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Abstract—A prevailing problem in many machine learning
tasks is that the training (i.e. source domain) and test data
(i.e. target domain) have different distribution (i.e. non i.i.d).
Unsupervised domain adaptation (UDA) was proposed to learn
the unlabeled target data by leveraging the labeled source data.
In this paper, we propose a Guide Subspace Learning (GSL)
method for UDA, in which an invariant, discriminative and
domain agnostic subspace is learned by three guidance terms
through a two-stage progressive training strategy. First, the
subspace-guided term reduces the discrepancy between domains
by moving the source closer to the target subspace. Second,
the data-guided term uses the coupled projections to map both
domains to a unified subspace, where each target sample can be
represented by the source samples with a low-rank coefficient
matrix that can preserve the global structure of data. In this
way, the data from both domains can be well interlaced and the
domain-invariant features can be obtained. Third, for improving
the discrimination of the subspaces, the label-guided term is
constructed for prediction based on source labels and pseudo-
target labels. To further improve the model tolerance to label
noise, a label relaxation matrix is introduced. For the solver,
a two-stage learning strategy with teacher teaches and student
feedbacks mode is proposed to obtain the discriminative domain-
agnostic subspace. Additionally, for handling nonlinear domain
shift, a nonlinear guide subspace learning (NGSL) framework
is formulated with kernel embedding, such that the unified
subspace is imposed with nonlinearity. Experiments on various
cross-domain visual benchmark databases show that our methods
outperform many state-of-the-art UDA methods. The source code
is available at https://github.com/Fjr9516/GSL.

Index Terms—Subspace Learning, Domain Adaptation, Trans-
fer Learning

I. INTRODUCTION

CONVENTIONAL machine learning algorithms are estab-
lished by supposing that the training and test data lie in

the same feature space with independent identical distribution
(i.i.d.) [1]. However, this assumption generally does not hold in
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Fig. 1. Some examples from different domains. a) 4DA object dataset. b)
MSRC (left) and VOC2007 (right) image dataset. c) CMU PIE face dataset
with different illuminations, poses, expressions and occlusion.

many real-world scenarios. In computer vision areas, owing to
various factors such as camera device parameter, illuminations,
viewpoint, background, etc., the visual datasets show serious
distribution mismatch and domain shift [2], [3], [4], [5], such
that a dramatic performance drop of the conventional machine
learning methods is caused. The domain mismatch of images
is visually described in Fig. 1 and the semantic similarity
but domain mismatch is clearly shown. A general strategy for
pattern recognition is to sampling a large number of labeled
data from a specific domain and train a generalized classifier.
However, labeling a large number of data specially consumes
a lot of human resources, and this is cost-ineffective and even
unrealistic in many areas. Therefore, how to achieve cross-
domain learning by leveraging another distribution different
but semantic related domain is becoming an increasingly
important topic. Recently, transfer learning/domain adaptation
methods have been proposed to relieve such domain mismatch
problem [6], [7] by transferring the rich knowledge from the
source domain (training set) to the target domain (test set).
In this paper, we address a unsupervised domain adaptation
scenario where the labels of target domain are unavailable.

Conventional TL/DA methods can be divided into classifier-
based methods and representation-based methods [6], [8]. The
classifier-based methods tend to solve the domain disparity
problem by adapting classifiers to the data of different distribu-
tions, such as A-SVM [9], DSM [10], and DTMKL [11]. These
classifier adaptation methods achieved a success and promoted
the progress of domain adaptation. However, they may not
well utilize the intrinsic structure of the data but strongly
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Fig. 2. Schematic of the proposed GSL method, which includes two stages: tutor teaching and student feedback. In teaching stage, the domain disparity is
progressively removed via three guiding steps: subspace guidance, data guidance and label guidance, then an invariant and discriminative target projection Pt

is obtained. In feedback stage, the Pt from the teaching stage converts the target domain data into discriminative features, and obtains the pseudo-target-label
through the pre-classifier. The progressively correct pseudo labels are then feeding back to the teaching stage. Each circle represents a sample, the number
lc in the dotted circle represents that the sample from class c is misclassified as class l. With alternative learning of the two stages, a common and optimal
target projection is obtained, where the target data can be well classified (the student surpasses the master).

depend on a certain type of classifier, and cannot easily adapt
to other classifier types. Therefore, in recent years researchers
focus on representation-based methods, which tend to learn a
better domain invariant and agnostic feature by exploiting the
intrinsic structure of data, such as RDALR [12], TSL [13],
LTSL [8], LSDT [14], DTLC [15], MCTL [16] and CDSL
[17]. However, these methods have not well exploited the
label information, that is helpful to improve the classifica-
tion performance. Therefore, the algorithms that combine the
advantages of both classifier and representation-based models
were proposed, such as DTSL [18], MMDT [19], EMFS [20]
and CoE [21], which then effectively improve the discrimina-
tion of transfer models. However, the existing methods only
consider the domain adaptation at the data level, which are
sensitive to noise (e.g. outliers). Also, another problem is that
these methods share a common projection matrix for both
domains, which may not effectively measure the difference
between the domain-specific subspaces. SA [22] and CORAL
[23] stand in another perspective, by aligning the first-order
and second-order statistical global features such as principal
component space and covariance space, respectively. Further,
a common characteristic of these classifier and representation
based TL/DA methods is the “one-stage” formulation, which
is generally hard to get the optimal projection and does not
work well if the domain disparity is large.

Considering the above problems of the existing methods,
in this paper we propose a couple projection and soft label
based domain adaptation model for domain agnostic subspace
learning with guide learning mechanism. Specifically, in order
to guide the subspace projection towards extracting the in-
variant, discriminative and common features across domains,
we propose a “two-stage” progressive training strategy for
unsupervised domain adaptation. The proposed “two-stage”

domain adaptation model consists of teaching and feedback
stages, which follows that the experienced tutor not only
transfers/teaches domain knowledge to the students, but also
progressively guide the students toward a high-level perfor-
mance according to the students’ feedback. The teaching stage
is composed of three guidance losses: subspace guidance,
data guidance and label guidance. The feedback stage aims
to improve the model transferring capability by progressively
learning better subspace and soft target labels. Therefore, the
proposed transfer model is called Guide Subspace Learning
(GSL). For clarity, the Guide Learning mechanism with teach-
ing and feedback stages is defined as follows.

Definition (Guide Learning) Guide learning is a learning
mechanism consisting of teacher teaching and student feed-
back, and the students’ learning performance can be gradually
improved with the guidance of feedback information.

Concretely, the schematic of GSL is shown in Fig. 2, from
which we see that in the teaching stage we learn a target
projection (i.e., Pt) through the three guidance terms and in the
feedback stage we update the “feedback information” (i.e., Ŷt)
under the new target subspace, and then transfer the updated
feedback information to the teaching step.

In summary, the key contributions of this work are threefold:
• We propose a Guide Subspace Learning (GSL) method

for unsupervised domain adaptation, which consists of
three elements: subspace guidance, data guidance and
label guidance. Then an invariant, discriminative and
common target subspace is obtained by a “two-stage”
guide learning mechanism. To the best of our knowledge,
this is the first work for domain adaptation and transfer
learning by formulating a guide learning model.

• In order to overcome the nonlinear domain shift problem,
we further generalize the proposed GSL method into a
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kernel-based nonlinear framework in reproduced kernel
Hilbert space (RKHS), and a nonlinear guided subspace
learning (NGSL) is formulated.

• Our model can be easily adapted to supervised and
semi-supervised settings by freely replacing the pseudo
target labels with true labels, and then degenerates into
a “one-stage” method. Extensive experiments show the
superiority of the proposed GSL over state-of-the-arts.

The remainder of this paper is organized as follows. Section
II presents a brief review of related work. The proposed guide
subspace learning (GSL) method is formulated in Section III.
The proposed nonlinear GSL (NGSL) is presented in Section
IV. The experiments and discussions are presented in Section
V. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Active learning/Curriculum learning/Self-paced learning

Active learning (AL) focuses on actively selecting and an-
notating the most informative unlabeled samples from the data
pool, towards avoiding redundant annotations and achieving a
high classification performance [24], [25]. It is generally used
in semi-supervised tasks as shown in the Fig. 3 a). Inspired
by the cognitive principle of humans/animals, the curriculum
learning (CL) proposed by Bengio et al. [26] tends to train
the model by including the samples from simple to complex
progressively. However, a problem of CL is encountered due
to the difficult identification of simple and complex samples
in a given training dataset with human intervention. In order
to alleviate the deficiency, Kumar et al. [27], Lu et al. [28],
[29], and Jiang et al. [30] introduced self-paced learning
(SPL) models which simultaneously selects easy samples and
iteratively updates the parameters in a progressive manner.
It is often used in supervised tasks as illustrated in Fig. 3
b). The proposed GSL is essentially different from them in
learning tasks and methodologies. Specifically, as shown in
Fig. 3 c), the proposed GSL aims to solve unsupervised
domain adaptation tasks by learning a transferrable subspace
across domains with progressively-qualified pseudo target la-
bels, while AL/CL/SPL aim to solve generic machine learning
problems by handling the samples with different strategies.

B. DA/TL Methods

This work focuses on the feature-based DA/TL methods that
learn a common representation for cross-domain classification.
To this end, we divide the representational DA/TL methods
into two categories: data level and subspace level.
• Data level approaches
Data level denotes the domain shift alignment between the

source and target domains through feature representation in
the raw or projected space. Under the low-rank representation
theory [31], [32], Jhuo et al. [12] proposed a RDALR method
by imposing a low-rank constraint on the cross-domain feature
reconstruction matrix to reduce the domain shift, such that
the intrinsic relationship in data is interpreted. Shao et al. [8]
also proposed a low-rank constraint derived LTSL method
for transfer learning, in which a subspace projection was

a) AL b) SPL/CL c) GSL
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Retrain
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Target

Class1
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Projection

Fig. 3. Comparison with other learning mechanisms. Black solid lines and
dashed lines indicate classification boundaries. a) AL aims to find the most
informative sample points for manual labeling; b) SPL/CL aims to gradually
incorporate samples from simple to complex for training; c) GSL is applied
to unsupervised domain adaptation, and it progressively learns the subspace
projection to reduce domain discrepancy. (Best viewed in colors)

learned for better cross-domain low-rank modeling. Different-
ly, Zhang and Zhang [14] proposed a latent sparse domain
transfer (LSDT) model by imposing sparsity constraint on
the reconstruction matrix in a projected data space, such that
outliers in source data can be effectively prohibited from
transferring to target domain. Further, Fang et al. proposed
a DTSL [18] model by imposing both low-rank and sparse
constraints on the domain reconstruction matrix to guarantee
the global and local property during transfer. Besides the
feature reconstruction methods, Si et al. [13] proposed transfer
subspace learning (TSL) for solving the domain mismatch
problem by minimizing the Bregman divergence between do-
main distributions in a common subspace. Hoffman et al. [19]
proposed a MMDT method by jointly combining the classifier-
based and representation-based methods for invariant image
representation. A flaw of these data level methods is that
they depend heavily on the reconstruction and transformation
matrix, which easily causes negative transfer effect.
• Subspace level approaches
Subspace level approaches tend to align the statistical

feature distribution of two domains. Subspace alignment
(SA) [22] aims at learning a linear mapping for aligning
subspaces spanned by eigenvectors using principal compo-
nent analysis (PCA) between two different domains. These
principal components show global information of domains
with noise removal, and therefore the subspace level approach
becomes more robust. It is worth mentioning that SA can
be interpreted from the Grassmann manifold perspective. Sun
and Saenko [33] proposed a subspace distribution alignment
(SDA) method for reducing the subspace distribution differ-
ence, which also proved that SA can be extended to geodesic
flow kernel (GFK) [34] in the case of an infinite subspaces
distribution alignment. GFK characterized the changes of
geometric and statistical properties across domains by integrat-
ing numerous subspaces. Pan et al. [35] proposed a transfer
component analysis (TCA) method, which exploits the Max-
imum Mean Discrepancy (MMD) to measure the difference
between domains and derives a simple solution via eigenvalue
decomposition. Besides the first-order statistical information,
Sun et al. [23] proposed a CORAL method for alleviating
the domain shift by aligning the second-order statistics (e.g.
covariance) between two domains. Long et al. [36] proposed a
joint distribution alignment (JDA) method by adapting both the
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marginal distribution and conditional distribution, and simulta-
neously exploring the pseudo labels of the target data. Wang et
al. [37] proposed a balanced distribution adaptation (BDA) by
simply introducing a parameter to measure different domain
distributions. Zhang et al. [38] proposed a joint geometrical
and statistical alignment (JGSA) method, which considered
the geometrical shift and distribution shift simultaneously.

III. THE PROPOSED GUIDE SUBSPACE LEARNING

A. Mathematical Notations
Given the source domain S = {Xs, ys} and target domain

T = {Xt, yt}, where Xs ∈ RD×ns and Xt ∈ RD×nt are
domain-specific datasets, ys and yt are class labels (note that
the target label yt is unavailable for unsupervised setting),
D is the dimensionality of the raw data, and ns and nt
indicate the number of source and target samples, respectively.
Let Ps ∈ RD×d and Pt ∈ RD×d be the projection of
the source and target domain, respectively, where d is the
dimensionality of the invariant and unified subspace. Define
Z ∈ Rns×nt as the reconstruction matrix across domains,
I as the identity matrix, and ‖M‖F and ‖M‖∞ are the
Frobenius norm and infinity norm of matrix M , respectively.
Let ‖M‖∗ =

∑
i δi(M) denote the nuclear norm of matrix

M , where δi(M) is the ith singular value of matrix M . tr(·)
denotes the trace operator of matrix.

B. Model Formulation
In order to achieve domain adaptation, it is often assumed

that there is a common subspace, where the distributions of
the two domains are approximately the same. We follow this
assumption but suppose that there exist two projections Ps
and Pt, instead of one common projection. The proposed GSL
aims at learning an invariant, discriminative, and domain ag-
nostic subspace, in which the domain distribution discrepancy
is reduced. Specifically, GSL is composed of three parts in
the teaching stage: 1) subspace guidance; 2) data guidance; 3)
label guidance, which are elaborated as follows.

1) Subspace Guidance: The advantage of couple subspaces
is that they can better characterize the global information of
the domain and improve the robustness to noise (e.g. outliers).
For clarity, we define Ps and Pt as the subspace projection of
the source and target domain, respectively. They are imposed
to be orthogonal, since they can be thought as two points in
the Grassmann manifold G(d,D) [39]. Therefore, the domain
discrepancy can be reduced by moving the two points closer
as shown in Fig. 2. Specifically, we expect that the source
subspace Ps guides the learning of the target subspace Pt
in an interactive manner, such that the subspaces of the two
domains can be effectively aligned for reducing domain dispar-
ity. Instead of learning an additional transformation as other
subspace level methods did, our method directly minimizes
the following Bregman divergence between subspaces:

min
Ps,Pt

‖Ps − Pt‖2F (1)

We see from Eq.(1) that it has a simple yet effective mathe-
matical formulation and treats the two subspaces equally. The
orthogonality of subspaces can often be initialized by existing
subspace learning models (e.g. PCA).

2) Data Guidance: In order to narrow the distribution gap
between source and target domains, we expect to use the
intrinsic information of data to guide the learning of target
subspace Pt. The data reconstruction between domains can
effectively reflect the intrinsic information of the data. There-
fore, in data guidance, we tend to seek an invariant subspace
by forcing the target data to be linearly represented by source
data, such that the domain distribution gap is minimized. For
revealing and interpreting the underlying structure of domain
data, we require that each target data can be reconstructed by
its similar neighbors in the source domain. Mathematically, the
objective can be achieved by imposing a low-rank constraint
on the reconstruction matrix Z. Low-rank has been extensively
discussed in machine learning community due to its impact on
subspace recovery [31]. Specifically, the data guidance can be
formulated as follows

min
Ps,Pt,Z

∥∥PTt Xt − PTs XsZ
∥∥2

F
+ α · rank(Z) (2)

where rank(·) denotes the rank operator of a matrix. However,
due to the non-convex property of rank function, an effective
solution is not easy to be optimized directly. Therefore,
we obtain a tractable optimization problem by relaxing the
problem and replacing the rank with the nuclear norm [31],
[40], and yield the following convex surrogate as

min
Ps,Pt,Z

∥∥PTt Xt − PTs XsZ
∥∥2

F
+ α ‖Z‖∗ (3)

where ‖·‖∗ represents the nuclear norm that is computed as
the summation of singular values of a matrix. The parameter α
controls the intrinsic correlation of the reconstruction matrix.
By combining the Eq.(3) with the Eq.(1), an invariant target
subspace with domain disparity reduction can be obtained.

3) Label Guidance: Although an invariant subspace can be
obtained by solving problem (3), the subspace discrimination
is still weak and does not benefit the classification due to
that the rich label information of source data is neglected.
For label distribution alignment, another important idea is
that although the true target label is unavailable, the pseudo-
labels can be generated through implicit student feedback.
Therefore, we further introduce label guidance strategy to
improve the discrimination by considering the source labels
and pseudo target labels (feedback information), that can
bridge the feedback stage and the teaching stage.

We expect that the learned invariant target subspace projec-
tion Pt can also serve as a label mapping function by forcing
PTt Xt to be close to the pseudo label matrix Ŷt ∈ Rd×nt
(d ≥ c, where c indicates the number of classes) with
category information. For unification of the subspace Pt in
both domains, we also force PTt Xs to be close to the source
label matrix Ys. For obtaining pseudo target labels, we propose
to initialize the pseudo labels by using existing classifiers (e.g.
SVM) and then update the labels with the progressive learning
of target subspace. Consequently, a discriminative target sub-
space can be learned progressively by alternatively updating Pt
and Ŷt. Further, considering that each sample shows different
classification confidence reflected in the coding value of the
label, some varying degree of labels is allowed for improving
the generalization. Therefore, we introduce a label relaxation
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matrix M to alleviate the effect of label consolidation while
increasing the flexibility of the model. For convenience, we
define the label matrix Y =

[
Ys, Ŷt

]
∈ Rd×n as:

Y{i,j} =

{
1, if xj ∈ ci
−1, otherwise

(4)

where Y{i,j}(i = 1, · · · , d; j = 1, · · · , n) denotes the {i, j}-th
element of the matrix Y with one-hot coding, n = ns + nt
indicates the total number of samples in both domains, and ci
represents the cluster of the ith class. Note that we assume
d ≥ c. The reason is that if we modeling the task as a c-
dimensional problem, too much information will be lost when
c is too small. Note that the entry of Y beyond the c dimension
is set to −1 as shown in Eq.(4).

The purpose of label guidance strategy is to seek a discrim-
inative Pt by using label relaxation and progressive pseudo-
label updating mechanism. Specifically, the proposed label
guidance is mathematically formulated as

min
Pt,M

∥∥PTt X − Y ◦M∥∥2

F
s.t. M < 0 (5)

where X = [Xs, Xt] ∈ RD×n, M ∈ Rd×n represents the
positive relaxation matrix, and ◦ is the hadamard product
operator. Actually, the label guidance strategy makes the
classification task more conducive by progressively and al-
ternatively improving the pseudo target label quality and the
unified target subspace. Also, the label distribution across
domains can be aligned in this work in addition to aligning
the feature distribution. To some extent, the introduction of
a relaxation matrix M also allows a certain label noise and
further improve the model generalization.

Finally, by incorporating the three terms Eq.(1), Eq.(3) and
Eq.(5) together, we obtain the ultimate objective function of
the proposed GSL model, which is formulated as

min
Ps,Pt,M,Z

β ‖Ps − Pt‖2F +
∥∥PTt Xt − PTs XsZ

∥∥2

F

+ α ‖Z‖∗ +
1

2

∥∥PTt X − Y ◦M∥∥2

F

s.t. M < 0

(6)

where β and α are trade-off parameters. We progressively
update the pseudo labels Ŷt of target data using the learned
invariant and discriminative target subspace Pt (teaching stage)
and update the target subspace Pt using the new pseudo labels
Ŷt (feedback stage). In the following, the solution is shown.

C. Optimization
As can be seen from the model in Eq.(6), four variables Ps,

Pt, Z and M are involved. Note that Y is a semi-variable that
can be computed using SVM classifier. To solve the model, an
inexact augmented Lagrange multiplier method (IALM) [31]
is introduced. In general, by introducing an auxiliary variable
L, the problem (6) can be converted into:

min
Ps,Pt,M,Z,L

β ‖Ps − Pt‖2F +
∥∥PTt Xt − PTs XsZ

∥∥2

F
+ α ‖L‖∗

+
1

2

∥∥PTt X − Y ◦M∥∥2

F

s.t. M{i,j} ≥ 0, Z = L
(7)

Algorithm 1 The first stage of GSL for solving problem (8)
Input: Xs ∈ RD×ns , Xt ∈ RD×nt , X ∈ RD×n, Y ∈ Rd×n,

α, β
Output: Pt

Initialization: M = 1, Z = L = 0, Y1 = 0, µmax = 106,
ρ = 1.01, ε = 10−7;

1: Initialize Ps via existing method, e.g., PCA;
While not converged do

2: Fix other variables and update Pt by solving (10);
3: Fix other variables and update Ps by solving (11);
4: Fix other variables and update Z by solving (13);
5: Fix other variables and update L by solving (18);
6: Fix other variables and update M by solving (21);
7: Update multiplier Y1 and penalty parameter µ by (22);
8: Check convergence: ‖Z − L‖∞ < ε.

End while
9: return Pt

The augmented Lagrange multipliers (ALM) method is gener-
ally used for solving the nuclear norm optimization problems
[40], [41], and the problem (7) can be reformulated as:

LPs,Pt,Z,L,M =β ‖Ps − Pt‖2F +
∥∥PTt Xt − PTs XsZ

∥∥2

F

+ α ‖L‖∗ +
1

2

∥∥PTt X − Y ◦M∥∥2

F

+ tr(Y T1 (Z − L)) +
µ

2
‖Z − L‖2F

(8)

where Y1 denotes the Lagrange multiplier and µ > 0 is a
penalty parameter. Specifically, by using variable alternating
strategy, the detailed solution of each variable in the proposed
GSL model can be derived as follows.

• Update Pt:

For solving Pt, by fixing the irrelevant terms with respect
to Pt, we can have the following convex model:

Pt = arg min
Pt
β ‖Ps − Pt‖2F +

∥∥PTt Xt − PTs XsZ
∥∥2

F

+
1

2

∥∥PTt X − Y ◦M∥∥2

F

(9)

By setting the derivative of the above model with respect to
Pt to be zero, a closed-form solution P ∗t can be solved as:

P ∗t = (2βI+2XtX
T
t +XXT )−1(2βPs+2XtZ

TXT
s Ps+A1)

(10)
where A1 = X(Y ◦M)T is a pre-computed matrix.

• Update Ps:

Similar to the solving process of Pt, with other variables
frozen , the model is differentiable to Ps. Therefore, by setting
the derivative with respect to Ps as zero, the closed-form
solution can be derived as:

P ∗s = (2βI + 2XsZZ
TXT

s )−1(2βPt + 2XsZX
T
t Pt) (11)

• Update Z:
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By dropping those terms without containing the variable Z
in Eq.(8), the problem with respect to Z becomes

Z = arg min
Z

∥∥PTt Xt − PTs XsZ
∥∥2

F
+ tr(Y T1 (Z − L))

+
µ

2
‖Z − L‖2F

(12)
By setting the derivative of Eq.(12) with respect to Z as

zero, the closed-form solution of (12) can be computed as:

Z∗ = (2XsTPsP
T
s Xs+µI)−1(2XsTPsP

T
t Xt+µA2) (13)

where A2 = L− Y1/µ is a pre-computed matrix.
• Update L:
By removing the terms irrelevant to the variable L in Eq.(8),

the following formulation can be deduced:

L = arg min
L
α ‖L‖∗ +

µ

2
‖L− (Z + Y1/µ)‖2F (14)

The optimal solution of problem (14) can be computed via the
singular value thresholding (SVT) algorithm [42]. Specifically,
given a matrix Q ∈ Rn1×n2 with rank r, the singular value
decomposition (SVD) of matrix Q is:

Q = UΣV T (15)

where Σ = diag((σi)16i6r), U and V represent n1 × r and
n2 × r matrices with orthogonal column vectors, σi denotes
the positive singular value, and diag(·) denotes the diagonal
operator of matrix. Given τ > 0, we introduce the singular
value shrinkage operator as follows [42]:

Dτ (Q) = UDτ (Σ)V T , Dτ (Σ) = diag((σi − τ)+) (16)

where (t)+ = max(0, t) denotes the positive value operator.
The solution of problem (14) can be derived in Theorem 1.

Theorem 1. For each τ > 0 and P ∈ Rn1×n2 , the singular
value shrinkage operator in Eq.(16) obeys [42]:

Dτ (P ) = arg min
Q

τ ‖Q‖∗ +
1

2
‖Q− P‖2F (17)

According to Theorem 1, the optimal solution of problem (14)
can be easily derived as:

L∗ = Dα
µ

(Z + Y1/µ) (18)

where the operator Dα
µ

(·) can be computed by using Eq.(16).
• Update M :
By removing the terms irrelevant to M in Eq.(8), we have:

M = arg min
M

1

2

∥∥PTt X − Y ◦M∥∥2

F
, s.t. M{i,j} ≥ 0 (19)

By defining A3 = PTt X and considering the optimization
problem element by element with M{i,j}, the above problem
(19) can be further written as:

M{i,j} = min
M{i,j}

1

2
(A3{i,j} − Y{i,j}M{i,j})2, s.t. M{i,j} ≥ 0

(20)
Then, by calculating the derivative with respect to M , the
optimal solution of M{i,j} can be derived as:

M∗{i,j} = max(A3{i,j}/Y{i,j}, 0) (21)

Algorithm 2 The complete GSL method
Input: Source data and labels: Xs ∈ RD×ns , ys;

Target data: Xt ∈ RD×nt ; The maximum iteration T .
Output: P ∗t and ŷt

Initialization : Pt = I;
While not converged or iteration t < T do

1: Update ŷt using existing classifier, there is
ŷt = classifier(PTt Xs, ys, P

T
t Xt);

2: Construct Y using Eq.(4);
3: Fix Y , and solve Pt in problem (8) using Algorithm 1;
4: Check convergence by (23);
5: t = t+ 1;

End while
6: return P ∗t , ŷt

• Update Y1, µ:
The multiplier Y1 and step-size µ are updated by:{

Y1 = Y1 + µ(Z − L)
µ = min(ρµ, µmax)

(22)

Specifically, the optimization process of problem (8) by
using IALM is described in Algorithm 1, which shows the
first stage (teacher teaches) of the proposed GSL for seeking
a unified subspace Pt. In the second stage (student feedback),
an existing classifier (e.g. SVM) is trained based on the
newly projected source data by using Pt from Algorithm 1
for computing the pseudo labels Ŷt of target data. Then an
alternative algorithm between the first stage and the second
stage is constructed in Algorithm 2, which is the complete
GSL. As can be seen from Algorithm 2, two loops including
inner loop (i.e. Algorithm 1) and outer loop are involved. To
check the convergence of GSL, we define

4 Pt =
∥∥∥P (t)

t − P
(t−1)
t

∥∥∥
F
/
∥∥∥P (t−1)

t

∥∥∥
F

(23)

where t indicates the iteration index of the outer-loop. The
Algorithm 2 converges if the condition 4Pt < ε is satisfied.
Note that ε > 0 indicates an extremely small value. The
experiment proves that this condition can effectively measure
the convergence of the outer loop.

Finally, an invariant, discriminative and domain agnostic
target subspace Pt can be achieved to extract features across
domains in a progressive manner.

D. Computational Complexity and Convergence Analysis

1) Computational Complexity Analysis: For convenience,
Xs and Xt are supposed to be D × n matrices. The main
computations of Algorithm 1 include:
• Matrix inversion and multiplication in steps 2, 3 and 4,

which involve a computational cost of O(kn3);
• Singular value decomposition (SVD) in step 5, which

involves a computational cost of O(n3).
Suppose that the number of iterations for Algorithm 1 and

Algorithm 2 is T1 and T , respectively, the total computational
complexity of GSL can be expressed as O(TT1(k + 1)n3).
Note that our algorithm is not suitable for large-scale data,
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but it is fast enough on small-scale data sets. We suggest that
for large-scale tasks, off-the-shelf CNNs trained on big data
(e.g. ImageNet) can be used as feature extractor for small-
scale data. The performance has been verified as shown in
our experiments (e.g. Table III).

2) Convergence Analysis of Algorithm 1 and 2:
First, the convergence of Algorithm 1 is discussed as fol-

lows. The convergence of the exact ALM algorithm has been
proved in [43]. In Algorithm 1, the inexact ALM proposed for
solving the robust PCA [40] has been used in step 5 for solving
(18). However, so far, the convergence of IALM with three or
more variables (e.g. five variables are involved in Algorithm
1) is generally difficult to be theoretically guaranteed [44].
Fortunately, as claimed in [45], three sufficient conditions can
ensure the convergence.
• The dictionary matrix D (i.e. Xs in our GSL model)

should be of full column rank;
• The optimality gap εk shown in Eq.(24) generated in each

iteration step is monotonically decreasing.

εk = ‖(Zk, Lk)− (Z∗, L∗)‖2F (24)

where Zk and Lk denote the solutions obtained at the k-
th iteration, respectively. Z∗ and L∗ represent the optimal
solutions of the model arg min

Z,L
L.

• The penalty parameter µ in step 7 of Algorithm 1 should
be upper bounded.

Experimentally, the convergence curves of Algorithm 1 are
shown in Section V, which demonstrates a good convergence,
even if the above conditions are difficult to hold constantly.

Second, for Algorithm 2, although the student feedback pro-
cess in step 1 and the teacher teaching process in step 3 seem
to be independent, the convergence and performance curves
of the outer-loop on several datasets as shown in Section V
provide evidences that the interaction between teacher and
student can progressively promote each other. Intuitively, the
label guidance contributes to raising the model to a higher
“stair”, while the convergence condition 4Pt is amount to the
height of each “stair” in each iteration. The upper bound of
the algorithm is achieved when 4Pt approaches ε. Ultimately,
a domain agnostic subspace Pt with domain gap between
“teacher” and “student” relieved can be achieved.

IV. NONLINEAR GUIDE SUBSPACE LEARNING

In many computer vision tasks, nonlinear domain transfer is
often encountered. Therefore, nonlinear model under the linear
GSL framework can be deduced. Recently, there are several
approaches handling nonlinear distribution alignment [46],
[47] by mapping the raw data into a reproducing kernel Hilbert
space (RKHS). Therefore a nonlinear version of GSL, i.e.
NGSL model, is also derived through kernel embedding.

A. Formulation

Let φ: x → φ(x) be a nonlinear mapping from the raw
feature space RD into a reproducing kernel Hilbert space
(RKHS) H. Then we have φ(X) = [φ(x1), φ(x2), ..., φ(xn)].
In RKHS, the kernel Gram matrix K is defined as [K]i,j =<

Algorithm 3 The first stage of NGSL for solving (26)
Input: Xs ∈ RD×ns , Xt ∈ RD×nt , X = [Xs, Xt] ∈ RD×n,

Y ∈ Rd×n, α, β, λ;
Output: Φt;

Initialisation: M = 1, Z = L = 0, Y1 = 0, µmax = 106,
ρ = 1.01, ε = 10−7;

1: Initialize Ps using existing method, e.g. PCA.
2: Initialize Φs = φ(X)−1Ps.
3: Compute K := φ(X)Tφ(X), Ks := φ(X)Tφ(Xs) and
Kt := φ(X)Tφ(Xt).
While not converged do

4: Fix other variables and update Φt by solving (27);
5: Fix other variables and update Φs by solving (28);
6: Fix other variables and update Z by:
Z∗ = (2KT

s ΦsΦ
T
sKs + µI)−1(2KT

s ΦsΦ
T
t Kt + µA2)

7: Fix other variables and update L by solving (18);
8: Fix other variables and update M by solving:
M = arg min

M

1
2

∥∥ΦTt K − Y ◦M
∥∥2

F

9: Update multiplier Y1 and penalty parameter µ by (22);
10: Check convergence: ‖Z − L‖∞ < ε.

End while
11: return Φt

φ(xi), φ(xj) >H= φ(xi)
Tφ(xj) = k(xi, xj), where k(·) is a

kernel function, such as sigmoid and RBF functions.
Let K = φ(X)Tφ(X), Ks = φ(X)Tφ(Xs) and Kt =

φ(X)Tφ(Xt) denote the kernel Gram matrix. Then for rep-
resenting the source and target subspaces Ps and Pt, one
proposition is provided as follows.

Proposition 1: There exist optimal Ps and Pt that can be
intuitively represented as a linear combination of φ(X) as

Ps = φ(X)Φs;Pt = φ(X)Φt (25)

where Φs and Φt are the representation coefficient matrices.
Therefore, with kernel mapping, by substituting the Eq.(25)

into Eq.(6), the proposed NGSL model can be formulated as:

min
Φs,Φt,M,Z

β ‖φ(X)Φs − φ(X)Φt‖2F +
∥∥ΦTt Kt − ΦTsKsZ

∥∥2

F

+ α ‖Z‖∗ +
1

2

∥∥ΦTt K − Y ◦M
∥∥2

F

s.t. M < 0
(26)

where K, Ks, and Kt are kernel Gram matrices.

B. Optimization

The optimization algorithm of NGSL is similar with GSL
as shown in Algorithm 1 and 2. However, in updating Φs and
Φt, the matrix may not be full-rank and becomes irreversible.
To this end, we introduce a small constant λ > 0 in order to
obtain a numerically stable solution. Therefore, there are

Φ∗t =(2βK + 2KtK
T
t +KKT + λI)−1

(2βKΦs + 2KtZ
TKT

s Φs +K(Y ◦M)T )
(27)

Φ∗s = (2βK+ 2KsZZ
TKT

s +λI)−1(2βKΦt+ 2KsZK
T
t Φt)
(28)
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Algorithm 4 The complete NGSL method
Input: Source data and labels: Xs ∈ RD×ns , ys;

Target data: Xt ∈ RD×nt ; The maximum iteration T .
Output: Pt = φ(X)Φ∗t and ŷt

Initialization : Φt = I;
While not converged or iteration t < T do

1: Update ŷt using existing classifier, there is
ŷt = classifier(ΦTt Ks, ys,Φ

T
t Kt);

2: Construct Y using Eq.(4);
3: Fix Y , and solve Φt using Algorithm 3;
4: Check convergence using Eq.(23);
5: t = t+ 1;

End while
6: return P ∗t , ŷt

Due to the space limitation, the deduction and optimization
details of NGSL for Z and M are provided in Appendix A and
B. In NGSL, the continuously differentiable functions such as
Gaussian RBF kernel, linear kernel, etc. can be used as kernel
function. The optimization of the first stage in NGSL (Teacher
teaches) is shown as Algorithm 3. The complete NGSL with
pseudo target label learning is presented in Algorithm 4.

V. EXPERIMENT

In this section, extensive experiments are conducted to
evaluate the effectiveness of the proposed methods for un-
supervised domain adaptation scenarios, which is much closer
to real-world applications. Note that, we focus on close set
problem instead of open set problem [48], therefore both
domains have the same class labels. We compare our methods
with state-of-the-arts, including: 1) data level methods: TSL
[13], RDALR [12], LTSL [8] and DTSL [18]; 2) subspace
level methods: SA [22], GFK [34] and CORAL [23]; 3)
pseudo-label strategy based methods: JDA [36], JGSA [38]
and LDADA [49]. In addition, we compare our methods with
several recent deep transfer learning methods, such as Deep
Domain Confusion (DDC) [50], Domain Adaptation Networks
(DAN) [51] and Residual Transfer Network (RTN) [52].
Further discussions on parameter sensitivity, ablation analysis
and convergence are also presented.

A. Databases

In experiments, four visual benchmark datasets, including
4DA object dataset [34], MSRC-VOC2007 image dataset [53],
CMU PIE face dataset [36] and COIL20 3D object dataset [54]
are exploited and tested.

1) 4DA Dataset: 4DA consists of Office data and Caltech-
256 data [55]. The Office data contains three real-world object
domains, including Amazon, Webcam and DSLR. 4DA is
formulated with 10 shared categories between Office and
Caltech datasets. Therefore, 4 domains including A (Amazon),
C (Caltech-256), D (DSLR) and W (Webcam) are constructed.
In feature representation, two kinds of features i.e. shallow and
deep features are used separately. First, the SURF feature [34]
encoded with 800-dimension BoW features is used as shallow
feature. Second, the feature extracted from a deep model (i.e.

TABLE I
EXPERIMENTAL DATA DESCRIPTION

Dataset Subsets Abbr. images Feature (dim) Classes

4DA

Amazon A 958

10Caltech C 1,123 SURF(800)
DSLR D 157 VGG-FC7(4,096)

Webcam W 295

PIE
C05(←) P1 3,332

68C27(�) P4 3,329 Pixel(1,024)
C29(→) P5 1,632

MV MSRC M 1,269 Codebook(240) 6VOC2007 V 1,530

COIL20 COIL1 C1 720 Pixel(1,024) 20COIL2 C2 720

Fig. 4. Some examples from COIL20 3D object dataset. Each column denotes
one object across different poses, which shows significant domain shift.

the FC7 activations of VGG-VD-16 model) [56] is exploited
as deep feature. By deploying pairwise domains such as source
domain and target domain alternatively, totally 12 cross-
domain tasks are constructed. Some example images in 4DA
dataset are illustrated in Fig. 1 a).

2) MSRC and VOC2007 (MV) Dataset: MSRC data
contains 4,323 images of 18 classes, which was released
by Microsoft Research Cambridge. VOC2007 contains 5011
images of 20 classes. In our experiment, 6 shared semantic
classes including aeroplane, bicycle, bird, car, cow, and sheep
from both datasets are formulated, with each image cropped
with 256 pixels. The 128-dimensional dense SIFT (DSIFT)
feature was extracted using the VLFeat open source software
package and K-means clustering was used to obtain the 240-
dimensional codebook. Following the experimental setting
as [18], two cross-domain tasks are constructed: MSRC vs.
VOC2007 and VOC2007 vs. MSRC. Some images of MV
data are illustrated in Fig. 1 b).

3) CMU PIE Face Dataset: PIE contains 68 individuals
with 41,368 face images of size 32 × 32. Five sessions
including PIE1 (C05, left pose), PIE2 (C07, upward pose),
PIE3 (C09, downward pose), PIE4 (C27, frontal pose), and
PIE5 (C29, right pose) are involved. The face images were
captured by 13 different poses and 21 different illuminations
and/or expressions. Alternatively, we construct 4 cross-domain
face recognition tasks: PIE1 vs. PIE4, PIE4 vs. PIE1, PIE4 vs.
PIE5, and PIE5 vs. PIE4. Some example images of the face
dataset are illustrated in Fig. 1 c).

4) COIL20 Dataset: The COIL20 dataset contains 20
objects with 1440 gray scale images (i.e. 72 multi-pose images
per object). Each image has 32×32 pixels and 256 gray
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TABLE II
RECOGNITION ACCURACIES (%) ON 4DA DATASET WITH SURF FEATURE. NA DENOTES NO ADAPTATION, THE BEST IS TYPED IN BOLDFACE, THE

SECOND BEST IS UNDERLINED, AND * DENOTES THE METHODS WITH PSEUDO-LABEL STRATEGY.

Data Set Compared TL/DA Methods
NA SA JDA* TSL RDALR LTSL DTSL GFK JGSA* CORAL LDADA* GSL NGSLlinear NGSLrbf

C→A(1) 50.1 54.4 59.8 52.3 52.5 24.1 53.3 56.6 55.1 45.9 54.8 56.6 58.7 59.3
C→W(2) 43.1 45.8 50.1 40.3 40.7 22.9 45.8 48.1 49.7 37.8 60.2 55.9 59.7 63.4
C→D(3) 47.8 40.9 44.1 49.0 45.2 14.6 51.0 42.9 46.0 31.8 41.5 49.7 49.7 49.0
A→C(4) 42.8 44.8 44.9 43.3 43.6 21.4 44.7 44.3 40.8 37.1 38.4 45.4 46.0 45.6
A→W(5) 37.0 44.1 47.0 34.6 35.9 18.2 38.3 42.7 59.0 37.9 49.3 41.7 44.1 45.1
A→D(6) 37.2 37.7 44.2 38.9 36.9 22.3 39.5 39.9 49.4 38.5 39.1 44.0 47.1 47.1
W→C(7) 29.5 32.3 29.8 31.4 28.1 34.6 30.3 32.0 29.7 32.5 31.7 35.3 37.9 37.8
W→A(8) 34.2 43.3 42.0 34.7 31.2 39.5 34.7 38.3 34.6 39.4 35.1 40.7 41.8 42.1
W→D(9) 80.6 70.3 86.3 79.6 83.4 72.6 82.8 78.7 78.5 80.9 74.6 88.5 88.5 89.8
D→C(10) 30.1 31.1 34.4 33.1 32.3 35.4 30.7 30.8 30.2 27.8 29.9 31.8 35.3 37.6
D→A(11) 32.1 40.8 44.6 32.6 33.7 39.4 33.2 40.4 39.0 31.9 40.6 34.8 40.6 43.7
D→W(12) 72.2 74.4 83.3 72.5 72.5 74.9 76.6 80.3 75.1 69.4 74.7 84.1 85.8 86.1

Average 44.7 46.7 50.9 45.2 44.7 35.0 46.7 47.9 48.9 42.6 47.5 50.7 52.9 53.9

TABLE III
RECOGNITION ACCURACIES (%) ON 4DA DATASET WITH THE DEEP FEATURE FROM VGG-VD-16 MODEL. NA DENOTES NO ADAPTATION, THE BEST IS

TYPED IN BOLDFACE, THE SECOND BEST IS UNDERLINED, AND * DENOTES DEEP TRANSFER LEARNING METHODS.

Data Set Compared TL/DA Methods
NA SA JDA GFK JGSA CORAL LDADA DDC* DAN* RTN* GSL NGSLlinear NGSLrbf

C→A(1) 91.5 93.2 93.7 93.6 94.2 91.6 95.1 91.9 92.0 94.4 95.2 95.9 95.8
C→W(2) 83.7 86.4 94.6 86.8 93.3 78.9 94.4 85.4 90.3 96.6 96.6 99.0 98.6
C→D(3) 89.9 95.0 93.2 91.0 94.4 87.6 93.2 88.1 90.5 92.9 94.9 98.7 98.7
A→C(4) 81.7 77.1 90.1 85.3 87.2 80.1 88.7 85.0 85.1 88.5 91.2 93.6 93.1
A→W(5) 74.8 80.4 91.5 85.8 95.7 75.7 92.5 86.1 93.8 97.0 94.2 98.6 98.6
A→D(6) 77.2 89.6 91.3 85.5 94.1 76.2 90.0 89.0 92.4 94.6 95.5 95.5 96.2
W→C(7) 77.3 77.9 86.7 81.3 82.3 77.6 88.3 78.0 84.3 88.4 90.5 92.9 92.2
W→A(8) 85.5 87.3 93.8 90.2 94.9 90.7 94.3 84.9 92.1 93.1 93.1 95.9 96.0
W→D(9) 99.0 98.0 96.1 98.0 96.1 98.0 99.6 100 100 100 100 100 100
D→C(10) 75.0 78.6 84.8 82.3 85.2 73.1 84.8 81.1 82.4 84.3 86.2 91.5 91.4
D→A(11) 83.6 83.8 91.7 90.8 93.8 84.5 94.2 89.5 92.0 95.5 88.1 96.2 96.0
D→W(12) 95.8 97.0 89.2 97.3 96.4 94.9 95.0 98.2 99.0 98.8 99.7 99.7 99.7

Average 84.6 87.0 91.4 89.0 92.3 84 92.6 88.2 91.2 93.7 93.8 96.5 96.4

levels per pixel. In experiments, by following the experimental
protocol in [18], the dataset is divided into two subsets COIL1
and COIL2. Specifically, the COIL1 set contains all images
taken in the directions of [0◦, 85◦]

⋃
[180◦, 265◦], so the total

number of images is 720. Similarly, the COIL2 set contains all
images taken in the directions of [90◦, 175◦]

⋃
[270◦, 355◦].

Several example images are illustrated in Fig. 4.
The detailed information of the 4 benchmark datasets in the

experiments is summarized in Table I.

B. Experimental Setting
We strictly follow the same experimental configuration as

[36], [57], [58], which exploited all the source instances during
training process. Two trade-off parameters α and β are in-
volved in the proposed GSL model, and an extra parameter λ is
introduced in NGSL model. For fairness, the three parameters
are tuned from the parameter set [0.1, 1, 10]. Additionally,
for NGSL, two kernel functions such as linear kernel function
k(x, y) = xT y and Gaussian kernel function (i.e. Radial Basis
Function, RBF) k(x, y) = exp(−γ ‖x− y‖2) are considered.
The Gaussian parameter γ is set as 1 for all experiments of
NGSL. In experiments, SVM is used to progressively generate
pseudo target labels ŷt. In order to simplify the parameter
tuning, the dimensionality d of the invariant subspace is
constantly set as the number c of classes for each dataset.

C. Experimental Results

Results on the 4DA Dataset with Shallow SURF Feature.
The 4DA dataset is still a challenging benchmark, which
therefore attracts many competitive approaches for evaluation
and comparison. The recognition accuracies are reported in
Table II, from which we observe that the proposed GSL ranks
the second (50.7%) in average and slightly inferior to JDA
(50.9%), but the proposed NGSL is 3% higher than JDA
and shows state-of-the-art performance. The reason is that
the combination of the global information alignment through
the proposed subspace guiding learning mechanism in this
paper can effectively narrow the domain gap between source
and target domains. Also, we observe that the methods with
pseudo-label strategy such as JDA, JGSA, LDADA and our
methods outperform others, and the proposed student feedback
stage with pseudo target labels is confirmed to be effective. In
addition, the proposed NGSL shows superior performance and
proves that the domain gap is generally caused by nonlinear
shifts in real applications. Notably, we find that a proper
feature pre-processing can improve the performance of the pro-
posed models. Two kinds of pre-processing methods including
l2-normalization and z-score plus l2-norm normalization are
considered. The comparison results on 4DA tasks with SURF
features are shown in Fig. 5, from which we observe that z-
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TABLE IV
RECOGNITION ACCURACIES (%) ON MSVC-VOC2007 DATASET. NA DENOTES NO ADAPTATION, THE BEST IS TYPED IN BOLDFACE, THE SECOND BEST

IS UNDERLINED AND * DENOTES THE RESULTS OF GFK BASED ON 1-NN CLASSIFIER.

Data Set Compared TL/DA Methods
NA SA JDA TSL RDALR LTSL DTSL GFK* JGSA LDADA CORAL GSL NGSLlinear NGSLrbf

M→V(1) 37.1 31.8 38.2 32.4 37.5 38.0 38.0 28.8 38.7 25.1 33.9 41.8 40.7 42.0
V→M(2) 55.5 46.0 59.3 43.2 62.3 67.1 56.4 48.9 49.3 43.2 54.1 66.4 64.7 68.2
Average 46.3 38.9 48.8 37.8 49.9 52.6 47.2 38.9 44.0 34.2 44.0 54.1 52.7 55.1

TABLE V
RECOGNITION ACCURACIES (%) ON COIL20 DATASET. NA DENOTES NO ADAPTATION, THE BEST IS TYPED IN BOLDFACE, THE SECOND BEST IS

UNDERLINED, AND * DENOTES THE RESULTS OF GFK BASED ON 1-NN CLASSIFIER.

Data Set Compared TL/DA Methods
NA SA JDA TSL RDALR LTSL DTSL GFK* JGSA LDADA CORAL GSL NGSLlinear NGSLrbf

C1→C2(1) 82.7 86.7 88.7 80.0 80.7 75.4 84.6 72.5 85.1 77.9 84.9 88.8 92.9 92.1
C2→C1(2) 84.0 90.6 93.1 75.6 78.8 72.2 84.2 74.2 83.9 81.5 87.9 89.2 89.3 90.3

Average 83.3 88.7 90.9 77.8 79.7 73.8 84.4 73.3 84.5 79.7 86.4 89.0 91.1 91.2

TABLE VI
RECOGNITION ACCURACIES (%) ON PIE DATASET. NA DENOTES NO ADAPTATION, THE BEST IS TYPED IN BOLDFACE, THE SECOND BEST IS

UNDERLINED, AND * DENOTES THE RESULTS OF GFK BASED ON 1-NN CLASSIFIER.

Data Set Compared Transfer Learning Methods
NA SA JDA∗ TSL RDALR LTSL DTSL GFK* JGSA LDADA CORAL GSL NGSLlinear NGSLrbf

P1→P4(1) 51.8 42.8 84.5 46.7 41.7 20.0 81.3 31.2 76.1 35.6 26.0 84.8 83.7 75.1
P4→P1(2) 65.9 51.4 80.6 59.2 48.1 52.8 79.7 34.2 73.3 39.5 36.6 83.9 83.1 81.1
P4→P5(3) 52.0 47.9 54.6 45.2 48.8 47.0 71.0 37.4 55.3 26.9 40.8 71.8 65.2 67.0
P5→P4(4) 53.4 43.1 57.0 53.1 44.5 23.6 66.1 31.3 64.4 29.3 30.2 63.2 64.4 70.0

Average 55.8 53.8 69.2 51.1 45.8 35.9 74.5 33.5 67.3 32.8 33.4 75.9 74.1 73.3
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b) NGSL
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Fig. 5. Comparison between feature pre-processing methods on 4DA dataset
with SURF features. a) denotes the results of GSL model. b) denotes the
results of NGSL model (linear kernel). The figure is better viewed in color.

score+l2 normalization shows better performance.
Results on the 4DA Dataset with Deep Feature. Following

[49], the experimental comparisons on deep features are pre-
sented in Table III, from which we observe the significantly
better results than SURF feature for all methods. From the
results, we have the following observations:
• The proposed GSL outperforms other state-of-the-art

non-deep transfer learning methods, such as JDA, JGSA.
• The proposed NGSL shows significant improvement

(3.9%) in average over state-of-the-art models.
• By comparing with deep transfer learning methods de-

noted with *, the proposed GSL is merely slightly better
than RTN [52], while the proposed NGSL outperforms
state-of-the-art RTN with 2.8% in accuracy.

• The comparison shows that the proposed GSL, as a
shallow learning method, has attractive competitiveness.

Results on the MSRC-VOC2007 (MV) Dataset. The re-
sults on MV dataset are shown in Table IV, from which we can
observe that GSL outperforms state-of-the-art LTSL method
with 1.5% in average accuracy. Moreover, the proposed NGSL
with Gaussian kernel shows further improvement and achieves
state-of-the-art performance (55.1%) than other competitive
methods. The results demonstrate that the proposed GSL and
NGSL models can effectively help reduce the distribution
discrepancy across different visual domains.

Results on the COIL20 Dataset. The results on COIL20
dataset are shown in Table V, from which we can see that
the proposed GSL shows slightly inferior results than the
competitive JDA method. This may be due to that the COIL20
data consists of 3D objects with nonlinear transfer function
across poses. Therefore, the proposed NGSL shows the best
performance (91.2%), and the effectiveness of the proposed
NGSL in nonlinear domain shift is demonstrated.

Results on the PIE Dataset. The experimental results
are shown in Table VI. Compared with second-best method
DTSL [18], GSL wins 3 out of 4 tasks and achieves state-of-
the-art performance over others. Regarding the baseline with-
out adaptation (i.e. NA), the average accuracy increases from
55.8% to 75.9%. The average accuracies of both NGSLlinear
and NGALrbf perform slightly inferior to GSL. However, for
the task of P5→P4, NGSL is 1.2% and 6.8% higher than
GSL. The reason may be that PIE dataset is encoded with
1024-dimensional pixel feature, and both GSL and NGSL set
the dimensionality of the invariant subspace as the number c
(c = 68 on PIE dataset) of classes. GSL maps the dimensions
of the original space D (1,024) to c (68), and the dimension
loss is (1024−68)/1024 ≈ 93.4%. However, NGSL maps the
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Fig. 6. Convergence of Algorithm 1 and Algorithm 3 on benchmark cross-domain datasets. The 1st row represents the convergence of the GSL model and
the 2nd row represents the convergence of the NGSL model.
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Fig. 7. Convergence and performance variation (%) of Algorithm 2 (GSL) and Algorithm 4 (NGSL) on benchmark cross-domain datasets. The 1st row
represents the algorithmic convergence and the 2nd row shows the performance variation with iterations.

dimension n (the number of images) to c, which results in a
higher dimension loss of 98.6%∼99.0%. Note that, n=1632,
3329, and 3332 for P5, P4, and P1, respectively. Obviously,
NGSL loses more information, such that NGSL does not
perform well. Due to the number n = 1632 of P5 is close to
D, therefore, a better cross-domain recognition performance
is achieved by NGSL for the task P5→P4.

VI. MODEL ANALYSIS AND DISCUSSION

In this section, the convergence, parameter sensitivity and
ablation analysis of models are presented and discussed.

A. Convergence

The algorithms for solving the proposed GSL and NGSL
models consist of two stages: inner-loop (Algorithm 1 and
Algorithm 3) and outer-loop (Algorithm 2 and Algorithm 4).

1) Convergence of Algorithm 1 and Algorithm 3 (Inner-
loop): We empirically show the convergence of inner-loop in
Fig. 6 by running Algorithm 1 (GSL) and Algorithm 2 (NGSL)
on several datasets. Fig. 6 a)-Fig. 6 e) show the convergence of

the proposed GSL inner loop (Algorithm 1) on 4DA (C→A,
C→W, C→D, and A→C), MV, COIL20 and PIE datasets,
respectively. Similarly, Fig. 6 f)-Fig. 6 j) show the convergence
of the proposed NGSL inner loop (Algorithm 3). We can
observe that the proposed GSL model converges at the 5-th
iteration and the proposed NGSL model converges after more
iterations. In order to reduce the training time, we uniformly
set the number of iterations of inner-loop in experiments as 5
(except the PIE data that requires 15 iterations). Note that the
optimality gap in each iteration is proved to be monotonically
decreasing in Section III.D.

2) Convergence of Algorithm 2 and Algorithm 4 (Outer-
loop): As discussed in Fig. 6, the first stage (inner loop) of the
proposed GSL and NGSL can quickly converge to an optimum
after several iterations. Due to that the first stage (inner loop)
and the second stage (outer loop) are relatively independent,
therefore, it is also necessary to check the convergence and
performance variation with iterations by running the complete
GSL and NGSL algorithms on several datasets. Although the
convergence cannot be theoretically guaranteed, the optimality
gap 4Pt of the proposed models on 4DA (C→A), MSRC-
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Fig. 8. Performance variations of the proposed GSL and NGSL with respect to different values of α and β on benchmark cross-domain datasets.

VOC (M→V), COIL20 (COIL1→COIL2), and PIE (P5→P4)
is generally decreasing as shown in the first row of Fig. 7.
Therefore, the proposed models can progressively converge to
an optimal solution by alternatively optimizing the two stages.
Further, we show the performance variation on several datasets
with iterations in the second row of Fig. 7. From the variations,
we can observe that the classification accuracy is increasing
with the alternative and progressive learning between the first
stage and the second stage for both GSL and NGSL, which
can be analogized to the process of “climb the stairs”. Note
that when 4Pt becomes extremely small, the classification
accuracy becomes stable and unchanged, therefore 4Pt can
intuitively interpret the height of the “stairs”. The key idea
of guide learning, i.e. “the students surpasses the master”
is validated. In experiments, we set the maximum iteration
number T in Algorithm 2 and Algorithm 4 as 10.

B. Parameter Sensitivity

In order to explore the model’s sensitivity to trade-off
parameters, we conduct experiments to study the parameter
sensitivity of our models. In GSL, two trade-off parameters
are involved, i.e. α and β. Specifically, the two parameters are
tuned from the given set [10−1, 1, 101]. For NGSL, an extra
parameter λ is introduced for avoiding the irreversibility of
matrix. For easier analysis, we focus on the two trade-off pa-
rameters α and β. Note that in NGSL analysis, we set λ = 101

for 4DA and COIL20 datasets, λ = 1 for MV dataset, and
λ = 10−1 for PIE dataset. The classification accuracies with
respect to different trade-off parameters by using GSL and
NGSL are shown in Fig. 8, from which we can observe that the
parameter β has a relatively larger impact on the performance.
The reason is that the parameter β reflects the importance
of the data dependent subspace guidance term. We can see
from Fig. 8 that a larger β could result in better performance
except the MSRC-VOC data in Fig. 8 c) and the PIE data in
Fig. 8 e). In fact, this commonly happens in computer vision
and machine learning tasks, due to the data characteristic. As
shown in Fig. 8 e), a smaller β is better, which denotes that

TABLE VII
RESULTS OF ABLATION ANALYSIS.

Tasks GSL w/o LRC w/o SG w/o FB
C→A 56.6 55.6 53.9 55.7
M→V 41.8 41.8 41.8 39.3

C1→C2 88.8 86.7 81.0 83.9
Average 62.4 61.4 58.9 59.6

the subspace guidance term contributes less. This may be due
to the intrinsic similarity between faces in PIE dataset, such
that the reconstruction based data guidance term contributes
more to domain adaptation. Generally, a larger β contributes
much on the domain discrepancy reduction and a smaller α
makes more relaxation for reconstruction. The parameters can
be easily tuned in experiments.

C. Ablation Analysis

In the proposed GSL models, subspace guidance (SG),
feedback stage (FB) and low-rank constraint (LRC) are pre-
sented. For better insight of the model, the ablation analysis
is presented. First, by setting the two parameter α and β as
0, respectively, the ablation analysis of SG and LRC can be
discussed. The experimental results on three datasets (4DA:
C→A, MSRC-VOC: M→V, and COIL20: C1→C2;) by using
the model without (w/o) SG term and without (w/o) LRC
term are presented in Table VII. From the results, we can
observe that the performance is significantly degraded from
62.4% to 58.9% without SG term, and the effect of the
proposed subspace guidance is validated. Also, by dropping
the LRC term, the accuracy is 1% decreased. Second, for
verifying the effectiveness of the proposed two-stage feedback
strategy (FB), as can be seen in Table VII, by removing the
pseudo label update stage (w/o FB), the average accuracy
is significantly degraded from 62.4% to 59.6%. From the
ablation analysis of each part in GSL, we can conclude that
the performance benefits from the proposed subspace and
label guidance mechanism. The significance of the proposed
progressive guide learning paradigms is verified.
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VII. CONCLUSION

We propose a new transfer learning framework called Guide
Subspace Learning (GSL) for unsupervised domain adaptation,
which consists of couple projections based subspace guidance,
low-rank reconstruction based data guidance and pseudo-label
relaxation based label guidance. The proposed GSL is inspired
by the “teacher teaches (source domain) and student feedback
(target domain)” learning mode in human world, which aims
to progressively seek an invariant, discriminative and domain
agnostic target subspace. The teacher teaching stage proposes
to learn the domain-specific projections. The student feedback
stage proposes to provide the “feedback information” (i.e. the
pseudo target labels) for the teacher teaching stage model. The
proposed GSL holds the ultimate objective of “the student
surpasses the master”. Furthermore, the kernel embedding
is introduced and a nonlinear GSL method called NGSL is
derived, which aims to handle the nonlinear domain shift in
high dimensional feature spaces (i.e. RKHS). In the training
phase, a two-stage guide learning mechanism by intuitively
following the “climb the stairs” process of growing step by
step is proposed. Experimental results on challenging bench-
mark datasets demonstrate that our methods outperform many
state-of-the-art TL/DA methods.

APPENDIX A
DEDUCTION OF THE PROPOSED NGSL

Let φ: x → φ(x) be a nonlinear mapping from the raw
feature space RD into a reproducing kernel Hilbert space
(RKHS)H. The kernel Gram matrix K is defined as [K]i,j =<
φ(xi), φ(xj) >H= φ(xi)

Tφ(xj) = k(xi, xj), where k(·) is a
kernel function, such as sigmoid and RBF functions.

Let K = φ(X)Tφ(X), Ks = φ(X)Tφ(Xs) and Kt =
φ(X)Tφ(Xt) denote the kernel Gram matrix. Then for rep-
resenting the source and target subspaces Ps and Pt, one
proposition is provided as follows.

Proposition 1: There exist optimal Ps and Pt that can be
intuitively represented as a linear combination of φ(X) as

Ps = φ(X)Φs;Pt = φ(X)Φt (29)

where Φs and Φt are the representation coefficient matrices.
Therefore, by substituting Ps and Pt into Eq.(6), there is

min
Φs,Φt,M,Z

β ‖φ(X)Φs − φ(X)Φt‖2F

+
∥∥ΦTt φ(X)Tφ(Xt)− ΦTs φ(X)Tφ(Xs)Z

∥∥2

F

+ α ‖Z‖∗ +
1

2

∥∥ΦTt φ(X)Tφ(X)− Y ◦M
∥∥2

F

s.t. M < 0
(30)

We have the kernel Gram matrix K = φ(X)Tφ(X), Ks =
φ(X)Tφ(Xs) and Kt = φ(X)Tφ(Xt), then the problem (30)
can be further transformed as follows:

min
Φs,Φt,M,Z

β ‖φ(X)Φs − φ(X)Φt‖2F +
∥∥ΦTt Kt − ΦTsKsZ

∥∥2

F

+ α ‖Z‖∗ +
1

2

∥∥ΦTt K − Y ◦M
∥∥2

F

s.t. M < 0
(31)

APPENDIX B
OPTIMIZATION PROCESS OF NGSL MODEL

The optimization algorithm is similar with the GSL present-
ed in the main text. Specifically, the optimization details of
NGSL are clearly derived as follows.

By introducing an auxiliary variable L in problem (31),
which is then reformulated as:

min
Φs,Φt,M,Z,L

β ‖φ(X)Φs − φ(X)Φt‖2F +
∥∥ΦTt Kt − ΦTsKsZ

∥∥2

F

+ α ‖L‖∗ +
1

2

∥∥ΦTt K − Y ◦M
∥∥2

F

s.t. M < 0, Z = L
(32)

Therefore, the Augmented Lagrange multipliers function
can be written as

LΦs,Φt,Z,L,M =β ‖φ(X)Φs − φ(X)Φt‖2F
+
∥∥ΦTt Kt − ΦTsKsZ

∥∥2

F
+ α ‖L‖∗

+
1

2

∥∥ΦTt K − Y ◦M
∥∥2

F

+ tr(Y T1 (Z − L)) +
µ

2
‖Z − L‖2F

(33)

where Y1 denotes the Lagrange multiplier and µ > 0 is
a penalty parameter. Then, by using variables alternating
strategy, we can derive the solution of each variable as follows.

Updating Φt: For Φt, by ignoring the irrelevant terms with
respect to Φt, we obtain:

Φt = argmin
Φt
β ‖φ(X)Φs − φ(X)Φt‖2F

+
∥∥ΦTt Kt − ΦTsKsZ

∥∥2

F
+

1

2

∥∥ΦTt K − Y ◦M
∥∥2

F

(34)

It is easy to get the closed-form solution of problem (34) as

Φt = (2βK+2KtK
T
t +KKT )−1(2βKΦs+2KtA

T
1 +KAT2 )

(35)
where A1 = ΦTsKsZ and A2 = Y ◦M .

However, the matrix that needs inverse operation in Eq.(35)
may not be full rank and irreversible. So, we introduce a
small positive constant λ in order to obtain numerically stable
solution of Φt, there is:

Φ∗t = (2βK+2KtK
T
t +KKT+λI)−1(2βKΦs+2KtA

T
1 +KAT2 )

(36)
Updating Φs: Similar to the update procedure of Φt, by

setting the derivative with respect to Φs as zero. With a small
constant λ > 0, the closed-form solution can be solved as:

Φ∗s = (2βK+ 2KsZZ
TKT

s +λI)−1(2βKΦt+ 2KsZK
T
t Φt)
(37)

Updating Z: By dropping those terms without containing
variable Z in (33), we get:

Z = argmin
Z

∥∥ΦTt Kt − ΦTsKsZ
∥∥2

F
+ tr(Y T1 (Z − L))

+
µ

2
‖Z − L‖2F

(38)

The closed-form solution of (38) can be easily obtained as:

Z∗ = (2KsTΦsΦ
T
sKs + µI)−1(2KsTΦsΦ

T
t Kt + µA3)

(39)
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where A3 = L− Y1/µ.
Updating L: By dropping those terms without containing

variable L in (33), we can deduce the following form:

L = argmin
L
α ‖L‖∗ +

µ

2
‖L− (Z + Y1/µ)‖2F (40)

The solution of problem (40) is the same as Eq.(18) by using
Theorem 1 and singular value thresholding (SVT) algorithm.

Updating M : By dropping those terms irrelevant to M in
(33), we obtain:

M = argmin
M

1

2

∥∥ΦTt K − Y ◦M
∥∥2

F
, s.t. M < 0 (41)

By defining A4 = ΦTt K and considering the {i, j}-th
element M{i,j} of the matrix M , the above problem can be
further written as:

M{i,j} = min
M{i,j}

1

2
(A4{i,j} − Y{i,j}M{i,j})2, s.t. M{i,j} ≥ 0

(42)
By computing the derivative of the problem, the optimal

solution of M{i,j} can be solved as:

M∗{i,j} = max(A4{i,j}/Y{i,j}, 0) (43)

Update Y1, µ: {
Y1 = Y1 + µ(Z − L)
µ = min(ρµ, µmax)

(44)

The above optimization process of the NGSL can be referred
to as Algorithm 3 in the main body of the paper.
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