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Abstract. Unsupervised domain adaptation (UDA) aims to transfer labeled source
domain knowledge to the unlabeled target domain. Previous methods usually
solve it by minimizing joint distribution divergence and obtaining the pseudo
target labels via source classifier. However, those methods ignore that the source
classifier always misclassifies partial target data and the prediction bias seriously
deteriorates adaptation performance. It remains an open issue but ubiquitous in
UDA, and to alleviate this issue, a Reliable Domain Adaptation (RDA) method is
proposed in this paper. Specifically, we propose double task-classifiers and dual
domain-specific projections to align those easily misclassified and unreliable tar-
get samples into reliable ones in an adversarial manner. In addition, the domain
shift of both manifold and category space is reduced in the projection learning
step. Extensive experiments on various databases demonstrate the superiority of
RDA over state-of-the-art unsupervised domain adaptation methods.

Keywords: Domain Adaptation · Source Domain · Target Domain.

1 Introduction

Many algorithms in computer vision areas are based on a fundamental assumption that
the training and test data are drawn from the same distribution [13]. However, this as-
sumption generally does not hold in many real-world scenarios such that the trained
model often does not fit the test data, since training and test images are obtained under
very different conditions (e.g., different camera device parameters, varying illumina-
tions, and viewpoints, etc.) [25].

To address this issue, domain adaptation was proposed to exploit the rich labeled
source domain data to facilitate the learning of a different but semantic related unlabeled
target domain [7, 11, 19]. This is a unsupervised domain adaptation (UDA) problem.
A common strategy to handle such unsupervised scenario is to align the distributions
across the source and target domain. Maximum Mean Discrepancy (MMD) is a favorite
principle to measure the discrepancy between two distributions [15]. Pan et al proposed
to learn a transferred subspace across domain by using MMD to measure the marginal
distribution of domains [18]. However, the source label information with rich semantics
is ignored. To solve it, Long et al proposed to jointly minimize both the marginal and
conditional distributions [15]. Since there is no target label, an iterative pseudo target
label updating strategy was used to compute the conditional distribution. Many works
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Fig. 1. The motivation of the proposed method. Source samples and target samples are denoted in
blue and green, respectively. The classifier (solid line) is trained on the source samples (2 classes
with different symbols for simplification). Target samples with large domain discrepancy have
low classification confidence (within two dotted lines), which we define as unreliable samples.

[2, 9, 30, 31] have experimentally demonstrated that the pseudo target labels can signif-
icantly boost the performance of UDAs. However, none of them take into account the
misclassified target samples and the prediction bias, which we view as unreliable target
samples. In fact, the unreliable target samples deteriorate the clustering performance of
adaptation, due to that incorrect target labels cannot well account for the class distribu-
tion discrepancy. As shown in Figure 1, our motivation is inspired by the fact that an
easily misclassified sample generally closes to decision boundary and thus holds low
confidence for a classifier. Apart from that, most of these methods assume there exists
a common subspace between domains, which usually fails to extract domain-specific
information from each domain.

To alleviate the pseudo target label prediction bias problem and preserve domain-
specific information, we propose an RDA model composed of double task-classifiers
and dual projections. The double task-classifiers are used to discover those unreliable
target samples. Then two domain-specific projections are used to seek a reliable feature
embedding that transforms those unreliable samples into reliable ones, in the meantime,
they are forced to close to each other in order to reduce the distance across domains in
the Grassmann manifold space [1]. Note that these two steps are trained in an adversar-
ial manner.

Toward this end, we propose a Reliable Domain Adaptation (RDA) method for
unsupervised domain adaptation, by discovering unreliable target samples with dou-
ble classifiers and transforming the samples into new feature spaces, in an adversarial
manner. We summarize the contributions of this paper as follows:

– We propose a RDA model to discover the unreliable target samples (i.e., easily-
biased samples) via double task-classifiers and further transform the unreliable
samples into reliable feature embedding, which effectively alleviates the cluster-
ing bias resulted from the incorrect pseudo target labels.

– We propose the dual subspace projections to reduce the discrepancy between do-
mains in manifold space and preserve domain-specific information across domains.

– Extensive experiments on challenging benchmark datasets demonstrate that our
method achieves the best performance by comparing to state-of-the-arts including
shallow and deep learning methods.
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2 Related Work

In this section, some related works are divided into three aspects:
Subspace-driven methods. Subspace alignment (SA) [8] aims at learning a linear

mapping for aligning subspaces spanned by eigenvectors using principal componen-
t analysis (PCA) across domains. Geodesic flow kernel (GFK) [1] characterized the
changes of geometric and statistical properties across domains by integrating numer-
ous subspaces. CORAL [24] alleviated the domain shift by aligning the second-order
statistics (e.g., covariance) between two domains. Those methods aligned the statisti-
cal features over domains in manifold space, where the global property of domains is
well represented. The tolerance of noise is then improved. However, they ignored the
distribution alignment.

Data-driven methods. Transfer component analysis (TCA) [18] learned the transfer
components between domains using Maximum Mean Discrepancy (MMD). Domain in-
variant projection (DIP) [2] proposed to construct the MMD in the manifold space. Sta-
tistically invariant embedding (SIE) [3] used Hellinger distance on statistical manifolds
to approximate the geodesic distance. Transfer Joint Matching (TJM) [16] matched the
feature representations by re-weighting the instances. However, none of them utilized
the semantic information that is beneficial to the discrimination of the model. So, joint
distribution alignment (JDA) [15] proposed to reduce both the marginal distribution and
conditional distribution measured by using MMD and pseudo target labels. However,
due to the clustering bias, the predicted pseudo target labels are not reliable.

Adversarial learning methods. Generative adversarial networks (GAN) [10] was the
first proposal for adversarial learning. It can be seen as a distribution matching method,
for matching the generated data (i.e. generator) with the target data, supervised by a
domain classifier (i.e. discriminator). Tzeng et al [26, 27] proposed adversarial domain
adaptation models by enhancing the domain feature confusion, supervised by a domain
classifier. Motivated by the theory proposed in [5], Saito et al [22] considered the deci-
sion boundaries between classes for the first time and aimed at aligning the distribution
between classes. These methods are structured based on convolutional neural network
(CNN), that well accelerates the discriminative feature representation. Our approach is
based on a statistical learning framework that also uses the adversarial idea to achieve
reliable unsupervised domain adaptation.

3 Reliable Domain Adaptation

In this section, we introduce the proposed method in detail. First, the problem and nota-
tions are defined, then the overall method is presented, and details of model and solution
are finally introduced. Note that our approach is a statistical learning framework, not a
CNN-based deep network.

3.1 Problem Definition

Given a labeled source domain Ds = {(xi, yi)}ns
i=1, xi ∈ RD and an unlabeled target

domain Dt = {(xj)}nt
j=1, xj ∈ RD, where ns and nt indicate the number of samples in
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Fig. 2. Overview of the RDA approach. Two classifiers F1 and F2 (dotted line and solid line)
are presented to discover the unreliable target samples by maximizing the discrepancy region
(shadow region). Dual projections Ps and Pt aim to seek new reliable features by minimizing
the shadow region and, simultaneously, align domains in both manifold and category spaces. The
ultimate goal is to find a reliable space where clustering of the same class across domains is as
good as possible. Note that solid circles define the ranges of subspaces, dotted circles define the
ranges of features’ distributions.

source and target domain, and D is the dimension of the original samples. We assume
the label spaces between domains are the same, i.e. Ys = Yt, and the label space Y is
a C-cardinality label set. Xs ∈ RD×ns and Xt ∈ RD×nt are domain-specific datasets
drawn from distribution Ps(·) and Pt(·), respectively.

3.2 Model Formulation

Clearly in Fig 2, two fundamental steps are included in RDA in an adversarial manner:
Step 1. Train two classifiers. We introduce two task-classifiers aiming at discovering

the unreliable target samples in this step, which are hard to be classified by the source-
classifier due to distribution mismatch. Note that two task-classifiers are initially trained
on source data, and are forced to classify source data as accurately as possible during
the whole training processing. The double task-classifiers are trained by maximizing the
discrepancy region, so that the target samples which are close to classifier boundaries
(unreliable samples, green sample in Figure 2) can be discovered as much as possible.

We suppose the input features of classifiers to be zs = gs(xs) for source samples
and zt = gt(xt) for target samples, respectively. gs(·) and gt(·) indicate the function of
dual domain-specific projections. We train both classifiers f1(·) and f2(·) to classify the
source samples as correct as possible and, simultaneously, maximize the discrepancy
over classification outputs. The objective function of the first step is as follows:

min
f1,f2
Lf (zs, ys)− λLadv(zt) (1)

where Lf represents the classifiers’ loss function for source features, Ladv represents
the adversarial loss formulated as the discrepancy between two classifiers’ outputs on
target samples, and λ is the trade-off parameter.
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Step 2. Train dual projections. The ultima goal of learning is to obtain dual gener-
ators that can generate reliable transferred features. We firstly propose to align condi-
tional feature distribution over domains to ensure that the same classes of both domains
can be clustered as well as possible and then introduce the pseudo label prediction s-
trategy. The dual domain-specific projections are used to map data of both domains,
respectively. The involved clustering bias is solved by minimizing the discrepancy in
this step to align such unreliable target features. We define the pseudo target labels as
ŷt. The objective function of the second step can be formulated as:

min
gs,gt
Lfeat(xs, xt, ys, ŷt) + αLsub + λLadv(xt) (2)

where Lfeat and Lsub represent the feature-align loss and the subspace-align loss, re-
spectively, α is trade-off parameter. The subspace-align and adversarial loss are treated
as the regularization terms in our model.

These two steps are updated alternately, and ultimately, a unified reliable transferred
space can be obtained, where samples of the same category in two domains are clus-
tered. In the next subsection, the technical details of RDA are presented.

Details in Step 1 This subsection explains the specific implementation of Step 1, which
aims to train double task-classifiers. We formulate double classifiers as the coefficient
vector F ∈ Rd×C , and dual projections as Ps ∈ RD×d and Pt ∈ RD×d according to
the representer theorem [4], d donates the dimension of features.

1) Classification loss Lf on source domain. The loss function of the source classi-
fiers is formulated as a regularized least-square loss:

Lf (zs, ys) =

2∑
i=1

(

ns∑
j=1

(fi(z
j
s)− yjs)2 + η ‖fi‖2)

=

2∑
i=1

(
∥∥ZT

s Fi − Ys
∥∥2
F
+ η ‖Fi‖2F ),

(3)

where Zs = [z1s , z
2
s , ..., z

ns
s ] ∈ Rd×ns (Note that Zs = PT

s Xs) is the source domain
feature set, η is trade-off parameter. ‖M‖F =

√
tr(MTM) is the Frobenius norm

of matrix M , tr(·) is trace operator. We define the constructed source label matrix as
Ys = [y1s , y

2
s , ..., y

ns
s ]T ∈ {−1, 1}ns×C , and yis(c) = 1 means that the i-th source

sample is associated with the c-th class.
2) Adversarial loss Ladv on target domain. The unreliable target features are sam-

ples which close to classifier boundaries, inspired by a CNN-based deep method [22],
which utilizes classifiers’ difference to represent classifier boundaries, we also formal
the outputs’ discrepancy as adversarial loss term which can be formulated as:

Ladv(zt) =

nt∑
i=1

(f1(z
i
t)− f2(zit))2

=
∥∥ZT

t F1 − ZT
t F2

∥∥2
F
,

(4)
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where Zt = [z1t , z
2
t , ..., z

nt
t ] ∈ Rd×nt (Zt = PT

t Xt) is target domain feature set. From
Figure 1 we find that when we force to increase the difference between the two task-
classifiers’ outputs, target samples that are closing to the decision boundary can fall into
the region between the two classifiers’ decision boundaries and can then be found.

Details in Step 2 This subsection explains the specific implementation of Step 2.
1) Feature-align loss Lfeat. The proposed feature alignment loss aims at clustering

the same class of the source and target domain in category space, such that the disparity
between the conditional distributions across domains is reduced. The semantic guided
MMD alike feature alignment loss is used to measure the dissimilarity of conditional
distributions [15, 28, 30]. The pseudo target label is represented as ŷt. Then the feature-
align loss is as:

Lfeat =

C∑
c=1

‖ 1

n
(c)
s

∑
xi∈D(c)

s

PT
s xi −

1

n
(c)
t

∑
xj∈D(c)

t

PT
t xj‖2, (5)

where D(c)
s = {xi|xi ∈ Ds|ys(xi) = c} (D(c)

t = {xj |xj ∈ Ds|ŷt(xj) = c}) is the set
of source (target) samples (a total of n(c)s (n(c)t ) samples) with respect to class c, ys(xi)
is the true source label of sample xi.

The feature-align loss aims to reduce the class-wise distance between domains. As
illustrated in Figure 2, the data points with the blue circle and yellow circle represent the
class-wise center of target and source domain in the category space of the F1 classifier.

2) Subspace-align loss Lsub. Similar to [8], our goal is to decrease the distance
(i.e. 4D in Figure 2) between two domain-specific projections. [30] confirmed that
the shift of subspace geometries can be reduced in this way. For better non-parameter
learning, instead of learning an additional mapping function, we propose to minimize
the following smooth subspace-align loss directly:

Lsub = ‖Ps − Pt‖2F , (6)

3) Adversarial loss. For correcting the unreliable target samples found in Step 1, we
expect to reduce the discrepancy in an adversarial way. Note that the dual projections
(Ps, Pt) instead of classifiers (F1, F2) are trained to minimize the classifiers’ difference.
The following adversarial loss function is minimized:

Ladv(xt) =

nt∑
i=1

(f1(gt(x
i
t))− f2(gt(xit)))2

=
∥∥(PT

t Xt)
TF1 − (PT

t Xt)
TF2

∥∥2
F
,

(7)

where the two task classifiers F1 and F2 have been solved in Step 1.
A deep adaptation method MCD DA that is relevant to this paper was proposed

by Saito et al [22], in which two classifiers are considered for solving UDA. Here,
we briefly highlight the main differences between MCD DA and RDA as following:
1) MCD DA just tries to align source-unsupported target samples without consider-
ing to align conditional feature distribution, while RDA takes it into consideration. 2)
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Algorithm 1 Reliable Domain Adaptation
Input: Data and source labels: Xs, Xt, ys; Parameters: d = 20, η = 1, α, λ, T .
Output: Projection matrices: Ps and Pt; Predicted target labels: ŷt.
1: Initialize Ps and Pt using existing method. e.g. SA [8], PCA, etc.

While iteration t < T do
2: Update ŷt using a base classifier, there is
ŷt = classifier(PT

s Xs, ys, P
T
t Xt).

3: Fix Ps and Pt, and update F1 and F2 by solving (8).
4: Fix F1 and F2, and update Ps and Pt by solving (9), calculate Zs = PT

s Xs, Zt = PT
t Xt.

5: t = t+ 1.
End while

6: return Ps, Pt, ŷt

MCD DA only trains one shared generator between domains, but RDA considers the
domain-specific generators (projections), and they are beneficial to reduce domain shifts
in the manifold space. 3) MCD DA is a deep adaptation method while RDA is a sta-
tistical learning framework. The necessity and effectiveness of the first two items are
verified in the ablation analysis part.

Overall Model of RDA The ultimate model of RDA consist of two objectives:

min
F1,F2

Lf (zs, ys)− λLadv(zt) (8)

min
Ps,Pt

Lfeat(xs, xt, ys, ŷt) + αLsub + λLadv(xt) (9)

where all terms in the minimax optimization model have been presented above.
In the optimization of the RDA model, we adopt the alternating optimization strate-

gy, i.e., fix the projections in training the two task-classifiers and fix the task-classifiers
in training the two projections. The predicted pseudo-labels of target data are updated
in each loop. For each step, ADMM algorithm is considered [6]. The optimization of
RDA is summarised in Algorithm 1.

4 Experiment

A number of experiments are conducted to evaluate the performance of RDA for unsu-
pervised scenarios, which is closer to real-world applications. We compare our methods
with state-of-the-art: 1) Subspace-driven methods: SA [8], GFK [1] and CORAL [24];
2) Data-driven methods: JDA [15], DIP [2], JGSA [30] and TJM [16]; 3) Adversari-
al learning methods: Deep Domain Confusion (DDC) [27]; 4) Deep transfer learning
methods: Domain Adaptation Networks (DAN) [14] and Residual Transfer Network
(RTN) [17]. Notice that, it is unfair for RDA to compare directly against the deep DA
methods, since RDA is a statistical shallow learning method. Therefore, deep features
extracted using a pre-trained CNN are fed into RDA, and expect to further reduce the
discrepancy of deep representation.
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Table 1. Recognition accuracies (%) on Office+Caltech10 dataset with the deep feature from
VGG-VD-16 model. * denotes deep transfer learning methods. Red: ranks the 1st; Blue: ranks
the 2nd; Green: ranks the 3rd.

Task Raw SA JDA GFK JGSA CORAL DIP TJM DDC* DAN* RTN* RDA
C→A 91.5 93.2 93.7 93.6 94.2 91.6 93.3 93.9 91.9 92.0 94.4 96.0
C→W 83.7 86.4 94.6 86.8 93.3 78.9 86.2 92.0 85.4 90.3 96.6 99.0
C→D 89.9 95.0 93.2 91.0 94.4 87.6 91.4 90.8 88.1 90.5 92.9 94.3
A→C 81.7 77.1 90.1 85.3 87.2 80.1 86.0 86.4 85.0 85.1 88.5 93.2
A→W 74.8 80.4 91.5 85.8 95.7 75.7 74.1 87.3 86.1 93.8 97.0 98.6
A→D 77.2 89.6 91.3 85.5 94.1 76.2 83.4 89.9 89.0 92.4 94.6 96.8
W→C 77.3 77.9 86.7 81.3 82.3 77.6 81.2 81.4 78.0 84.3 88.4 92.6
W→A 85.5 87.3 93.8 90.2 94.9 90.7 88.4 91.1 84.9 92.1 93.1 96.0
W→D 99.0 98.0 96.1 98.0 96.1 98.0 98.0 97.6 100 100 100 99.4
D→C 75.0 78.6 84.8 82.3 85.2 73.1 81.0 81.8 81.1 82.4 84.3 91.3
D→A 83.6 83.8 91.7 90.8 93.8 84.5 90.0 91.4 89.5 92.0 95.5 94.5
D→W 95.8 97.0 89.2 97.3 96.4 94.9 95.2 96.8 98.2 99.0 98.8 99.7

Average 84.6 87.0 91.4 89.0 92.3 84.1 87.4 90.0 88.2 91.2 93.7 96.0

4.1 Data Preparation

In experiments, five different visual benchmark datasets are exploited and tested.
1) Office-10+Caltech-10 (4DA) [1]: The Office data [21] contains three real-world

object domains, including Amazon, Webcam and DSLR. Caltech-256 [12] is a standard
database for object recognition. 4DA is formulated with 10 shared categories between
Office and Caltech datasets. Two kinds of features, i.e. hand-crafted SURF feature and
deep CNN features, are used. First, the SURF features [1] that are encoded with 800-
dimension BoW features are used as the shallow feature. Second, the features extracted
from a deep model (the FC7 activations of VGG-VD-16 model) [23] are exploited as
the deep feature. By randomly selecting two different domains as the source and target
domain, a total of 12 cross-domain tasks are constructed.

2) MSRC+VOC2007 [16]: Six shared semantic classes from both datasets are for-
mulated, and 1,269 images in MSRC and 1,530 images in VOC2007 are selected for
domain adaptation. The 128-dimensional dense SIFT (DSIFT) features were extracted
using the VLFeat open-source software package, and K-means clustering was used to
obtain the 240-dimensional codebook. Following the experimental setting as [29], two
cross-domain tasks are constructed: M vs. V and V vs. M.

3) COIL20 [20]: Dataset contains 20 objects with 1440 gray scale images. Each
image has 32×32 pixels and 256 gray levels per pixel. In experiments, the dataset is
divided into two subsets COIL1 and COIL2 by following [29]. Specifically, the COIL1
(C1) and COIL2 (C2) contain the images taken in the directions of [0◦, 85◦]

⋃
[180◦,

265◦] and [90◦, 175◦]
⋃

[270◦, 355◦], respectively.

4.2 Experimental Setting

We strictly follow the experimental configuration for UDA as [1, 16, 29]. SVM is trained
on the labeled source data for generating pseudo-target-labels. Three trade-off parame-
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Table 2. Recognition accuracies (%) on Office+Caltech10 dataset with SURF features.

Task Raw SA JDA GFK JGSA CORAL DIP TJM RDA
C→A 50.1 54.4 59.8 56.6 55.1 45.9 56.4 54.4 59.4
C→W 43.1 45.8 50.1 48.1 49.7 37.8 51.2 44.0 57.6
C→D 47.8 40.9 44.1 42.9 46.0 31.8 46.9 38.4 51.6
A→C 42.8 44.8 44.9 44.3 40.8 37.1 41.4 42.4 49.2
A→W 37.0 44.1 47.0 42.7 59.0 37.9 44.8 39.5 45.1
A→D 37.2 37.7 44.2 39.9 49.4 38.5 47.8 45.6 50.3
W→C 29.5 32.3 29.8 32.0 29.7 32.5 30.0 33.3 40.9
W→A 34.2 43.3 42.0 38.3 34.6 39.4 33.8 39.5 45.6
W→D 80.6 70.3 86.3 78.7 78.5 80.9 79.6 83.6 78.3
D→C 30.1 31.1 34.4 30.8 30.2 27.8 29.3 32.3 36.6
D→A 32.1 40.8 44.6 40.4 39.0 31.9 31.6 37.1 46.5
D→W 72.2 74.4 83.3 80.3 75.1 69.4 67.5 83.7 80.7

Average 44.7 46.7 50.9 47.9 48.9 42.6 46.7 47.8 53.5

Table 3. Recognition accuracies (%) on MSVC-VOC2007 and COIL20 datasets. * denotes the
results of GFK based on 1-nearest neighbor (1-NN) classifier.

Task Raw SA JDA GFK* JGSA CORAL TJM RDA
M→V 37.1 31.8 38.2 28.8 38.7 33.9 38.3 39.7
V→M 55.5 46.0 59.3 48.9 49.3 54.1 54.1 62.3

C1→C2 82.7 86.7 88.7 72.5 85.1 84.9 83.1 93.5
C2→C1 84.0 90.6 93.1 74.2 83.9 87.9 88.5 91.8
Average 64.8 63.8 69.8 56.1 64.3 65.2 66.0 71.8

ters: α, λ and η are involved in the proposed method. We set η = 1 for all experiments
to simplify the tuning steps. For fairness, α and λ are only tuned from the parameter set
[0.1, 1, 10]. We empirically set the subspace dimension d = 20 for all experiments.

4.3 Experimental Results

The recognition accuracies of RDA are shown in Tables 1, 2, and 3, respectively. From
those results, we observe that RDA outperforms the state-of-the-art in a number of
cross-domain tasks (21/28 tasks). Moreover, we achieve at least the second-best perfor-
mance except for the three tasks: C→D, A→W and D→W. The average classification
accuracy of RDA on the total 28 tasks is 74.3%, which is 3.3% higher than the state-of-
the-art JDA (71.0%). Notice that, the results are obtained from a number of benchmark
visual datasets, which can effectively demonstrate that RDA is capable of reducing the
domain shift for UDA.

Second, for local comparisons, RDA generally outperforms the subspace-driven
methods (i.e., SA, GFK and CORAL) and data-driven methods (i.e., DIP, JDA and
TJM). The reason is that those methods do not reduce the cross-domain discrepancy in
both category space and domain-specific subspace. Our approach considers both aspect-
s. Above all, compared to the methods using the pseudo label strategy (e.g., JDA and
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JGSA), our RDA alleviates the clustering bias resulted from unreliable pseudo target
labels and guarantees the reliability.

Third, compared with shallow features (e.g., SURF features), deep features ob-
tain significantly better results for all models. The proposed RDA shows significant
improvement (3.7%) on average compared to the best shallow transfer method (i.e.
JGSA), and 2.3% comparing to the best deep transfer method (i.e. RTN) as shown in
Table 1. The comparison shows that the proposed RDA, as a shallow learning method,
is more effective but reliable.

4.4 Model Analysis and Discussion
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Fig. 3. Convergence and parameter sensitivity analysis of RDA model on several datasets. Note
that the dashed lines in b) show the best baseline results.

Parameter Sensitivity First, the recognition performance on several datasets with
regard to the iterations T is shown in Figure 3 a). We set the maximum number of itera-
tion T=10 in all experiments. From the results, it can be observed that classification per-
formance rises slowly and tends to be smooth on some tasks (e.g., C → A(V GG) and
M → V ), but shows a clear upward trend on other tasks (e.g., C → A and C1→ C2).
Empirically, we are able to get relatively good results with T=10. Second, we investi-
gate the sensitivity of subspace dimension d with a wide range of d ∈ {10, 20, ..., 100}
to illustrate the relationship between d and the classification accuracy in Figure 3 b).
From the results, it can be observed that RDA is robust and keeps stable with regard
to the different numbers of d. Third, the two parameters are tuned from the given set
[10−1, 100, 101]. From the results on two tasks C → A and M → V shown in Figure 3
c) and d), we can observe that the parameter α has a relatively larger impact on the per-
formance, which represents the importance of the subspace alignment loss. Generally,
a larger λ contributes much to the unreliable target sample discovery and rectification
with the adversarial loss. In general, the parameters can be easily tuned in experiments.

Ablation Analysis In RDA, three main components are involved: subspace align-
ment lossLsub (SA), feature alignment lossLfeat (FA) and adversarial lossLadv (Adv).
For a better insight into the model, ablation analysis is presented. We randomly select
several tasks and report the results in Figure 4 by using the model without (w/o) the
associated loss terms. From the results, we observe that each loss is indispensable. In
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Fig. 4. Ablation analysis of RDA model.

general, the FA term has the greatest impact on performance. This is because there ex-
ists a large distribution divergence between two domains and most of the samples are
misclassified. The SA term is also important, since it verifies that using domain-specific
projections is more effective than a shared projection. The results also demonstrate that
the adversarial loss term can further boost performance by improving the reliability of
the model. The effectiveness of the adversarial regularization term is verified.

5 Conclusion

In this paper, we proposed a new Reliable Domain Adaptation (RDA) approach for
UDA. RDA tries to simultaneously align the manifold and category space across do-
mains through two dual projections. In order to address the prediction bias problem
involved by pseudo labels, an adversarial learning strategy is introduced. Firstly, RDA
focuses on the discovery of unreliable samples by maximizing the discrepancy between
the two task-classifiers. Secondly, RDA focuses on the correction of those unreliable
target samples by minimizing the classifiers discrepancy. Comprehensive experiments
validate the superiority of RDA over state-of-the-arts.
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