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Abstract. For handling cross-domain distribution mismatch, a special-
ly designed subspace and reconstruction transfer functions bridging mul-
tiple domains for heterogeneous knowledge sharing are wanted. In this
paper, we propose a novel reconstruction-based transfer learning method
called Latent Subspace Transfer Network (LSTN). We embed features/pixels
of source and target into reproducing kernel Hilbert space (RKHS), in
which the high dimensional features are mapped to nonlinear latent sub-
space by feeding them into MLP network. This approach is very simple
but effective by combining both advantages of subspace learning and neu-
ral network. The adaptation behaviors can be achieved in the method
of joint learning a set of hierarchical nonlinear subspace representation
and optimal reconstruction matrix simultaneously. Notably, as the laten-
t subspace model is a MLP Network, the layers in it can be optimized
directly to avoid a pre-trained model which needs large-scale data. Ex-
periments demonstrate that our approach outperforms existing non-deep
adaptation methods and exhibits classification performance comparable
with that of modern deep adaptation methods.
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1 Introduction

In computer vision, the dilemma of insufficient labeled data is common in visual
big data, one of the prevailing problems in the practical application, is that
when training data (source domain) exhibit a different distribution to test data
(target domain), the task-specific classifier usually does not work well on related
but distribution mismatched tasks.

Domain adaptation (DA) [5, 15, 31] techniques that are capable of easing such
domain shift problem have received significant attention from engineering recent-
ly. It is thus of great practical importance to explore DA methods. These models
allow machine learning methods to be self-adapted among multiple knowledge
domains, that is, the trained model parameters from one data domain can be
adapted to another domain. The assumption underlying DA is that, although
the domains differ, there is sufficient commonality to support such adaptation.
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A substantial number of approaches to domain adaptation have been pro-
posed in the context of both shallow learning and deep learning, which bridge
the source and target domains by learning domain-invariant feature representa-
tions without using target labels, such that the classifier learned from the source
domain can also be applied to the target domain.

Visual representations learned by deep CNNs are fairly domain-invariant.
Relatively high accuracy is always reported over a lot of visual tasks using off the-
shelf CNN representations [4, 26]. However, on one hand, deep neural networks
which learn abstract feature representations can only reduce, but not remove,
the cross-domain discrepancy. On the other, training a deep model relies on
massive amounts of labeled data. Compared with deep method, shallow domain
adaptation methods which are more suitable for small-scale data usually fail to
reach the high accuracy as deep learning.

Our work is primarily motivated by [21] which investigates a provocative
question that domain adaptation is necessary even if CNN-based features are
powerful. We thus proposed a non-deep method which combines both advan-
tages of subspace learning and neural networks inspired by [12]. Although this
LSTN method is simple, it can achieve competitive results compared with deep
methods. The main contribution and novelty of this work are threefold:

– In order to achieve the domain alignment, we propose a simple but effective
net called Latent Subspace Transfer Network (LSTN). In order to get an
optimal subspace representation, a joint learning mechanism is adopted for
pursuing the latent subspace and reconstruction matrix simultaneously.

– The optimal latent subspace to map the source and target samples in LSTN
is achieved by MLP network, which has a simple network structure but is
effective. The model is a non-linear neural network and can be optimized
directly to avoid a pre-trained model which needs large-scale data.

– In this simple network, we embed features/pixels of source and target into
reproducing kernel Hilbert spaces (RKHS) as preprocessing before putting
them into the optimization procedure. In this way ,the dimension of input
and the cost of running time are both reduced.

2 Related Works

2.1 Shallow Domain Adaptation

A number of shallow learning methods have been proposed to tackle DA prob-
lems. Generally, these shallow domain adaptation methods comprise of three cat-
egories: Classifier based approaches, feature augmentation/transformation based
approaches and feature reconstruction based approaches. [5] proposed an adap-
tive multiple kernel learning (AMKL) for web-consumer video event recognition.
[35] proposed a robust domain classifier adaptation method (EDA) with man-
ifold regularization for visual recognition. [19] also proposed a Transfer Joint
Matching (TJM) which tends to learn a non-linear transformation across do-
mains by minimizing the MMD based distribution discrepancy. [36] proposed a
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Latent Sparse Domain Transfer (LSDT) method by jointly learning a subspace
projection and sparse reconstruction across domains. Similarly, Shao et al. [25]
proposed a LTSL method by pre-learning a subspace using PCA or LDA. Jhuo
et al.[13] proposed a RDALR method, in which the source data is reconstruct-
ed by the target data using low-rank model. Recently, [21] proposed a LDADA
method which can achieve the effect of DA without explicit adaptation by a
LDA-inspired approach.

2.2 Deep Domain Adaptation

As deep CNNs become a mainstream technique, deep learning has witnessed a
great achievements [29, 22, 32] in unsupervised DA. Very recently, [27] explored
the performance improvements by combining the deep learning and DA methods.

Donahue et al. [4] proposed a deep transfer strategy for small-scale object
recognition, by training a CNN network (AlexNet) on ImageNet. Tzeng et al.
[29] proposed a CNN based DDC method which achieved successful knowledge
transfer between domains and tasks. Long et al. [17] proposed a deep adapta-
tion network (DAN) by imposing MMD loss on the high-level features across
domains. Additionally, Long et al. [20] also proposed a residual transfer network
(RTN) which tends to learn a residual classifier based on softmax loss. Hu et al.
[12] proposed a non-CNN based deep transfer metric learning (DTML) method
to learn a set of hierarchical nonlinear transformations for cross-domain visual
recognition. Recently, GANs inspired adversarial domain adaptation methods
have been preliminarily studied. Tzeng et al. proposed a novel ADDA method
[30] for adversarial domain adaptation, in which CNN is used for adversarial
discriminative feature learning. The work has shown the potential of adversari-
al learning in domain adaptation. In [11], Hoffman et al. proposed a CyCADA
method which adapts representations at both the pixel-level and feature-level,
enforcing cycle-consistency by leveraging a task loss.

However, most deep DA methods need large-scale data to train the model in
advance, the insufficient data task involved is just used to fine tune the model.
In contrast to these ideas, we show that one can achieve fairly good classification
performance without pre-trained.

3 The Proposed latent subspace transfer network

3.1 Notation

In this paper, the source and target domain are defined by subscript ”S” and
”T”. The training set of source and target domain are defined as XS ∈ Rd×nS

and XT ∈ Rd×nT , where d denotes dimension of input, nS and nT denote the
number of samples in source and target domain, respectively. Let C represents
the number of classes, Z ∈ RnS×nT represents the reconstruction coefficient
matrix. ‖ · ‖F and ‖ · ‖∗ denotes Frobenius norm and nuclear norm, respectively.

Notably, in order to reduce the feature dimension of input, we first embed
the features in source and target domain into reproducing kernel Hilbert spaces
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Fig. 1: The basic idea of the LSTN method is shown in Fig. 1. For each sample in
the training sets from the source domain and the target domain, we pass it to the
MLP network. We enforce the reconstruction constraint on the outputs of all training
samples at the top of the network, in this way, the adaptation behaviors can be achieved
by joint learning a set of hierarchical nonlinear subspace representation and optimal
reconstruction matrix simultaneously. The network architecture of the MLP used in
our methods is also shown in Fig. 1. The X is the data points in the input space,
f (1)(X) is the output in the hidden layer and f (2)(X) is the resulting representation of
X in the common subspace.In our experiments, the number of layers is set as M = 2.

(RKHSs) as preprocessing to get XS and XT , then feed them to nonlinear
neural network latent subspace. The kernel embedding represents a probability
distribution P by an element in RKHS endowed by a kernel k(·) where the
distribution is mapped to the expected feature map.

In our experiments, we consider a closer to reality case where no labeled
training set is obtained from the target domain in unsupervised setting.

3.2 Model Formulation

As is shown is Fig. 1, unlike most previous transfer learning methods which usu-
ally seek a single linear subspace to map samples into a common latent subspace,
we construct a multilayer perceptron network to compute the representations of
each sample x by passing it to multiple layers of nonlinear transformations. By
using such a network, besides the nonlinear mapping function can be explicitly
obtained, the network structure is much simpler than deep methods which can
avoid a pre-trained model.

Assume there are M + 1 layers in the designed network. The output X at
the mth layer is computed as:

f (m)(X) = h(m)=ϕ(Z(m)) = ϕ(W(m)h(m−1) + b(m)) (1)

where m = 1, 2, ...,M and p(m) units in the mth layer. W (m) ∈ Rp(m)×p(m−1)

and b(m) ∈ Rp(m)

are the parameters of weight matrix and bias in this layer,
the Z(m) = W(m)h(m−1) + b(m) and ϕ(·) is a nonlinear activation function
which operates component-wisely, such as widely used tanh or sigmoid functions.

The nonlinear mapping f (m) : Rp(m−1) → Rp(m)

is a function in the mth layer
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parameterized by {W(i)}mi=1 and {b(i)}mi=1. For the first layer, we assume h(0) =
X (XS or XT ) and p(0) = d.

For both source data XS and target data XT , their probability distribution-
s are different in the original feature space. In order to reduce the distribution
difference, it is desirable to map the probability distribution of the source do-
main and that of the target domain into the common transformed subspace.
The two domains are finally represented as f (m)(XS) and f (m)(XT ) at the mth

layer of our designed network respectively, and their reconstruction error can be
expressed by computing the squared Euclidean distance between the represen-
tations f (M)(XS) and f (M)(XT ) at the last layer as:

Dst(XS ,XT ) = ||f (M)(XS)Z − f (M)(XT )||2F (2)

The low-rank representation is advantageous in getting the block diagonal
solution for subspace segmentation, so that the global structure can be pre-
served. In constructing the reconstruction matrix Z in this paper, the low-rank
regularizer is used to better account for the global characteristics. By combining
the reconstruction loss and the regularizer item together, the general objective
function of the proposed LSTN model can be formulated as follows.

min
f(m),Z

J = Dst(XS ,XT ) + λ||Z||∗ + γ

M∑
m=1

(||W(m)||2F + ||b(m)||22)

= ||f (M)(XS)Z − f (M)(XT )||2F + λ||Z||∗ + γ

M∑
m=1

(||W(m)||2F + ||b(m)||22)

(3)

where λ(λ > 0) and γ(γ > 0) are the tunable positive regularization parameters.

3.3 Optimization

To solve the optimization problem in Eq. (3), a variable alternating optimization
strategy is considered, i.e., one variable is solved while frozen the other one. In
addition, the inexact augmented Lagrangian multiplier (IALM) and alternating
direction method of multipliers (ADMM) are used in solving each variable, re-
spectively. We just set reconstruction matrix (Z) and subspace representation
(f (m)(X)) as two variables. For solving the Z, auxiliary variable J is added. To
obtain the parameters W(m) and b(m), stochastic sub-gradient descent method
is employed. With the two updating steps for f (m)(X) and Z , the iterative
optimization procedure of the proposed LSTN is summarized in Algorithm 1.

3.4 Classification

In this paper, the superiority of the proposed method is shown through the
cross-domain or cross-place classification performance on the source data and
target data in subspace, which can be represented as XS = f (M)(XS) and
X T = f (M)(XT ), respectively. Then, the general classifiers can be used for
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Algorithm 1 The Proposed LSTN

Input: XS , XT ,λ, γ.
Procedure:
1. Initialize: Add auxiliary variable J , where Z = J .

Add Lag-multipliers R1 and penalty parameter µ.
2. While not converge do

2.1 Step1: Do forward propagation to all data points;
2.2 Step2: Compute objective function;

2.3 Step3: Fix J and Z, and update W(m) and b(m) in f (m);
For m = M,M − 1, ..., 1 do

Compute ∇(W(m)) and ∇(b(m)) by back-propagation operator using

∇(W(m)) = 2Ls(m)(h
(m−1)
S )T − 2LT

(m)(h
(m−1)
T )T + 2γW(m)a and

∇(b(m)) = 2Ls(m) − 2LT
(m) + 2γb(m)a;

end
For m = 1, 2, ...,M do

Update W(m) and b(m) according to Gradient descent operator[24];
end

2.4 Step4: Fix W(m) and b(m), and update Z using ADMM;
Fix Z, and update J by using the SVT operator;
Fix J , and compute ∇(Z) by back-propagation operator using

∇(Z) = 2(h
(M)
S )T (h

(M)
S Z − h

(M)
T ) + R1 + µ(Z − J);

Update Z according to Gradient descent operator[24];
2.5 Update the multiplier R1 by R1 = R1 + µ(Z − J)
2.6 Update the parameter µ by µ = min(µ× 1.01,maxµ)
2.7 Check convergence

end while

Output: W(m), b(m) and Z.

a Ls(M) = (h
(M)
S Z − h

(M)
T )ZT � ϕ′(Z(M)

S )

Ls(m) = (W(m+1))TLs(m+1) � ϕ′(Z(m)
S )

LT
(M) = (h

(M)
S Z − h

(M)
T )� ϕ′(Z(M)

T )

LT
(m) = (W(m+1))TLT

(m+1) � ϕ′(Z(m)
T )

training on the source data XS with label YS in unsupervised mode. Finally,
the recognition performance is verified and compared based on the target data
X T and target label YT .

4 Experiments

In this section, the experiments on several benchmark datasets [7, 9, 16] have
been exploited for evaluating the proposed LSTN method, including: cross-
domain 4DA office data and cross-place Satellite-Scene5 (SS5) dataset [21]. Sev-
eral related transfer learning methods based on feature transformation and re-
construction, such as GFK [8], SA [6], DIP [2], TJM [19], LSSA [1], CORAL
[28],JDA [18], JGSA [34], ILS [10], even the latest LDADA [21] have been com-
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  (a) Amazon   (b) Caltech 256

  (c) DSLR   (d) Webcam

Fig. 2: Some samples from 4DA datasets

pared and discussed. As the LSTN model we proposed can be regarded as a
shallow domain adaptation approach, therefore, the shallow feature (4DA SUR-
F features) and deep feature (4DA-VGG-M features) can be fed into the model.
The deep transfer learning methods are also used to compare with our method.

Results on 4DA Office dataset (Amazon, DSLR, Webcam and Cal-
tech 256) [8]:

This dataset is a standard cross-domain object recognition dataset. Four
domains such as Amazon (A), DSLR (D), Webcam (W), and Caltech 256 (C)
are included in 4DA dataset, which contains 10 object classes. With the domain
adaptation setting, 12 cross-domain tasks are tested, e.g. A→ D, C → D. In our
experiment, the configuration is followed in [17] by full protocol. We compare
the classification performance of LSTN using the conventional 800-bin SURF
features [8]. The recognition accuracies are reported in Table 1, from which
we observe that the performance of our method is higher than state-of-the-art
method and 3.6% higher than the latest LDADA method in average cross-domain
recognition performance.

CNN features (FC7 of VGG-M) of 4DA datasets are also used to verify the
classification performance. This allows us to compare against several recently
reported results. We have chosen the first nine tasks to exploit the performance
in our method. Average multi-class accuracy is used as the performance measure.
We have highlighted the best results in Table 2, from which we can observe
that the proposed LSTN (92.2%) is better than LDADA (92.0%), and shows a
superior performance over other related methods.

The compared methods above are shallow transfer learning. It is interesting
to compare with deep transfer learning methods, such as AlexNet [14], DDC [29],
DAN [17] and RTN [20]. The first nine tasks are used to verify the classification
performance. The comparison is described in Table 3, from which we can observe
that our proposed method ranks the second in average performance (92.2%),
which is inferior to the residual transfer network (RTN), but still better than
other deep transfer learning models. The comparison shows that the proposed
LSTN, as a shallow transfer learning method, has a good competitiveness.
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Table 1: Recognition accuracy (%) in 4DA-SURF features and time cost (s) in LSTN

4DA Tasks NA GFK DIP SA JDA TJM LSSA CORAL ILS JGSA LDADA Ours

A→ D 36.3 39.9 47.8 37.7 44.2 45.6 39.2 38.5 37.3 49.4 39.1 46.5(2.75s)
C → D 37.6 42.9 46.9 40.9 44.1 38.4 46.3 31.8 38.3 46.0 41.5 52.2(3.65s)
W → D 73.6 78.7 79.6 70.3 86.3 83.6 57.4 80.9 80.1 78.5 74.6 86.6(0.51s)
A→ C 37.3 44.3 41.4 44.8 44.9 42.4 40.9 37.1 35.4 40.8 38.4 44.6(24.42s)
W → C 23.7 32.0 30.0 32.3 29.8 33.3 29.7 32.5 33.1 29.7 31.7 36.8(7.37s)
D → C 25.5 30.8 29.3 31.1 34.4 32.3 31.2 27.8 36.8 30.2 29.9 36.2(5.06s)
D → A 28.4 40.4 31.6 40.8 44.6 37.1 32.9 31.9 41.9 39.0 40.6 40.3(3.86s)
W → A 28.7 38.3 33.8 43.3 42.0 39.5 38.5 39.4 38.0 34.6 35.1 40.4(5.67s)
C → A 46.4 56.6 56.4 54.4 59.8 54.4 51.5 45.9 28.5 55.1 54.8 53.7(23.87s)
C →W 39.0 48.1 51.2 45.8 50.1 44.0 43.9 37.8 28.4 49.7 60.2 47.5(5.53s)
D →W 61.6 80.3 67.5 74.4 83.3 83.7 42.6 69.4 81.5 75.1 74.7 86.1(0.63s)
A→W 34.4 42.7 44.8 44.1 47.0 39.5 40.2 37.9 40.0 59.0 49.3 42.7(4.33s)

Average 39.4 47.9 46.7 46.7 50.9 47.8 41.2 42.6 43.3 48.9 47.5 51.1

  (a) Banja Luka   (b)  UC Merced Land Use   (c)  Remote Sensing

Fig. 3: Some samples from Satellite-Scene5 datasets

Notably, the 4DA and CNN features in 4DA tasks are challenging benchmark-
s, which attract many competitive approaches for evaluation and comparison.
Therefore, excellent baselines have been achieved.

Results on SS5 (Satellite-Scene5)(Banja Luka (B), UC Merced
Land Use (U), and Remote Sensing (R)):

To validate that LSTN is general and can be applied to other images with
different characteristics and particularly to the categories which are not included
in the ImageNet dataset, we conduct evaluations on a cross-place satellite scene
dataset. Three publicly available datasets as Banja Luka (B) [23], UC Merced
Land Use (U) [33], and Remote Sensing (R) [3] datasets are selected specifi-
cally. In experiment, for cross-place classification, 5 common semantic classes:
farmland/field, trees/forest, industry, residential, and river have been explored,
respectively. There are 6 DA problem settings on this dataset. Several example
images are shown in Fig. 3.

We follow the full protocol explained in LDADA [21], which allows us to
compare against several recently reported results on the SS5 dataset. Results
are shown in Table 4. We observe that LSTN (76.4%) which equals to the recent
ILS [10] and LDADA [21], still outperforms other competitors and consistently
improves the cross-place accuracy in DA tasks. The result suggests that LSTN
should also be applicable to other general visual recognition problems.
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Table 2: Recognition accuracy (%) in 4DA-VGG-M model with shallow methods

4DAVGG A → D C → D W → D A → C W → C D → C D → A W → A C → A Average

NA 77.2 89.9 99.0 81.7 77.3 75.0 83.6 85.5 91.5 84.5
GFK 85.5 91.0 98.0 85.3 81.3 82.3 90.8 90.2 93.6 88.7
DIP 83.4 91.4 98.0 86.0 81.2 81.0 90.0 88.4 93.3 88.1
SA 89.6 95.0 98.0 77.1 77.9 78.6 83.8 87.3 93.2 86.7

JDA 91.3 93.2 96.1 90.1 86.7 84.8 91.7 93.8 93.7 91.3
TJM 89.9 90.8 97.6 86.4 81.4 81.8 91.4 91.1 93.9 89.4
LSSA 86.2 91.8 95.3 88.0 82.8 81.7 91.2 91.8 93.8 89.2

CORAL 76.2 87.6 98.0 80.1 77.6 73.1 84.5 90.7 91.6 84.4
ILS 83.7 87.7 96.9 86.2 87.0 85.7 91.2 93.6 93.1 89.5

JGSA 94.1 94.4 96.1 87.2 82.3 85.2 93.8 94.9 94.2 91.4
LDADA 90.0 93.2 99.6 88.7 88.3 84.8 94.2 94.3 95.1 92.0

Ours 91.1 93.0 100.0 89.6 88.1 87.8 93.4 92.9 94.1 92.2

Table 3: Recognition accuracy (%) in 4DA-VGG-M model with deep methods

4DAVGG A → D C → D W → D A → C W → C D → C D → A W → A C → A Average

AlexNet 88.3 89.1 100.0 84.0 77.9 81.0 89.0 83.1 91.3 87.1
DDC 89.0 88.1 100.0 85.0 78.0 81.1 89.5 84.9 91.9 87.5
DAN 92.4 90.5 100.0 85.1 84.3 82.4 92.0 92.1 92.0 90.1
RTN 94.6 92.9 100.0 88.5 88.4 84.3 95.5 93.1 94.4 92.4

Ours 91.1 93.0 100.0 89.6 88.1 87.8 93.4 92.9 94.1 92.2

5 Discussion

5.1 Parameter Setting

In our method, two trade-off coefficients γ and λ are involved. γ and λ are fixed
as 0.01 and 1 in experiments, respectively. The number of iterations T = 10 is
enough in the experiments. The Gaussian kernel function k(xi,xj) =exp(− ‖
xi − xj ‖2 /2σ2) is used, where σ can be set as σ = 1.4 in the tasks. The least
square classifier is used in DA experiments. In the MLP network, the number
of layers is set as M = 2. The dimension of output in the latent space is the
same as input. Tanh activation function ϕ(·) is adopted in MLP network. The
parameters of the weights and bias are auto updated by gradient descent based
on back-propagation algorithm.

5.2 Computational Complexity

In this section, the computational complexity of the Algorithm 1 is present-
ed. The algorithm includes three basic steps: update Z, update J , and update
f (m). The computation of f (m) involves W(m) and b(m), and the complexity is
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Table 4: Recognition accuracy (%) in SS5 Setting and time cost (s) in LSTN

SS5 Tasks NA GFK DIP SA JDA TJM LSSA CORAL ILS JGSA LDADA Ours

B → R 46.4 56.9 35.9 46.3 37.0 46.1 44.9 59.2 75.3 51.4 51.8 59.8(2.01s)
R→ B 39.4 48.5 41.9 46.9 65.6 52.1 60.7 27.3 56.1 25.1 58.9 66.3(2.43s)
B → U 60.8 66.2 56.8 57.2 61.0 56.4 64.8 57.6 78.9 59.4 81.6 76.8(4.48s)
U → B 69.9 64.4 61.4 62.8 74.5 63.4 57.5 66.6 66.2 77.3 70.5 75.8(4.53s)
R→ U 72.2 88.6 76.2 79.6 91.6 85.0 89.6 80.4 95.4 94.6 97.2 90.8(2.02s)
U → R 75.2 80.7 69.9 72.3 95.1 79.6 83.5 71.2 86.7 97.4 98.1 89.1(1.63s)

Average 60.7 67.6 57.0 60.9 70.8 63.8 66.8 60.4 76.4 67.5 76.4 76.4
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Fig. 4: Convergence analysis on different tasks of LSTN model

O(2MN2). The computation of updating J and Z is O(N2). Suppose that the
number of iterations is T , then the total computational complexity of LSTN can
be expressed as O(T × 2MN2) +O(TN2).

In LSTN model, CPU is enough for model optimization, without using GPU.
The time cost is much lower as shown in the last column of Table 1 and Table
4. All experiments are implemented on the computer with Intel i7-4790K CPU,
4.00GHz, and 16GB RAM. The time cost is calculated under this setting. It is
noteworthy that the time of data preprocessing and classification is excluded.

5.3 Convergence

In this section, the convergence will be discussed. We have conducted the exper-
iments on 4DA ( A→ D ) and SS5 ( B → R ), respectively. The convergence of
our LSTN method is explored by observing the variation of the objective func-
tion. In the experiments, the number of iterations is set to be 150 for verification
the convergence better. The variation of the objective function ( Objmin ) and
reconstruction loss function ( Dstmin ) are described in Fig. 4. It is clear that
the objective function and reconstruction loss function decrease to a constant
value after several iterations. By running the algorithm, on 4DA and SS5 tasks,
respectively, we can observe the good convergence of LSTN.
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6 Conclusion

In this paper, we show that one can achieve the effect of DA by combining both
advantages of subspace learning and neural network. Specifically, a reconstruction-
based transfer learning approach called LSTN is proposed. It offers a simple but
effective solution for DA with ample scope for improvement. In the method, we
embed features/pixels of source and target into reproducing kernel Hilbert space
(RKHS), in which the high dimensional features are mapped to nonlinear latent
subspace by feeding them into MLP network. Leveraging the simple MLP, not
only the layers can be optimized directly to avoid a pre-trained model which
needs large-scale data, but also the adaptation behaviors can be achieved by
joint learning a set of hierarchical nonlinear subspace representation and optimal
reconstruction matrix simultaneously. Extensive experiments are conducted to
justify our proposition in both effectiveness and efficiency. Results demonstrate
that LSTN is applicable to small sample sizes, outperforms existing non-deep DA
approaches, exhibits comparable accuracy against recent deep DA alternatives.
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