, we have also provided the 3D
surface on COIL-20 dataset in Fig.12 (a) (C1 → C2) and
Fig.12 (b) (C2 → C1). We can see that the model is robust
to the model parameters, without serious fluctuation.

TABLE X: Results of ablation analysis

Tasks MCTL no LGDM no LRC no GGDM
C1→ C2 77.0 73.0 76.7 76.8
M → U 71.0 70.0 67.0 73.0
V →M 70.2 70.1 70.1 70.3
Average 72.7 71.0 71.2 73.4
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Fig. 10: Dimensionality and parameter sensitivity analysis

D. Computational Complexity and Time Analysis

In this section, the computational complexity of the Algo-
rithm 1 is presented. The algorithm includes three basic steps:
update Z , update J , and update Φ. The computation of Φ
involves eigen-decomposition and matrix multiplication, and
the complexity is O(n3). The computation of updating J and
Z is O(n2). Suppose that the number of iterations is T , then
the total computational complexity of MCTL can be expressed
as O(Tn3) +O(Tn2). It is noteworthy that the complexity of
Gram matrix computation is not included, because it can be
computed in advance without computing in Algorithm 1.

Further, Table XI shows the computational time compar-
isons on CMU Multi-PIE data (S1 → S2) and handwritten
digits data (M → U ). From Table XI, we observe that the
proposed MCTL has also a low computational time. We should
claim that the proposed method is better used together with
deep models for large-scale data, due to the stronger feature
representation capability of deep methods with large-scale
data. Notably, all algorithms in experiments are implemented
in computer of Intel i5-4460 CPU, 3.20GHz, and 16GB RAM.

E. Model Visualization and Convergence

In this section, the visualization and convergence will be
discussed. Pose alignment is a difficult task. Therefore, for
better insight of the MCTL model, the feature visualization
is explored. We have shown the visualization of CMU PIE.
The first row in Fig. 11 illustrates the pose transfer process
under Session 1 via MCTL, from which we observe that the
generated intermediate domain data by source data inherits
similar distribution property of target data.

Further, COIL-20 and handwritten digits datasets are also
exploited. The second row of Fig. 11 shows the pose transfer
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TABLE XI: Computational time analysis and recognition accuracy (%)

Tasks SGF [35] GFK [34] SA [60] LTSL [40] MCTL
S1→ S2 10.9s (92.5%) 1.5s (96.7%) 4.18s (98.3%) 7.21s (97.2%) 7.62s (97.3%)
M → U 75s (79.2%) 12.2s (82.6%) 30.5s (78.8%) 62.1s (83.2%) 98.8s (87.8%)

Source Target Generated Source Target Generated

Fig. 11: Visualization of MCTL alignment
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Fig. 12: Parameter sensitivity analysis

process, and the generative data shows a compromise of source
and target data in visual disparity. Similarly, the visualization
of the generated handwritten digits (intermediate domain) by
taking MNIST as the source domain and SEMEION as target
domain is shown in the third row of Fig. 11. The effect of
domain generation is clearly shown.

Additionally, the convergence of our MCTL method is
explored by observing the variation of the objective function.
In the experiments, the number of iterations is set to be 15, and
the variation of the objective function (i.e. Fmin) is described
in Fig. 13. It is clear that the objective function decreases
to a constant value after several iterations, by running the
algorithm, on COIL-20 (C1→ C2) and 4DACNN (A→ D),
respectively. Also, the convergence of each term in the MCTL,
such as FMC (i.e. MC based LGDM loss), FMMD (i.e.
GGDM loss), and FZ (i.e. LRC regularization) are also
presented in Fig. 13. We can observe the fast convergence
of MCTL after several iterations. Notably, the optimization
solver in this paper may not be optimal selection, and the
performance may be further fine-tuned with better solvers.
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Fig. 13: Convergence of MCTL algorithm

IX. CONCLUSION

In this paper, we propose a new transfer learning perspective
with intermediate domain generation. Specifically, a Mani-
fold Criterion Guided Transfer Learning (MCTL) method is
introduced. In previous work, MMD is commonly used for
global domain discrepancy minimization and achieves good
performance in domain adaptation. However, an open prob-
lem, that MMD neglects the locality geometric structure of
domain data, is preserved. In order to overcome the bottleneck,
motivated by manifold criterion, MCTL is proposed, which
aims at generating a new intermediate domain sharing similar
distribution with the true target domain. The manifold criterion
(MC) implies that the domain adaptation is achieved if MC
is satisfied (i.e. minimal domain discrepancy). The rationale
behind MC is that if the locality structure is preserved between
the generated intermediate domain and the true target domain,
then the i.i.d. condition is achieved. Finally, with a MC
based LGDM loss, GGDM loss and LRC regularization jointly
constructed, MCTL is established. Extensive experiments on
benchmark DA datasets demonstrate the superiority of the
proposed method over several state-of-the-art DA methods.
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