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Abstract. Zero-shot Learning (ZSL) aims to transfer knowledge from
seen image categories to unseen ones by leveraging semantic information.
It is generally assumed that the seen and unseen classes share a com-
mon semantic space. A number of methods propose to design a common
space to accomplish the projection between image and class embeddings
by learning a compatibility function, which make up sample pairs to
train the object function. However, considering the drawbacks of pre-
vious compatibility function, we design a new compatibility function in
this paper. Different from previous compatibility pattern, our proposed
compatibility function is more discriminative by employing label vectors,
which can measure the similarity between the projected image features
and all seen class prototypes. Extensive experiments on four benchmark
datasets show the effectiveness of our proposed approach.
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1 Introduction

At present a general strategy for ZSL is that both seen and unseen classes share a
common semantic space. In this way, some knowledge learned during the training
stage is able to transfer to the testing stage. Semantic space can be semantic
attribute space [8], [7] or semantic word vector space [4]. In semantic space,
the labels of seen and unseen classes can be represented as vectors called class
prototypes [5].

Considering the projection from visual to semantic space may cause loss of
available features, a large number of previous methods propose to employ a
parameter to connect the image and semantic embedding [8], [1], [17]. The pa-
rameter is the visual-semantic mapping matrix to be learned which most existing
approaches of ZSL construct the common space in this way. The differences of
them mainly focus on how to represent the image and semantic vectors and
how to design different regularization terms. However, the formulation of the
bilinear compatibility is always fixed. Though it is a general framework that can
be applied to any learning problem with more than one modality, ZSL solves
the problem which the visual and semantic space are completely independent
to each other. Therefore, it is doubtful whether the common space with this
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compatibility function of applying a parameter is discriminative enough to com-
plete classification. In addition, almost all of the object functions are designed
by employing a ranking formulation. Due to arranging a corresponding and a
non-corresponding semantic vector for each visual vector, the choose of sample
pairs may cause discriminative information loss on the other different classes.
Besides, how to choose and how much to choose positive and negative pairs are
key to the bilinear compatibility function. When the number of sample pairs is
not appropriate, it is easy to cause overfitting to seen classes while invalid to
unseen classes.
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Fig. 1. The framework of our proposed method. In the flowchart, we can see that we
first construct the visual and semantic space by feature extraction and attribute an-
notations. Then we build up a common space to align visual and semantic space by
applying two parameters W1 and W2 separately. To make the common space discrimi-
native, we combine the common space with the label space which design a compatibility
function by also applying W1 and W2. Different from previous compatibility function,
we don’t design positive and negative pairs and avoid the overfitting of the training
stage. Our method aims to utilize labels of all seen samples to construct robust rela-
tionship between visual and corresponding semantic feature.

Under these circumstances, it is natural for us to consider whether only us-
ing a parameter to accomplish the procedure of compatibility is reasonable. In
addition, designing a objection function which can reduce the discriminative
information loss during the process of compatibility and generalize well to test
examples is encouraging. To address above mentioned pitfalls, as is illustrated in
Fig. 1, we propose to construct a common embedding space and explore struc-
ture for both visual and semantic representations simultaneously. Specifically,
the proposed method utilizes two parameters to denote the projection for visual
feature and semantic feature separately. They align the structure of visual and
semantic space in the common space, at the same time a linear transformation
is utilized to attributes, which can combine different attributes and make at-
tributes of different object classes more discriminative. To make the common
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space discriminative enough to complete classification, we propose a compatibil-
ity function by using the same two parameters in the common space. Different
from the previous compatibility methods, we expect our compatibility function
can represent each sample’s true label which we add label space to our model as
seen class classifiers. Our compatibility function no longer takes a sample of pos-
itive and negative pairs, instead we make a similarity contrast between each seen
sample to all seen class prototypes which ensures that the compatibility between
projected visual feature and corresponding class prototype is higher than that of
all other class prototypes and thus can preserve the discriminative information
for different classes. In this way, each seen sample can get close to corresponding
class prototype and get far away any other class prototypes. We confirm that
the common space combines with the proposed compatibility function can learn
more robust relationships between visual and semantic features.

2 Related Work

In order to reduce the dependency on the lots of labeled datas, ZSL is proposed
by [10]. It aims to tackle the problem of recognizing the classes that have never
been trained before. Training attribute classifiers is an intuitive way to solve
ZSL. For example, [9] proposes the DAP(Direct Attribute Predict) model and
IAP(Indirect Attribute Predict) model. Considering the unreliability of the at-
tribute classifiers, i.e. they can accurately predict attributes but they maybe
poorly classify, lots of methods then solve ZSL based on label embedding. [4]
and [8] both employ a ranking formulation for zero-shot learning using visual
and semantic representations and recognize an image by the score of ranking
formulation. Then [1] relates the image and semantic features linearly in a joint
embedding space with several compatibility functions.

3 Proposed Method

3.1 Mathematical Notations

Suppose there are cs seen classes with ns labeled samples Φs = {Xs, As, Zs}
and cu unseen classes with nu unlabeled samples Φu = {Xu, Au, Zu}. Xs ∈
RNs×d and Xu ∈ RNu×d are seen and unseen images visual feature vectors. Ns

is the number of seen samples and Nu is the number of unseen samples, d is
the dimension of visual features. As ∈ RNs×m and Au ∈ RNu×m are seen and
unseen samples corresponding semantic features, m is the dimension of semantic
features. Zs and Zu are the prototype semantic representations of the seen and
unseen classes. In zero-shot recognition settings, the seen and unseen classes
are disjoint: Zs ∩ Zu = �. As and Au are composed of prototype semantic
representations of the seen and unseen classes respectively. The task of ZSL is
to estimate Au and then get labels of unseen samples.
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3.2 Model Formulation

The key to solve ZSL task is to build up relationship between visual space and
semantic space. Considering there exists lots of typical problems when using ridge
regression to accomplish the projection from the visual space to semantic space,
we explore a common space using two parameters to contact the visual space with
semantic space. One matrix completes the dimension transformation from the
visual space to common space. [6] points out that due to there are correlations
among the attributes, it is necessary to build up relationship between attributes
and attributes. Similarly, we use a linear transformation matrix to deal with
the semantic vectors. In this way, the other matrix accomplishes the projection
from the semantic space to common space and gets more discriminative semantic
features. Then the objective function can be

min
W1,W2

∥∥W1X
T
s −W2A

T
s

∥∥2
F

(1)

where ‖.‖F denotes the Frobenius norm, W1 and W2 denote the learned projec-
tion matrix for visual feature Xs and semantic feature As respectively. Thus the
visual space and semantic space can be projected to common space.

Considering the discriminative information loss on the other different classes
by using previous compatibility function of applying a parameter, we want to
design a compatibility function to preserve the discriminative information for d-
ifferent classes and make the common space more discriminative. Thus we design
our compatibility function by utilizing the seen samples’ labels. Specifically, the
relationship between projected visual and semantic features is learned with la-
bels by applying the same two parameters of the projection process, as is shown
in Fig. 1:

min
W1,W2

∥∥XsW
T
1 W2Z

T
s − Y

∥∥2
F (2)

where Y = [y1, y2, · · · , yNs
] ∈ RNs×cs and yi is a one-hot vector which represents

the true label of xi. Zs is the prototype semantic representations of the seen
classes. Thus, the common space can connect with the label space which makes
the common space more discriminative. In addition, the proposed compatibility
function preserve the discriminative information for different classes.

Then we consider combining the two proposed terms to accomplish more
effective classification by using two parameters. The final object function can be

min
W1,W2

∥∥W1X
T
s −W2A

T
s

∥∥2
F

+ β
∥∥XsW

T
1 W2Z

T
s − Y

∥∥2
F

+ λ1 ‖W1‖2F + λ2 ‖W2‖2F
(3)

λ1 and λ2 are the coefficient of the regularizers, β is a weighting coefficient to
control the importance of the first and second terms.

In summary, we learn a discriminative common space which can accomplish
the projection of visual and semantic features respectively and force W1x

T
i to
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be as close as W2a
T
j in the common space if aj is xi corresponding semantic

indication, i.e. i=j. Besides, considering the case that aj is not xi corresponding
semantic indication, i.e. i 6=j, we make a similarity contrast between each seen
sample to all seen class prototypes which ensures that the compatibility between
projected visual feature and corresponding class prototype is higher than that of
all other class prototypes. Thus we can preserve the discriminative information
for different classes and get a good recognition effect.

3.3 Optimization

It is obvious that Eq.(3) is not convex for W1 and W2 simultaneously, but it
is convex for each of them separately. To optimise the objective in Eq.(3), we
use an alternating optimization method. Specifically, we alternate between the
following subproblems:

Fix W2 and update W1 To optimise Eq.(3), we can calculate derivative of
W1 and set it zero, then can get the Sylvester equation:

(βW2Z
T
s ZsW

T
2 )W1 +W1(λ1(XT

s Xs)
−1 + I)

= (W2A
T
s Xs + βW2Z

T
s Y

TXs)(X
T
s Xs)

−1
(4)

where I is the identity matrix, A1 = βW2Z
T
s ZsW

T
2 , B1 = λ1(XT

s Xs)
−1 + I,

C1 = (W2A
T
s Xs + βW2Z

T
s Y

TXs)(X
T
s Xs)

−1. The Sylvester equation can be
solved easily in MATLAB:

W1 = sylvester(A1, B1, C1) (5)

Fix W1 and update W2 This problem can be solved in the same way as the
solution to W1, then can get the Sylvester equation:

(βW1X
T
s XsW

T
1 )W2 +W2(AT

s As + λ2I)(ZT
s Zs)

−1

= (W1X
T
s As + βW1X

T
s Y Zs)(Z

T
s Zs)

−1 (6)

where A2 = (βW1X
T
s XsW

T
1 ), B2 = (AT

s As + λ2I)(ZT
s Zs)

−1, I is the identity

matrix, C2 = (W1X
T
s As + βW1X

T
s Y As)(Z

T
s Zs)

−1
. The Sylvester equation can

be solved easily in MATLAB:

W2 = sylvester(A2, B2, C2) (7)

In our experiments, the optimization process always converges after seven iter-
ations, usually less than 25.

3.4 ZSL Classification

Due to we have two fields of restriction on the common space, we can perform
ZSL in two methods.
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Classification applying the compatibility function We can employ the
learned W1 and W2 to build up relationships between the test sample xu and
unseen classes Au. Specifically, considering the dimension of visual space is higher
than semantic space, we classify in the visual space:

f(xui ) = arg min
j

d(xui , a
u
jW

T
2 W1) (8)

Classification applying the projected function We can utilize the learned
W1 to accomplish the projection of original image data. For the unseen class
prototypes, we project their attribute representations to the common space by
the transformation matrix W2.

f(xui ) = arg min
j

d(xuiW
T
1 , a

u
jW

T
2 ) (9)

where xui is the visual represent of the i-th unseen sample, W1 and W2 are the
compatibility parameters, auj is prototype attribute vector of the j-th unseen
class, d is a cosine distance function, and f() returns the predicted label of the
unseen sample.

4 Experiments

4.1 Datasets and Settings

Datasets We perform experiments on four benchmark ZSL datasets, i.e. Ani-
mals with Attributes (AwA) [9], Caltech-UCSD Birds-200-2011 (CUB-200) [16],
aPascal & aYahoo (aP&Y) [3], and SUN Attribute (SUN) [12]. The summary of
these datasets is given in Table 1.

Table 1. Statistics of different datasets: AWA, CUB, aP&Y, SUN in terms of instance
numbers, dimension of semantic vector, seen and unseen classes numbers

Database Instance Attributes Seen / Unseen

AwA 30475 85 40 /10
CUB-200 11788 312 150 /50
aP&Y 15339 64 20 / 12
SUN 14340 102 707 / 10

Parameter settings In our experiments, we use GoogleNet features [15] which
is the 1024D activation of the final pooling layer as in [1]. We use attribute
annotations as the semantic space for the datasets.
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4.2 Evaluations of the Proposed Framework

We compare our method with previous methods in Table 2. Our proposed mod-
el improves the state-of-the-art performance on the datasets. For AWA dataset,
our model achieves 85.16% and 85.03% separately by using proposed two recog-
nition methods. Both of them obtain comparative results and achieve the best
performance. For CUB dataset, our result is lower than SAE [7](61.4%) and S-
CoRe [11](58.4%). Compared with the previous models that applying traditional
compatibility function, such as ALE [8] and SJE [1], our proposed method ob-
serves a significant improvement, which demonstrates the effectiveness of the
common space. For aP&Y dataset, our result ranks the second. The split of
aP&Y dataset is 20/12. The reason may lie in a smaller number of seen classes,
which causes less discriminative on label space. For SUN dataset, our model
achieves 92.0%, which is higher than almost all previous methods. The encour-
aging result further confirms that it is effective to employ label vectors in the
common space.

Table 2. Zero-shot recognition results on AWA, CUB, aP&Y, SUN(%). CF means that
we use compatibility function to classify and PF means that we use projected function
to classify. ’∗’ denotes the visual features are extracted by the imagenet-vgg-verydeep-
19 [14] pre-trained model.

Method AWA CUB aP&Y SUN

DAP∗ [9] 57.2 44.5 38.2 72.0
IAP [9] 57.2 36.7 40.8
SynC [2] 72.9 54.5 62.8
SJE [1] 66.7 50.1
LatEM [17] 71.9 45.5
ALE [8] 49.7 35.8 30.9 38.2
ESZSL∗ [13] 75.3 24.2 82.1
DeViSE [4] 56.7 33.5
SCoRe [11] 78.3 58.4
SAE [7] 84.7 61.4 55.4 91.0

CF(Ours) 85.16 54.71 50.80 92.00
PF(Ours) 85.03 56.06 47.50 90.00

5 Conclusion

In this paper, we use attributes as semantic vector to construct semantic space
and evaluate our method on four datasets. We employ two parameters to sepa-
rately embed the visual and semantic features into a common embedding space
and the common space is combined with the label space. In this way, the learned
compatibility parameters will be discriminative with category information. It is
reasonable to think that the common space combined with label space is the
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key to effective ZSL. The explicit and closed solution makes the method efficien-
t to optimize. Our method obtains competitive results on the four benchmark
datasets.
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