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Abstract. Fine-grained image classification concerns categorization at
subordinate levels, where the distinction between inter-class objects is
very subtle and highly local. Recently, Convolutional Neural Networks
(CNNs) have almost yielded the best results on the basic image classi-
fication tasks. In CNN, the direct pooling operation is always used to
resize the last convolutional feature maps from n × n × c to 1 × 1 × c
for feature representation. However, such pooling operation may lead to
extreme saliency compression of feature map, especially in fine-grained
image classification. In this paper, to more deeply explore the repre-
sentation ability of the feature map, we propose a Pixel Saliency based
Encoding method, which is called PS-CNN. First, in our PS-CNN, the
saliency matrix is obtained by evaluating the saliency of each pixel in the
feature map. Then, we segment the original feature maps into multiple
ones with multiple generated binary masks via thresholding on the ob-
tained saliency matrix, and subsequently squeeze those masked feature
maps into the encoded ones. Finally, a fine-grained feature representation
is generated by concatenating the original feature maps with the encoded
ones. Experimental results show that our simple yet powerful PS-CNN
outperforms state-of-the-art classification approaches. Specially, we can
achieve 89.1% classification accuracy on the Aircraft, 92.3% on the Stan-
ford Car, and 81.9% on the NABirds.

Keywords: Pixel saliency, Feature encoding, Fine-grained, Image clas-
sification

1 Introduction

Fine-grained image classification aims to recognize similar sub-categories in the
same basic-level category [1–3]. More specifically, it refers to the task of assigning
plenty of similar input images with specific labels from a fixed set of categories by
using computer vision algorithms. Till now, for such categorization in computer
vision area, Convolutional Neural Networks (CNNs) have played a vital role.
The impressive representation ability of CNNs, e.g., VGG [4], GoogleNet [5],
ResNet [1], and DenseNet [2], is also demonstrated in object detection [6], face
recognition [7], and many other vision tasks. By using the CNN models pre-
trained on the ImageNet, many image classification problems are well addressed
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and their classification accuracies almost approach to their extreme performance.
However, fine-grained image classification, a sub-category of basic-level category,
is still a challenging task in computer vision area due to high intra-class variances
caused by deformation, view angle, illumination, and occlusion of images and low
inter-class variances which are tiny differences occurred only in some local regions
between inter-class object and these can only be recognized by certain experts.
Moreover, we are faced with several under-solved problems in fine-grained image
classification. One problem is that there are limited fine-grained images with
labels due to the high cost of labeling and cleaning when collecting data [8].
Another is the difficulty of acquiring better annotations and bounding boxes
which are helpful in the process of classifying fine-grained images.

For image classification, CNNs are always exceptionally powerful models.
First, apart from some simple image pre-processing, CNN always uses the raw
images with a pre-defined size as its input. Then, CNN progressively learns the
low-level (detail), middle-level, and high-level (abstract) features from bottom,
intermediate to top convolutional layers without any hand-craft feature extrac-
tion policy like SIFT and HOG [9] [10]. Finally, the discriminating feature maps
with a pre-defined size from top-level layers are obtained. At the same time,
if the size of input images, in some case, increases, the size of output convolu-
tional layers also increases. In general way, we can directly perform an average
or max pooling to produce the last feature representation which then will be
sent to classifier of network. However, such coarse pooling operation will lead to
extreme saliency compression of feature map especially for fine-grained image
classification that concentrates on more fine-grained structure information. In
fact, saliency compression is a bottleneck for information flow of CNN.

To solve aforementioned extreme saliency compression problem when classi-
fying fine-grained images, we propose a Pixel Saliency based Encoding method
for CNN. The motivations for our method are presented as follows.

(1) Considering the characteristic, tiny differences only occurred in some local
regions, of fine-grained images, a simple solution for fine-grained image clas-
sification is magnifying images on both training and testing phases to ‘look’
into more details [11]. The magnified input images will result in an increasing
size of the last convolutional feature map. If still using the straightforward
coarse Avg/Max pooling operation as usual, it will lose a lot of detailed
structural information which will be help for classification. Therefore, the
method of re-encoding the feature map should be adopted to explore the
crytic information for last convolutional feature map.

(2) In image segmentation area [6, 12], it is expected that different pixels in a
feature map with different range of saliency are explicitly segmented so that
the interest of object is revealed and the background is hidden in a feature
map, which is also ours goal here for fine-grained image classification. We
argue this separation is necessary for recognizing the regions of interest and
will be helpful for feature learning of the total CNN.

(3) After all of those ‘parts’ with different saliency are segmented and then
squeezed in the next layer, to involve the global information of input image,
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Fig. 1. Overview of the proposed encoding method. A input image passes through
convolutional part of CNN to generate the (original) feature maps. First, we average
those feature maps to get one saliency matrix. Then, M masks are generated based
on this matrix and used to mask the original feature maps by using the Hadamard
product. As a result, there will generate total M steamings. After that, we squeeze
those M streamings into one feature representation map by using the 1×1 convolutional
operation. At last, the original and encoded feature maps are concatenated to form the
feature map for representation.

the original feature map reflecting the overall characteristics should also be
concatenated as the final feature representation.

Our PS-CNN is a saliency based encoding method within well-known Inception-
V3 framework. By encoding, PS-CNN explores the better representation ability
of the last convolutional feature maps rather than the average pooling used
as usual. After encoding, more details of local regions are collected separately.
Then, to involve global information of object, we concatenate encoded feature
maps with the original one so that new feature maps carried with global image
representations are generated. Our PS-CNN is a simple yet effective method.
The details of our PS-CNN are shown as in Fig. 1. As can be seen from the en-
coded feature map in encoding part, the region of interest is successfully picked
out from the original feature map extracted by convolutional part of CNN.

The main contributions of the paper are listed in the following.

(1) We firstly argue that pixels with different range of saliency in feature maps
should be explicitly segmented. Then a simple saliency matrix calculation
method is proposed to evaluate the saliency of each pixel in feature map.

(2) Multiple binary masks are calculated based on the selected thresholds along
with the calculated saliency matrix to more explicitly segment the original
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feature maps. Then the information-richer feature representation is devel-
oped by concatenating the encoded feature maps with the original ones.

(3) Experimental results on accuracy with different number of masks are illus-
trated, showing that our encoding method is efficient. In addition, the pixel
saliency based encoding method proposed in our paper, can be embedded
into any CNNs.

The rest of this paper is organized as follows. Section 2 describes one CNN,
i.e., Inception-V3. Then the existing part/object localization and feature en-
coding methods are summarized. In Section 3, a Pixel Saliency based Encoding
method for CNN (PS-CNN) is proposed. In section 4, we present experimental
results to illustrate the classification accuracy improvement of the proposed PS-
CNN and we also discuss the influence on classification accuracy with varying
number of binary masks. Finally, Section 5 concludes this paper.

2 Related Work

Convolutional Neural Network defines an exceptionally powerful feature learning
model. To better advance the image classification accuracy, one direct solution
is to increase the depth and width of network. However, basic CNNs are still
limited in some specific classification tasks, e.g., fine-grained image classification.
The predominant approaches in fine-grained image classification domain can be
categorized into two groups. One learns the critical parts of the objects, and the
other one directly improves the basic CNN from the view of feature encoding.

2.1 Base Network: Inception-V3

Inception-V3 [13] is a CNN with a high performance in computer vision area
and bears a relatively modest computation burden compared to those simpler
and more monolithic architectures like VGG [4]. As reported in paper [13],
Inception-V3 have achieved 21.2% top-1 and 5.6% top-5 error rates for single
crop evaluation on the ILSVR 2012 classification task, which has set a new state
of the art. Besides, it also has achieved relatively modest (2.5x) improvement
in computational cost compared to the firstly proposed version, i.e., GoogleNet
(Inception-V1) network described in [14].

2.2 Part and Object Localization

A common approach for fine-grained image classification is to localize various
parts of the object and then model the appearance of part conditioned on their
detected locations [8, 15]. The method proposed in [8] can generate parts which
can be detected in novel images and learn which of those parts are useful for
recognition. This method is a big step towards the goal of training fine-grained
classifiers without part annotations. Recently, many attentions [16,17] have been
paid to the part and object localization method. The OPAM proposed in [17] is
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aimed for weakly supervised fine-grained image classification, which jointly in-
tegrates two level attention models: object-level one localizes objects of images
and part-level one selects discriminative parts of objects. The paper proposed
a novel part learning approach which is named Multi-Attention Convolutional
Neural Network (MA-CNN) [16]. It is interesting that two functional parts, i.e.,
part generation and feature learning, can reinforce each other. The core of MA-
CNN is that one channel grouping sub-network is firstly taken as input feature
channels from convolutional layers and then generates multiple parts by cluster-
ing, weighting, and pooling from spatially-correlated channels.

2.3 Feature Encoding

The other kind of fine-grained image classification approach is to use a robust
image representation from the view of feature encoding. Traditional images rep-
resentation methods always include hand-craft descriptors like VLAD Fisher
vector with SIFT features. Recently, rather than using SIFT extractor, the fea-
tures extracted from convolutional layers in a deep network pre-trained on im-
ageNet show better representation ability. Those CNN models have achieved
state-of-the-art results on a number of basic-level recognition tasks.

There are many methods proposed to encode the feature maps extracted from
the the last convolutional layers. The representative methods include Bilinear
Convolutional Neural Networks (B-CNN) [11] and Second-order CNN [10]. In
B-CNN, the output feature maps extracted by the convolutional part are com-
bined at each location, which refers to being encoded by using the matrix outer
product. The representation ability after encoding is highly effective in various
fine-grained image classification. The Second-order CNN [10] makes an adequate
exploration of feature distributions and presents a Matrix Power Normalized
Convariacne (MPN-COV) method that performs covariance pooling for the last
convolutional features rather than the common pooling operation used in gen-
eral (first-order) CNN. The Second-order CNN has achieved better performance
than B-CNN, but needs a fully re-training on ImageNet ILSVRC2012 dataset.

3 The Proposed Approach

In this Section, we provide the description of our Pixel Saliency based Encoding
method for CNN (PS-CNN). The details of our PS-CNN architecture and some
mathematical presentation of the encoding method are presented as follows.

The convolutional part of Inception-V3 network (referring to [13]) is acted
as feature extractor as in our PS-CNN. In general, given the input image x and
the feature extractor Φ(·), the output feature maps, can be written as

F0 = Φ(x). (1)

Here, all the feature maps extracted by Inception-V3 are defined as Fn,0, n =
1, 2 · · · , N . Each feature map is with size of s × s. As the default setting of
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Inception-V3, the s is set to 8. It is worth noting that the s is set to 1 in VGG
model. In traditional way, an average pooling will be performed upon F0 to
generate one feature vector. However, in our PS-CNN, we manage to encode
those output information-richer feature maps F0.

3.1 Saliency Matrix Calculation

In order to evaluate the saliency of each pixel in the feature map with size s× s,
we perform an element-wise average operation across N feature maps, i.e.,

M0
i,j =

1

N

N∑
n=0

Fn,0
i,j , (2)

where i, j = 1 · · · s. In this saliency matrix M0, the value M0
i,j reflects the

saliency of the each pixel. We then use this saliency matrix M0 to generate
several binary masks Mm where m = 1, 2 · · · ,M ,

Mm
i,j =

{
0, tm <M0

i,j < tm+1

1, Otherwise.
(3)

where tm is threshold. The pair of (tm, tm+1) defines the range of saliency. If
the saliency lays within the range of tm and tm+1, the corresponding pixels of
feature map will be masked as zero. The other pixels of feature map will remain
unchanged if saliency of those pixels is outside that range. Here the selection
of value tm is flexible. Notably, value tm should be between the minimum and
maximum values of M0. In this paper, four binary masks are utilized, i.e., m =
1, 2, 3, 4. Besides, the thresholds tm and tm+1 shown in Eq. 3 are chosen as

tm = min(M0) + percentm ×
(
max(M0) − min(M0)

)
, (4)

where the min(·) and max(·) find the minimum and maximum values of M0.
The percentm are chosen as percent1 = 0.1, percent2 = 0.3, percent3 = 0.5,
percent4 = 0.7. When m = 4, the upper bound tm+1 in Eq. (3), i.e., percent5 = 1.

3.2 Pixel Saliency based Encoding

After obtaining the multiple binary masks, i.e., Mm for m = 1 · · · 4, we encode
the original feature maps Fn,0 as follows,

Fn,m = Fn,0 ◦Mm, (5)

where operation ◦ is Hadamard product. Thus, for masks Mm, the Fn,m are the
encoded feature maps of the original Fn,0. Each feature map in Fn,m is encoded
with all the information Implicitly carried by Mm of the original feature maps
Fn,0. In addition, N convolutional kernels [13], each of which is with size of
1× 1, are used to squeeze the total M ×N feature maps to a much smaller one,
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i.e., G, that has only N feature maps. The feature maps encoding process and
visualization are shown as in the encoding part of Fig. 1.

At last, to involve global information of image/object, the original feature
maps are concatenated with the feature map G of subsequent layer by channel,
which forms the last feature representation as

H =
[
Fn,0;G

]
. (6)

The classification part as shown in Fig. 1 is the same as the original Inception-
V3. Our encoding method is transplantable and simple enough so that it can be
embedded into any other CNN framework.

Remarks: Considering the number of feature maps of new representation, i.e., H
in Eq. (6), is twice than the original one in Eq. (1) which is only with the number
of N , we could reduce the size of representation by using N/2 convolutional
kernel, each with the size of 1 × 1.

4 Experiments

We use AutoBD [18], B-CNN [11], M-CNN [19], and Inception-V3 [13] as com-
pared methods. The model of Inception-V3 is fine-tuned by ourselves. We extend
this baseline CNN to include our proposed pixel saliency encoding method and
the parameters of our PS-CNN are directly adopted from the Inception-V3 with-
out any sophisticated adjustment.

4.1 Fine-grained Datasets

There are three datasets chosen in our experiments. The total number, total
species, and default train/test split of Aircraft [20], Stanford Car [21], and
NABirds [22] datasets are summarized as Table 1. All the image number of
those three datasets are much smaller comparing to the basic image classifica-
tion datasets, e.g., ImageNet, WebVision. The three datasets are also analyzed.

Table 1. Comparison about number, spices, and train/test split of Aircraft, Car, and
NABirds datasets.

Aircraft Car NABirds

total number 10, 000 16, 185 48, 562
total spices 90 196 555
train 6, 667 8, 144 23, 929
test 3, 333 8, 041 24, 633

Aircraft [20] is a benchmark dataset for the fine-grained visual categorization of
aircraft introduced in well-known FGComp 2013 challenge. It consists of 10,000



8 C. Yin et al.

images of 100 aircraft variants. The airplanes tend to occupy a significantly large
portion of the image and appear in relatively clear background. Airplanes also
have a smaller representation in the ImageNet dataset on which the most CNN
models are trained, compared to some other common objects.

Stanford Car [21] contains 16,185 images of 196 classes as part of the FGComp
2013 challenge as well. Categories are typically at the level of Year, Make, Model,
e.g., “2012 Tesla Model S” or “2012 BMW M3 coupe”. It is special because cars
are smaller and appear in a more cluttered background compared to Aircraft.
Thus object and part localization may play a more significant role here.

NABirds [22] is a pretty large-scale dataset which consists of 48,562 birds im-
ages of North America. It has total 555 spices. This dataset provides not only
label of each bird image, but also additional valuable parts and bounding-box
annotations. However, we do not use those information in both of our training
and testing. It means when training our models, only the raw birds images and
corresponding category labels are used.

4.2 Implementation Details

We fine-tune the network with initial weight pre-trained on ImageNet ILSVRC2012
published by Google in TensorFlow model zone. Some implementation details in
image pre-processing, training, and policy are as follows.

Image pre-processing: We adopt almost the same way as Google Inception [13]
for image pre-processing and augmentation, with several differences. Random
crop rate is set to 0.2 rather than 0.1 in default. For network evaluation, the
center crop is adopted and the corresponding crop rate is set as 0.8. To keep
more details of the input image, following the experimental setup as [11], the
inputs for both model training and testing are resized before sent to network to
448 × 448 rather than the default 229 × 229.

Training policy: On the training phase, the batch size for Aircraft and Car
are both set as 32 with single GPU. For NABirds, 4 GPUs are used to parallelly
train the network where the batch size is also set as 32. Learning rate starts
from 0.01 and exponentially decays with a decrease factor 0.9 every 2 epochs.
RMSProp with momentum 0.9 is chosen as optimizer and decay 0.9, similar with
Inception-V3. For Aircraft, two-stage fine-tune is adopted following from [11].
First, we train only the last fully connected layer for several epochs. After that,
we train all the network until convergence. For all the networks training on all
the datasets, dropout rates in network are set as 0.5.

Test policy: On the testing phase, the image pre-processing and other hyper-
parameters are same as the training phase. Because forward calculation of CNN
is more GPU-memory-efficient than gradient backward prorogation, the batch
size setting is bigger than training phase and set as 100 so that the computation
efficiency is more thoroughly advanced.

In addition, all experiments are performed on machine with 4 NVIDIA 1080Ti
GPUs and Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz.
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4.3 Experimental Results

Table 2. Comparison of classification accuracy on the Aircraft [20], Cars [21] and
NABirds [22] dataset with state-of-the-art methods. The Inception-V3 network is fine-
tuned and evaluated by us. The PS-CNN is evaluated using the same hyper-parameters
as Inception-V3. Dashed line means the absents of accuracy of the original paper.

Aircraft Car NABirds

AutoBD −− 88.9% 68.0%
B-CNN 84.5% 91.3% 79.4%
M-CNN −− −− 80.2%
Inception-V3 88.2% 90.3% 80.8%
PS-CNN 89.1% 92.8% 81.9%

As can be seen from the Table 2, our method is with the best performance in
accuracy, compared with several state-of-the-art methods. Specially, for Aircraft
classification problem, our PS-CNN is 1% higher than the best compared method
Inception-V3. For Car classification, our proposed method achieves the best
accuracy which is 2% higher compared to Inception-V3. For the larger NABirds
dataset, our PS-CNN also achieves best classification rate. We choose 4 binary
masks herein to perform a feature map segmentation. We find our proposed
method works for all the three datasets. The influence on classification accuracy
with varying number of masks thus multiple streams will be discussed then.

4.4 Discussion

Number of Masks: In some degree, the increase in the number of masks will
also result in increase in the number of streamings, just like each Inception block
in Google Inception family [5,13]. The classification accuracies of networks with
4 blocks are shown in Table 2. We will discuss the influence of different number
of masks on image classification performance herein. We choose 2 (percentm
setting as percent1 = 0.1, percent2 = 0.5, percent3 = 1.0) and 3 (percentm
setting as percent1 = 0.1, percent2 = 0.3, percent3 = 0.5, percent4 = 1) masks
to evaluate the influence. The corresponding classification accuracies upon the
three datasets are list in row 2 and 3 respectively in Tab 3.

As can be seen from the Table 3, when we choose 4 masks, the classification
accuracies are highest. In cases of 2 and 3 masks, the performance on both
Aircraft and NABirds will decrease because the feature maps are not explicitly
enough separated. However, for Car dataset, the classification performance is
still better than the basic network, i.e., Inception-V3.
Visualization: In the case of 4 masks, as can be seen from the Table 3, the
error rate of Stanford Car dataset is about 7.2%, which means that 1165 cars
images on Standard dataset are mis-classified. To explore the reason why those
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Table 3. Influence of number of masks on the accuracy performance. The Inception-V3
is chosen as our base network.

Aircraft Car NABirds

Inception-V3 88.2% 90.3% 80.8%
2 masks 88.0% 92.2% 80.5%
3 masks 87.8% 92.7% 79.3%
4 masks 89.1% 92.8% 81.9%

Fig. 2. Some images which are mis-classified in our experiments. The most of them
are mis-classified because they bear a big view angle and ‘strange’ illumination. These
problems should be addressed if we want to perform better in this fine-grained image
classification problem. (Best viewed in color.)

images are mis-classified, we pick out the mis-classified images in the test set.
For simplicity, only 32 (forming as 4×8) of those total 1165 mis-classified images
are selected as shown in Fig. 2.

We can see from this overall picture that all the mis-classified cars bear the
same characteristics such as various view angle, strong illumination changing,
and big occlusion. Those factors may have little influence on basic image classi-
fication. However, in this fine-grained tasks, there will be serious impact.

We have magnified the input images and then encode the enlarged feature
maps exquisitely in order to make sure that more details of fine-grained image
can be ‘observed’. This is a solution to handle the small inter-class problem. But
when big intra-class problem is encountered, e.g., view angle, the performance
becomes embarrassing. Thus the solutions like pose normalization [23] or Spatial
transformer [24] should be considered.
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5 Conclusion

In this paper, to avoid the extreme information compression brought by the
straightforward coarse Avg/Max pooling upon last convolutional feature maps
in general CNN, one Pixel Saliency based Encoding method for CNN (PS-CNN)
is proposed for fine-grained image classification. First, we provide a saliency
matrix to evaluate the saliency of each pixel in feature map. Then, we segment
the original feature maps into multiple ones with multiple thresholded saliency
matrices, and subsequently squeeze those multiple feature maps into encoded
one by using the 1 × 1 convolution kernel. At last, the encoded feature maps
are concatenated with the original one as the last feature representation. By
embedding such novel encoding method into the Inception-V3 framework, we
achieve perfect performance on the three fine-grained datasets, i.e., Aircraft,
Stanford Car, and NABirds. Especially, with this simple yet efficient method,
we have achieved the best classification accuracy (81.9%) of large scale dataset
NABirds, which demonstrates the efficiency of our PS-CNN. What’s more, our
pixel saliency based encoding method can be embedded into other convolutional
neural networks frameworks as one simple net block.
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