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Abstract— In the design of machine learning models, one
often assumes the same loss, which, however, may not hold
in cost-sensitive learning scenarios. In a face-recognition-based
access control system, misclassifying a stranger as a house owner
and allowing entry may result in a more serious financial loss
than misclassifying a house owner as a stranger and not allowing
entry. That is, different types of recognition mistakes may lead
to different losses, and therefore should be treated carefully. It is
expected that a cost-sensitive learning mechanism can reduce the
total loss when given a cost matrix that quantifies how severe
one type of mistake is against another one. However, in many
realistic applications, the cost matrix is unknown and unclear
to users. Motivated by these concerns, in this paper, we propose
an evolutionary cost-sensitive discriminative learning (ECSDL)
method, with the following merits: 1) it addresses the definition
of cost matrix in cost-sensitive learning without human inter-
vention; 2) an evolutionary backtracking search algorithm is
derived for the NP-hard cost matrix optimization; and 3) a cost-
sensitive discriminative subspace is found, where the between-
class separability and within-class compactness are well achieved,
such that recognition becomes easier. Experiments in a variety of
cost-sensitive vision and olfaction classification tasks demonstrate
the efficiency and effectiveness of the proposed ECSDL approach.

Index Terms— Classification, cost-sensitive learning,
evolutionary algorithm (EA), subspace learning.

I. INTRODUCTION

SUBSPACE learning is a hotspot in machine learning
community for dimension reduction/low-dimensional fea-

ture representation. With effective subspace representation,
the classification effectiveness and efficiency in pattern
recognition tasks can be improved greatly. Several classi-
cal subspace learning methods include principal component
analysis (PCA) [1], linear discriminant analysis (LDA) [2],
locality preservation projection (LPP) [3], and marginal Fisher
analysis (MFA) [4]. Their weighted, kernelized, and tensorized
variants [5]–[9] have been proposed for compression and
recognition in different fields. However, these existing sub-
space learning methods tend to achieve the lowest error rate
by assuming the same loss for any misclassification, which,
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however, may not hold in many applications. For instance,
in the face-recognition recognition-based access control sys-
tem (FR-ACS) application, different mistakes may lead to
different losses. It is natural to imagine that there would be
a serious financial loss if the FR-ACS system misclassifies
a stranger as the owner of a house and allowed to enter
the room. Instead, misclassifying the owner of a house as
a stranger and not allowed to enter may be less serious.
A number of cost-sensitive recognition tasks happen in our
real life, such as face recognition [10], palm recognition [11],
odor recognition [12], [13], and object recognition [14]. If we
do not treat the different loss problem carefully, the learned
subspace would be biased and the feature representation is
degraded. Dealing with different losses was first paid attention
in [15], in which a cost-sensitive face recognition framework
was formulated.

Recently, the cost-sensitive variants of the four classical
subspace learning methods, such as CSPCA, CSLDA, CSLPP,
and CSMFA, have also been surveyed for face recognition
in [16] and [17], in which a cost matrix was predefined in
advance under the prototypes of PCA, LDA, LPP, and MFA.
These cost-sensitive subspace learning methods were proved to
be effective in reducing the misclassification loss by predefin-
ing a cost matrix that quantifies how severe one type of mistake
is against another one. However, in many realistic cases, the
cost matrix is unknown and difficult to be manually defined
by users [15], and therefore, the learned low-dimensional
representation is biased and leads to poor generalization per-
formance in real-world classification. It is worth noting that
the misclassification loss is caused by incorrectly classifying
one sample of the i th class into the j th class. Although users
may know what type of mistake is more serious than another
type, it is still difficult to give a specific cost value of one
mistake. Therefore, it is difficult to accurately set the cost
matrix via human intervention. The first attempt to address the
problem of cost matrix definition can be referred to as [18],
in which a cost interval (CI) (e.g., a possible cost range) was
introduced instead of a precise cost value. However, it induced
a high computational complexity and also the CI should still
be manually predefined via human intervention. Therefore, the
cost matrix definition problem is an open topic to be resolved
in cost-sensitive learning subject. With this motivation, we
could imagine that automatic learning of the cost matrix is
extremely desired for a number of cost-sensitive recognition
tasks. Additionally, for classification-oriented tasks, learning
a discriminative subspace for low-dimensional representa-
tion with better between-class separability and within-class
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compactness is the essential objective of this paper. That is,
this paper targets at constructing a cost-sensitive discriminative
subspace learning framework. In summary, the motivations are
two-fold: 1) the cost-sensitive nature of subspace learning is
very necessary in cost-sensitive classification tasks, and there-
fore, a discriminative subspace learning method is proposed
by incorporating the cost-sensitive concept and 2) the efficient
definition of the cost matrix is still an open issue in this
community. Therefore, we propose an evolutionary idea for
efficiently solving the NP-hard cost matrix optimization. With
the two motivations, an evolutionary cost-sensitive discrimi-
native learning (ECSDL) model is proposed in cost-sensitive
vision and olfaction application scenarios.

More recently, sparse and low-rank subspace learning
methods were also proposed for clustering and representa-
tion [36], [37], which tend to reveal the local and global
structures implied in the data using sparse and low-rank con-
straints. In this paper, we would like to learn a discriminative
subspace projection, and therefore, these sparse- and low-rank-
based subspace clustering methods are not further discussed.
When referred to as machine learning, it is necessary to briefly
introduce the hottest deep learning techniques, which have
manifested a very competitive performance in computer vision
and natural language processing. Earlier, convolutional neural
network (CNN) has won the highest performance in document
and face recognition [38], [39]. Convolutional-based deep nets
have also achieved the highest accuracy in face verification
on the Faces in the Wild (LFW) data set [40], [41]. Due
to the very strong deep feature representation ability, CNNs
with convolutional layers, pooling layers, and fully connected
layers have also been investigated and shown state-of-the-art
performance in vision applications, such as the ImageNet and
Pascal VOC [42], [43]. Although these deep learning methods
show state-of-the-art performance, they rely on big data and a
very high computational demand.

In this paper, inspired by the open issue of cost-sensitive
learning [44] and subspace learning, we propose an ECSDL
framework for handling real-world cost-sensitive recognition
tasks. The concepts of cost-sensitive learning and discrimina-
tive subspace learning have been integrated into the ECSDL
method. The contributions of this paper are threefold.

1) In ECSDL, a cost-sensitive discriminative subspace
learning model is formulated with cost matrix opti-
mization, within-class compactness, and between-class
separability.

2) In ECSDL, an efficient evolutionary optimization
method based on a backtracking search algorithm is
derived for solving the NP-hard cost matrix optimiza-
tion.

3) A number of cost-sensitive recognition tasks in vision
(e.g., human attractiveness analysis, face recognition,
and face verification) and olfaction (e.g., odor recogni-
tion) have been implemented using our ECSDL method.

The remainder of this paper is organized as follows.
Section II presents the related work of subspace learning meth-
ods. The proposed ECSDL method and optimization algorithm
are formulated in Section III. Experiments on multimodal
beauty data for human attractiveness prediction are employed

in Section IV. Experiments on AR and LFW face data for face
recognition and face verification are conducted in Section V.
Experiments on E-NOSE data for odor recognition in machine
olfaction are presented in Section VI. The computational
complexity and time of the proposed methods are discussed
in Section VII. The visualization analysis of the cost matrix
is shown in Section VIII. A detailed discussion is presented
in Section IX. Finally, Section X concludes this paper.

II. RELATED WORK

In this paper, we present four types of classical subspace
learning and dimension reduction techniques, such as PCA [1],
LDA [2], local preservation projection (LPP) [3], and MFA [4].
Furthermore, their cost-sensitive variants [16] are briefly
discussed.

PCA, as a linear technique for unsupervised dimensionality
reduction, constructs a low-dimensional representation that
describes as much variance in the data as possible. PCA
attempts to find a linear mapping P that maximizes the
cost function of Tr(PT cov(X)P), where cov(X) denotes the
covariance matrix of the data X. It is clear that the eigende-
composition of cov(X) can be solved, and the eigenvectors
with respect to the first d eigenvalues formulate the linear
mapping matrix P.

Different from the unsupervised PCA, LDA is a supervised
linear technique that attempts to find a mapping P, such
that the ratio of the between-class scatter matrix and the
within-class scatter matrix is maximized. In this way, the
between-class separability and the within-class compactness
in the embedded subspace can be achieved. Therefore, the
subspace of LDA is recognized to be “discriminative.”

LPP, as an unsupervised subspace learning technique, is
constructed based on the graph manifold learning theory.
The local preservation projection implies that there is a low-
dimensional manifold embedding in the high-dimensional data
space, and the local affinity data structure can be preserved by
constructing a Laplacian matrix L. That is, the local affinity
structure of the data in high-dimensional space is preserved
in the low-dimensional subspace. Therefore, LPP attempts to
find a mapping P by minimizing PT XLXT P. However, the
label information of the samples is not well exploited and the
“discriminative” characteristic is missed.

MFA, as a supervised and linear subspace learning tech-
nique, is an effective combination of the “discrimination”
in LDA and the “local structure preservation” in LPP.
Specifically, two locality graphs with respect to inter-
class (between-classes) samples and intraclass (within-classes)
samples are constructed. As a result, two Laplacian matrices,
Lintraclass and Linterclass, were calculated. Essentially, MFA
attempts to find a mapping P by maximizing the inter-
class locality graph and minimizing the intraclass locality
graph.

Inspired by cost-sensitive learning, Lu and Tan [16], [17]
proposed several cost-sensitive variants of the four classi-
cal subspace learning methods, such as CSPCA, CSLDA,
CSLPP, and CSMFA, for face recognition, in which a cost
matrix was predefined in advance under the prototypes of the
learning methods. The cost-sensitive subspace learning meth-
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ods proposed in [16] and [17] aim at imposing a cost matrix
as contribution coefficients into the original framework PCA,
LDA, LPP, and MFA. However, the cost matrix needs to
be manually defined with human intervention based on prior
knowledge, which is not suitable in real-world applications.

Zhang and Zhou [15] proposed a cost-sensitive face recog-
nition method (mcKNN) and introduced the cost-sensitive
learning concept. Yan [21] proposed a cost-sensitive ordinal
regression method (CSOR) for facial attractiveness assess-
ment. Liu and Zhou [18] proposed a cost-interval-based sup-
port vector machine (CISVM) for addressing the cost matrix
construction using the cost-interval concept. Lee et al. [27]
proposed a multicategory support vector machine (mcSVM)
method for cost-sensitive learning. Zhang and Zhang [44] pro-
posed an evolutionary cost-sensitive method for extreme learn-
ing machine. Cost-sensitive learning is closely related to the
issues of imbalanced samples and different misclassification
losses, thereby attracting people’s attention in cost-sensitive
tasks. How to automatically optimize the cost matrix instead
of manual annotation is necessary.

III. PROPOSED ECSDL

In this section, the proposed ECSDL framework is formu-
lated and then the optimization is derived.

A. Notations

Let X = [x1, . . . , xN ] ∈ R
D×N be the feature matrix with c

classes, where D is the dimension and N denotes the number
of training samples. The label vector with respect to X is
represented T. The cost matrix is represented as NNN and the
basis of subspace projection is represented as WNNN ∈ RD×d .
The within-class scatter matrix and the between-class scatter
matrix are represented as Sw(NNN) and Sb(NNN), respectively. Tr(·)
denotes the trace operator and the subscript T denotes trans-
pose operator.

B. Formulation of ECSDL

In LDA-based subspace learning, it aims at finding a
transformation W ∈ R

D×d , such that in the projected
low-dimensional subspace, the trace of the within-class scat-
ter matrix is minimized for compactness and trace of the
between-class scatter matrix is maximized for separability.
This goal can be achieved by solving the following problem:

max
W

Tr(WT SbW)

Tr(WT SwW)
(1)

where Sb and Sw denote the between-class and within-class
scatter matrices, respectively, represented as

Sb =
c∑

l,k=1

(mk −ml)(mk −ml)
T (2)

Sw =
c∑

k=1

Nk∑

i=1

1/Nk(xi −mk)(xi −mk)
T (3)

where mk and ml denote the center of class k and the center
of class l, respectively.

From (2), we observe that the same scaling coefficient “1”
for each class pair is posed in computing the between-class
scatter matrix. From (3), we see that the coefficient 1/Nk

depends only on the number of samples of each class in
computing the within-class scatter matrix. This is obviously
not appropriate in cost-sensitive learning tasks, because dif-
ferent losses may be caused in different classes. Therefore,
the proposed ECSDL method tends to reformulate the two
discriminative matrices using a cost-sensitive strategy.

In this paper, for computing the cost-sensitive within-
class Sw(NNN) and between-class scatter matrix Sb(NNN), the cost
matrix NNN of ECSDL with c classes is presented as follows:

NNN =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 N12 · · · N1q · · · N1c

N21 0 · · · N2q · · · N2c
...

...
. . .

... · · · ...
Nq1 Nq2 · · · 0 · · · Nqc

...
... · · · ...

. . .
...

Nc1 Nc2 · · · Ncq · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

c×c

(4)

where Ni, j denotes the misclassification loss of classifying the
i th class as the j th class, and the diagonal elements “0” denote
the correct classification without loss. To measure the loss of
the kth class, an importance function is defined as

�� (k) =
c∑

l=1

Nk,l , k = 1, . . . , c. (5)

From (5), we can observe that �� (k), k = 1, . . . , c, describes
the misclassification loss of each class. With the definition
of NNN in (4) and �� (k) in (5), the cost-sensitive between-class
scatter matrix and the cost-sensitive within-class scatter matrix
can be represented as

Sb(NNN) =
c∑

k=1

c∑

l=1

Nk,l (µk − µl)(µk − µl)
T (6)

Sw(N) =
c∑

k=1

Nk∑

i=1

�� (k)(xi − µk)(xi − µk)
T (7)

where µk and µl denote the center of class k and the center
of class l, respectively, Nk denotes the number of samples
in class k, and xi denotes the i th sample vector from class
k. From (6) and (7), we can observe that the weighted loss
for each class pair is formulated and the derived within-class
and between-class scatter matrices becomes “cost sensitive.”
Note that the definitions of (6) and (7) are inspired by the
classical LDA, and the cluster for each class is supposed to be
convex.

In ECSDL, we aim at finding a discriminative subspace WNNN,
such that in this subspace, the trace of the within-class
scatter matrix is minimized and the trace of the between-class
scatter matrix is maximized. To this end, the between-class
separability and within-class compactness in the discriminative
subspace will be much improved, since the cost matrix is well
imposed in Sw(NNN) (cost-sensitive within-class scatter matrix)
and Sb(NNN) (cost-sensitivebetween-class scatter matrix).
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Therefore, the two matrices under WNNN can be represented
as

S′w(NNN) =
c∑

k=1

Nk∑

i=1

�� (k)
(
WT

NNNxi −WT
NNNµk

)(
WT

NNNxi −WT
NNNµk

)T

(8)

S′b(NNN) =
c∑

k=1

c∑

l=1

Nk,l
(
WT

NNNµk −WT
NNNµl

)(
WT

NNNµk −WT
NNNµl

)T
.

(9)

Obviously, for learning such a discriminative subspace, we
would like to achieve the following optimizations:

⎧
⎨

⎩

min
WNNN

Tr
(
S′

w(NNN)

)

max
WNNN

Tr
(
S′b(NNN)

)
.

(10)

For formulating the optimization problem (10) into a unified
minimization or maximization problem, we rewrite the opti-
mization goal of (10) as follows:

min
WNNN

Tr
(
S′

w(NNN)

)

Tr
(
S′b(NNN)

) . (11)

By substituting (8) and (9) into (11), the ECSDL can be
derived as follows:

min
WNNN

Tr
(∑c

k=1
∑Nk

i=1 �� (k)
(
WT

NNNxi−WT
NNNµk

)(
WT

NNNxi−WT
NNNµk

)T )

Tr
(∑c

k=1
∑c

l=1 Nk,l
(
WT

NNNµk−WT
NNNµl

)(
WT

NNNµk−WT
NNNµl

)T )

= min
WNNN

Tr
(
WT

NNN

( ∑c
k=1

∑Nk
i=1 �� (k)(xi − µk)(xi − µk)

T
)
WNNN

)

Tr
(
WT

NNN

(∑c
k=1

∑c
l=1 Nk,l (µk − µl)(µk − µl)

T
)
WNNN

)

= min
WNNN

WT
NNN

(∑c
k=1

∑Nk
i=1 �� (k)(xi − µk)(xi − µk)

T
)
WNNN

WT
NNN

(∑c
k=1

∑c
l=1 Nk,l (µk − µl)(µk − µl)

T
)
WNNN

= min
WNNN

WT
NNNSw(N)WNNN

WT
NNNSb(N)WNNN

(12)

where Sb(NNN) and Sw(NNN) are computed by (6) and (7).
According to (12), multiple solutions of WNNN may exist

due to the ratio minimization. Therefore, for the unique-
ness of the solution WNNN, we impose an equality constraint
WT

NNNSb(NNN)WNNN=I, such that the projection basis is normalized
in scale. Therefore, the ECSDL model can be rewritten as

min
WNNN

WT
NNNSw(NNN)WNNN

s.t. WT
NNNSb(NNN)WNNN = I (13)

where WNNN denotes the discriminative subspace of ECSDL
with respect to a given cost matrix NNN. From (13), we could
find that for better discrimination, Tr(Sb(NNN)) is maximized and
Tr(Sw(NNN)) is minimized physically. For solving the optimal
projection WNNN and the optimal cost matrix NNN, a variable alter-
nating optimization method is used. Under a given cost matrix
NNN, (13) can be easily solved based on eigendecomposition and
Lagrange multiplier method. Once the WNNN is fixed, the cost
matrix NNN optimization becomes an NP-hard problem, and thus
evolutionary search is derived.

Algorithm 1 Solve WNNN With a Given Cost Matrix NNN

Input: Training set {xi }Ni=1, the training target matrix T;
Procedure:
1. Initialize the cost matrix NNN;
2. Compute the importance function �� (k), k = 1, · · · , c via
Eq.(5);
3. Compute Sb(NNN) via Eq.(6);
4. Compute Sw(NNN) via Eq.(7);
5. Perform Eigen-decomposition on the matrix S−1

b(NNN)
Sw(NNN)

in Eq.(16);
6. Get the subspace projection W∗NNN = [w1, · · · , wd ].
Output: W∗NNN.

C. Optimization

The optimization ECSDL includes two steps: solve WNNN
under a given NNN and solve NNN under WNNN.

First, solving WNNN with a given cost matrix NNN is as follows.
The Lagrange multiplier function of (13) is written as

Lag(WNNN, λ)= WT
NNNSw(NNN)WNNN− λ

(
WT

NNNSb(NNN)WNNN− I
)

(14)

where λ is the Lagrange multiplier.
Let the partial derivative of Lag(WNNN, λ) with respect to WNNN

be 0, we have the following equality:
Sw(NNN)WNNN = λSb(NNN)WNNN. (15)

By multiplying the S−1
b(NNN)

in (15), we have

S−1
b(NNN)

Sw(NNN)WNNN = λWNNN. (16)

From (16), we can observe that WNNN is expressed as the
eigenvectors of S−1

b(NNN)
Sw(NNN) with respect to the eigenvalues

λ = [λ1, . . . , λD]. Since (13) is a minimization problem, the
optimal W∗NNN = [w1, . . . , wd ] ∈ RD×d is formulated by the d
eigenvectors with respect to the first d minimum eigenvalues,
λ1, . . . , λd .

Specifically, the solving process of W∗NNN is summarized in
Algorithm 1.

It is clear that W∗NNN is closely related to the cost matrix NNN.
Particularly, in LDA, the cost matrix NNN is simply recognized as
an identity matrix (i.e., the same loss) and the discriminative
ability of subspace learning is restricted. Therefore, finding
an optimal NNN∗ that gives rise to the best subspace projection
W∗NNN∗ becomes very important.

Second, solving NNN under the computed W∗NNN is as follows.
After obtaining W∗NNN, the ECSDL tends to find the optimal

cost matrix NNN∗ by solving the following subproblem:
NNN∗ = argmin

NNN

∑
n
L{tn, ��

NN
(x̂n)}

s.t. l1 ≤ Ni, j ≤ l2, Ni,i = 0

i = 1, . . . , c; j = 1, . . . , c (17)

where L{·} denotes the misclassification loss function (e.g.,
recognition error rate), tn is the label of sample xn , and ��

NN
(·)

denotes the nearest neighbor (NN) classifier. Notably, the
proposed model serves for classification/recognition problems.
Therefore, misclassification loss is instinctively formulated
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for minimization, as general machine learning models do.
x̂n denotes the low-dimensional subspace representation of xn ,
which is computed as

x̂n =
(
W∗NNN

)T xn. (18)

The predicted label k̂n of a test instance xn is obtained by
performing the NN classifier as

k̂n = gNN
((

W∗NNN
)T xn

)
. (19)

According to (17), the optimal cost matrix NNN∗ will lead to
the minimum misclassification loss. The optimization of NNN is
presented as follows.

Considering the NP-hard problem of NNN optimization, the
evolutionary algorithm (EA) is employed intuitively with
a boundary constraint. EA is a population-based stochastic
search strategy and used to search for near-optimal solutions.
It tends to evolve a trial individual into a new individual
with better fitness, using various genetic or bioinspired oper-
ators. It is clear that in EA community, there are a number
of population-based EAs, such as swarm-based optimiza-
tion, simulated annealing, and the genetic algorithm. These
algorithms can be integrated in the proposed ECSDL method
for evolutionary optimization. Consider that the evolutionary-
based algorithm is not the focus of this paper, but a strategy
for solving the NP-hard problem of cost matrix NNN, and
therefore, different EAs are not exploited, discussed, and finely
compared. For an efficient implementation, in this paper, we
derive an efficient EA, i.e., backtracking search optimization
algorithm (BSA) structured in [19] and [44], to optimize the
cost matrix NNN. The BSA, as a random searching method,
includes three basic genetic operators: selection, mutation, and
crossover in a simple structure, and therefore, it is effective,
fast, and capable of solving multimodal problems. In summary,
it can be briefly described as four stages: 1) initialization;
2) selection-I; 3) recombination; and 4) selection-II. Specifi-
cally, the four steps are presented as follows.

1) Initialization (Generation and Evaluation of a
Population PPP):

PPPi, j ∼ U
(
l j
d , l j

u
)
, i = 1, . . . , N; j = 1, . . . , D (20)

Fi = ObjFuni (PPPi ), i = 1, . . . , N (21)

where PPP is encoded as the solution of NNN, N and D denote the
population size and problem dimension, respectively, l j

d and l j
u

denote the low and upper bounds with respect to the j th ele-
ment, respectively, U(·) denotes uniform distribution, and
ObjFun(·) denotes the objective function of (17), i.e., recog-
nition error rate.

2) Selection-I (Update Step for Historical Population QQQ):

Qi, j ∼ U
(
l j
d , l j

u
)

(22)

ifa < b then QQQ = PPP, ∀a, b ∼ U(0, 1) (23)

QQQ′ = permuting(QQQ) (24)

where permuting(·) is a random shuffling function. The his-
torical population is for memory characteristics.

3) Recombination (Update Step for Solution Population
PPP′new):

Binary mapping matrix CCCN×D|0− 1 (25)

PPPnew = PPP+ 3r ·CCC� (QQQ′ −PPP) (26)

PPP′new(i, j ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩

l j
d , if rand1 < rand2 and

Pnew(i, j ) < l j
d

rand× (
l j
u − l j

d

)+ l j
d , otherwise⎧

⎪⎨

⎪⎩

l j
u , if rand1 < rand2 and

Pnew(i, j ) > l j
u

rand× (
l j
u − l j

d

)+ l j
d , otherwise

(27)

where P′new(i, j ) represents the j th element of the i th individual,
� denotes dot product, r ∼ N(0, 1), rand1 and rand2 ∼
U(0, 1), and N(0,1) denotes standard normal distribution.

Then, the new population is evaluated by computing

F ′i = ObjFuni

(
PPP′new{i}

)
, i = 1, . . . , N (28)

where PPP′new{i} denotes the i th individual of the population.
4) Selection-II (Generation of New Solution Population

PPP′′new, Global Minimum Fgmin, and the Optimal Solution Gopt):

PPP′′new = PPP′new

{F ′i < Fi
}⋃

PPP
{F ′i ≥ Fi

}
, i = 1, . . . , N

(29)

Fgmin = min
{F{F ′i ≥ Fi

}⋃
F ′{F ′i < Fi

}}
, i = 1, . . . , N

(30)

GGGopt = PPP′′new{indopt} (31)

where indopt = min{F{F ′i ≥ Fi }⋃F ′{F ′i < Fi }} denotes the
index of the best individual and GGGopt denotes the best individual
with respect to the index indopt.

Specifically, the optimization process of the cost matrix NNN

based on the evolutionary BSA algorithm is summarized in
Algorithm 2. Finally, the implementation of the proposed
ECSDL framework with alternating step optimization between
the cost-sensitive subspace WNNN and the cost matrix NNN is
summarized in Algorithm 3.

D. Classification

This paper tends to learn a cost-sensitive discriminative
subspace W∗NNN∗ for effective feature representation. In classifi-
cation, we adopt the Euclidean-distance-induced NN classifier.
The predicted label k̂n of a test instance xn can be computed
using (19).

IV. HUMAN ATTRACTIVENESS ANALYSIS FOR VISION

APPLICATION

Human attractiveness analysis is an emerging subject in
computer vision and biometric community. Ancient Greek
scholars measure the vertical and horizontal distances among
eyes, nose, mouth, and so on and propose some general
rules such as golden ratio to evaluate the attractiveness of
faces. Facial attractiveness assessment using geometric- and
appearance-based features coupled with pattern recognition
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Algorithm 2 Solve NNN Under the Computed W∗NNN
Input: The population size N , problem dimension D, lower
and upper bounds ld and lu , the maximal iterations epoch,
and W∗NNN;
Procedure:
1. Initialization:
1.1. Population generation PPPi, j ← U(l j

d , l j
u ) using Eq.(20);

1.2. Objective function evaluation using Eq.(21);
while iteration<epoch do
2. Selection-I: update step for historical population.
2.1. Historical population QQQi, j ← U(l j

d , l j
u ) using Eq.(22);

2.2. Redefine QQQ ← PPP using ‘if-then’ rule in Eq.(23) for
memory;
2.3. Permute QQQ′ ← permuting(QQQ) by shuffling Eq.(24);
3. Recombination: update step for solution population.
3.1. Generate crossover mapping matrix using Eq.(25);
3.2. Perform mutate using Eq.(26);
3.3. Boundary control with Eq.(27);
3.4. Objective function evaluation with the new population
using Eq.(28);
4. Selection-II: update step for new solution population,
global minimum and optimal solution.
4.1. Update population using Eq.(29);
4.2. Update the global minimum Fbest using Eq.(30);
4.3. Update the optimal solution using Eq.(31)
end while
Output: NNN∗.

Algorithm 3 ECSDL

Input: Training set {xi }Ni=1, the training target matrix T;
Procedure:
1. Initialize the cost matrix NNN;
2. Compute W∗NNN by using Algorithm 1;
3. Search the optimal cost matrix NNN∗ by using Algorithm 2;
4. Compute the importance function �� ∗(k), k = 1, · · · , c via
Eq.(5);
5. Compute Sb(NNN∗) and Sw(NNN∗) using Eq.(6) and (7);
6. Perform Eigen-decomposition on the matrix S−1

b(NNN∗)Sw(NNN∗)
in Eq.(16)
7. Get the optimal cost-sensitive subspace W∗NNN∗ =
[w1, · · · , wd ].
Output: W∗NNN∗ and NNN∗.

techniques have been studied in [20]. We explore the human
attractiveness analysis in this paper because it is recognized as
a weak cost-sensitive learning task [21]. For example, to a cer-
tain extent, it may be less serious to classify an “unattractive”
person as “attractive” than to classify an “attractive” person
as “unattractive” in psychology.

Recently, a public multimodality beauty (M2B) database
that includes three modalities: facial, dressing, and vocal from
eastern and western females is proposed [22]. In this section,
we will exploit the proposed ECSDL method on the M2B data
for human attractiveness analysis including facial, dressing,
and vocal attractiveness assessments.

Fig. 1. Examples of face pair of (a) eastern and (b) western females.

A. M2B Database
In the M2B database, the facial, dressing, and vocal fea-

tures were collected from 620 eastern females (i.e., Chinese,
Korean, and Japanese) and 620 western females (i.e., Cau-
casian, consisting of Angles, Celtic, Latin, and Germanic).
For facial attractiveness analysis, the geometric feature, i.e.,
shape context based on 87 landmark points, and the appearance
feature based on local binary pattern (LBP), Gabor filter
response, and color moment are exploited.

Specifically, the LBP descriptor is used for capturing the
small texture details, and the LBP value of an image pixel
(x, y) is represented as LBPP,R(x, y) =∑P−1

i=0 bi2i , where P
denotes the number of sampling points and R denotes the
radius of the circle to be sampled. A Gabor filter is used
for texture representation, and color moment as a low-level
color descriptor consisting of the first-order moment (mean of
color values) and the second-order moment (variance of color
values) of the image is also used.

For dressing attractiveness analysis, the dressing features
are extracted from 20 upper body parts and 10 lower body
parts using five kinds of feature descriptors, such as histogram-
oriented gradient (HOG), LBP, color moment, color histogram,
and skin descriptor. The HOG and LBP features are used to
describe the dressing texture attributes such as collar or curl-
ing. The color moment, color histogram, and skin descriptor
are used to describe color-related dressing attributes such as
shirt color.

For vocal attractiveness analysis, the MIRToolbox was used
to extract vocal features. The specific details of facial, dress-
ing, and vocal feature extraction methods and the attractive-
ness assessment results for different modalities can be found
in [22]. Finally, the facial, dressing, and vocal features are
reduced to 300, 300, and 50 dimensions using PCA, respec-
tively. Some examples of facial images from eastern and west-
ern females with landmark points are shown in Fig. 1. Some
examples of dressing images are shown in Fig. 2. We observe
from Fig. 1 that the facial images in the M2B database
contain abrupt features such as illumination, poses, occlusions,
and expressions. Although these features contribute to facial
attractiveness, in this paper, only fontal faces with restricted
setting were used in the facial attractiveness analysis for
validating the proposed approach. The attractiveness scores
(ground truth) of facial, dressing, and vocal features for each
person were normalized within [1], [10] from k-wise ratings
of raters [22].

B. Parameters Setting
In evolutionary optimization of the cost matrix shown in

Algorithm 2, both the maximum population size and the search
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TABLE I

RANK-1 RECOGNITION ACCURACY OF FACIAL, DRESSING, AND VOCAL ATTRACTIVENESS USING SUBSPACE-BASED METHODS

TABLE II

RANK-1 RECOGNITION ACCURACY OF FACIAL, DRESSING, AND VOCAL ATTRACTIVENESS USING GENERAL CLASSIFIERS

Fig. 2. Examples of (a) eastern and (b) western dressing images.

epochs are set as 100 and the lower and upper boundaries are
set as −1 and 1, respectively. Notably, the population size and
epochs are applications specific, but the complexity would be
increased with large population size and more epochs.

C. Cost-Sensitive Attractiveness Assessment/Recognition

To qualitatively evaluate human attractiveness, the objective
attractiveness scores are divided into five levels of 1, 2,
3, 4, and 5, with respect to the attractiveness degree of
“poor,” “fair,” “good,” “very good,” and “excellent,” respec-
tively. In experiment, the attractiveness assessment of eastern
(denoted by “E”) and western (denoted by “W”) females is
studied separately. 400 females are randomly selected from
620 persons as training set, and the remaining 220 females
are determined as testing set. Then, we run each procedure ten
times in a “cross-validation” manner, and the average rank-1
recognition accuracy (i.e., the ratio between the number of
correctly recognized samples and the number of total testing
samples) is reported with a standard deviation for each method.

The compared methods are divided into two categories.

1) The comparisons with four subspace methods such as
PCA, LDA, LPP, and MFA, and their cost-sensitive vari-
ants including CSPCA, CSLDA, CSLPP, and CSMFA
are presented. As described in Table I, the proposed
ECSDL clearly outperforms other subspace learning

methods with 10% accuracy. This demonstrates that the
proposed evolutionary cost matrix optimization and the
discriminative subspace learning are very effective for
cost-sensitive subspace learning and classification task.

2) The comparisons with generic classifiers such as KNN,
SVM, and LSSVM are provided in Table II. We also
compare with the CISVM [18] proposed for addressing
the cost-sensitive matrix construction problem using the
concept of “CI.” Additionally, a CSOR [21] that was
proposed for facial attractiveness is compared. In exper-
iments, the number of NNs is empirically set as 30. From
Table II, we observe that for different tasks, CISVM
performs worse than other methods.

The possible reason may be that the CI is still predefined
and task dependent, instead of a precise cost value. In addition,
with the increase of the CI width, the training complexity of
SVM increases. Although CSOR is improved compared with
SVM by introducing a cost-sensitive element, the cost matrix
is prior defined and a lack of flexible property when it is
adapted to different tasks and new environments.

In human attractiveness assessment with five levels from
1 to 5, the cumulative score proposed in [23] is selected as
a metric for evaluating the proposed cost-sensitive method in
recognition. Specifically, the cumulative score is defined as

CumScore(ϑ) = Ne≤ϑ/Ntest × 100% (32)

where ϑ denotes the tolerated error level and Ne≤ϑ denotes
the number of testing instances whose absolute error e is
less than ϑ (ϑ = 0, 1, 2, . . . , c − 1). Note that e denotes
the absolute error between the predicted label and the true
label. Ntest denotes the number of total testing instances
and c denotes the number of classes. Clearly, CumScore(0)
denotes the rank-1 recognition. The CumScore curves for
facial, dressing, and vocal attractiveness assessment are illus-
trated in Figs. 3–5, respectively. We can see that the proposed
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Fig. 3. Cumulative scores based on different methods for “facial” attractiveness recognition with respect to (a) eastern, (b) western, and (c) eastern + western.

Fig. 4. Cumulative scores based on different methods for “dressing” attractiveness recognition with respect to (a) eastern, (b) western, and (c) eastern +
western.

Fig. 5. Cumulative scores based on different methods for “vocal” attractiveness recognition with respect to (a) eastern, (b) western, and (c) eastern + western.

ECSDL show the best performance, particularly when ϑ = 0
(i.e., rank-1 recognition).

V. FACE DATA ANALYSIS FOR VISION APPLICATION

In this section, we conduct face recognition and face veri-
fication experiments using the proposed method. This section
aims at testing the usefulness of the proposed cost-sensitive
method. Two benchmark face data sets are used: 1) AR
face database [24] that contains the faces of 100 persons
(50 males and 50 females) and 2) the challenging LFW [25]

that consists of 13 233 images of 5749 people in unrestricted
environments.

A. Experiment on AR Data Set for Face Recognition

From the angle of access control system application, face
recognition, as illustrated in an FR-ACS-based example, can
be demonstrated as a cost-sensitive task [15]. In the imple-
mentation, we follow the same experimental setting as [26]
in which seven facial images per person from Session 1 with
illumination and expression changes were used for training and
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TABLE III

RECOGNITION RATES OF COST-SENSITIVE SUBSPACE-BASED METHODS ON AR DATA

TABLE IV

COMPARISONS WITH BASELINES AND STATE-OF-THE-ART COST-SENSITIVE FACE RECOGNITIONS ON AR DATA

Fig. 6. One subject from two different sessions in AR database. (a) Session 1.
(b) Session 2.

Fig. 7. Pairwise faces from LFW data set. (a) Same face pair. (b) Not same
face pair.

the other seven images per person with the same condition
from Session 2 were used for testing. The example images
of one subject from two different sessions are shown in
Fig. 6. The eigenface [2] with 300 dimensions after PCA
dimension reduction is extracted as features in the experiment.
An eigenface aims at extracting facial features based on PCA

by transforming a face from pixel space into principal com-
ponent space. The transformation is achieved by performing
eigendecomposition on the covariance matrix of the training
data. The eigenvectors are the so-called eigenface feature. For
fair comparisons, we follow the same train/test split.

We have compared the proposed ECSDL approach with four
cost-sensitive subspace-analysis-based methods (i.e., CSPCA,
CSLPP, CSMFA, and CSLDA) in Table III. From Table III, we
can see that the proposed ECSDL method outperforms other
cost-sensitive subspace learning methods with 2% accuracy
improved. CSLDA ranks the second best and demonstrates
the importance of discriminative learning, but it fails in auto-
matic learning of the cost matrix. During the subspace-based
methods, CSLPP performs the worst. The reason may be that
the manifold characteristic of low-dimensional embedding is
not dominant in the AR database.

Additionally, three generic classifiers (e.g., NN, nearest
subspace, and linear SVM) and two specialized cost-sensitive
face recognition methods (e.g., mckNN [15] and mcSVM [27])
are also compared in Table IV. Some baseline results
are from [15]. From Table IV, we can observe that the
cost-sensitive face recognition methods such as multiclass
cost-sensitive k-Nearest Neighbor (mckNN) and multiclass
cost-sensitive SVM (mcSVM) outperform the conventional
classifiers. Comparatively, mcSVM is superior to others
(86.6%) except the proposed ECSDL method. This demon-
strates that the proposed ECSDL in this paper can effectively
improve face recognition.

Note that the result of CISVM is not provided because
there was no report for its use in the face recognition task.
With rigorous consideration, we have downloaded the released
codes of CISVM and run the codes on AR data. We see that
the obtained recognition accuracy is approximately 28%. Note
that this paper focuses on cost-sensitive learning and subspace
learning, and the state-of-the-art results based on the deep
learning framework are not reported for fair comparison.

B. Experiment on LFW Data Set for Face Verification

Face verification is also a cost-sensitive problem, because
we can imagine that a wrong match between two faces
(stranger versus house owner) will cause a more serious loss
than a wrong match between two faces (house owner versus
house owner). To this end, we evaluate our method on the
challenging LFW data set. Since the data set sampled from
Yahoo! News shows large variations in pose, illumination,
expression, and age, it is widely used for unrestricted face
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Fig. 8. Visualization of cost matrix observed in different tasks (C indicates the number of classes). Note that tasks 1, 2, and 3 denote the attractiveness
assessment based on facial feature, dressing feature, and vocal feature, respectively, task 4 denotes the face recognition, and task 5 denotes the GR. (a) Cost
matrix of task 1. (b) Cost matrix of task 2. (c) Cost matrix of task 3. (c) Cost matrix of task 4. (d) Cost matrix of task 4. (e) Cost matrix of task 5.

TABLE V

RECOGNITION RATES OF COST-SENSITIVE SUBSPACE-BASED METHODS ON LFW DATA

TABLE VI

COMPARISONS WITH STATE-OF-THE-ART METRIC LEARNING METHODS ON LFW

verification and matching in the wild. Two face pairs are shown
in Fig. 7.

The data set is organized into two views.
1) In view 1, a set consisting of 2200 pairs for training and

1000 pairs for testing is developed for model selection.
2) In view 2, 6000 pairs for tenfold cross validation are

developed. In each fold, 600 pairs with 300 similar pairs
and 300 dissimilar pairs are contained.

Note that the experimental setup for face verification is
different from that for the standard face recognition. In exper-
iment, the fair pairs are given and the decision on each pair
is generally made as “same” (positive pair) or “not same”
(negative pair) without needing the identity information of
each person.

For this data set, state-of-the-art metric learning methods
[28]–[34] are generally explored over intrapersonal subspace
instead of the generic classifiers (e.g., SVM). In order to make
the proposed ECSDL method suitable in LFW data, the feature
vector that can reflect the similarity information is constructed
for each pair. We do the experiments by following the standard
protocol of LFW. The brief description is shown as follows.

For each aligned face, two facial descriptors: LBP and scale
invariant feature transformation (SIFT) are used to extract
features, respectively. The SIFT feature has the characteristic
of scale, rotation, and translation invariance, which aims at
extracting the key points of an image in the scale space.
For this LFW database, the wild faces are unconstrained
multiposes and different illuminations, and therefore, SIFT is
a good candidate for feature description. Each face is then
represented as a 300-D vector [28] after PCA dimension
reduction. Due to the lack of label information, for evalu-
ating the proposed method in this scenario, we represent a
face pair using five similarity metrics: correlation coefficient,

Euclidean distance, cosine distance, Mahalanobis distance,
and bilinear similarity function with positive semidefinite
matrix learned in [28]. Hence, a 5-D vector is formulated to
represent each similar/dissimilar pair and a binary classifier is
trained.

Following the tenfold cross-validation protocol on view 2,
the mean accuracy of tenfold is reported with standard devi-
ation. The results of cost-sensitive subspace methods are
reported in Table V, from which we can observe that CSMFA
shows the worst performance among all the methods.

The possible reason is that the constructed locality graph
using k NNs of each input sample fails on the LFW database
that consists of many pairwise faces, such that the intrasam-
ple information is lost. The proposed ECSDL outperforms
other cost-sensitive subspace methods and the effectiveness
is demonstrated further.

Moreover, we have also compared ECSDL with several
state-of-the-art metric learning methods such as SILD [29],
KISSME [30], CSML [31], ITML [32], LDML [33], and
DML-eig [34]. The comparison results are shown in Table VI,
from which we observe that our proposed ECSDL performs a
significantly better recognition than metric learning methods
for both descriptors. Besides, a new prospective is that group
metrics can be integrated as input features for face verifi-
cation by learning a binary classifier. Notably, we focus on
cost-sensitive learning and subspace learning, and the deep
neural networks that depend on large training data are not
compared.

VI. E-NOSE DATA ANALYSIS FOR OLFACTION

APPLICATION

Gas recognition (GR) is an important part in artificial
olfaction. Generally, it aims at detecting the existence of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND ZHANG: ECSDL WITH APPLICATION TO VISION AND OLFACTION 11

TABLE VII

RANK-1 RECOGNITION OF GASES USING SUBSPACE-LEARNING-BASED NN CLASSIFIERS

TABLE VIII

RANK-1 RECOGNITION OF GASES USING GENERAL CLASSIFIERS

poisonous gases. If a kind of poisonous gas is wrongly recog-
nized into a kind of nontoxic odor, it may cause harm to peo-
ple’s health. Therefore, GR can be viewed as a cost-sensitive
problem.

The cost matrix is definitely defined according to (4).
E-NOSE is an artificial olfaction system composed of a sensor
array with partial specificity coupled with the pattern recog-
nition algorithm [35]. The gaseous contaminant recognition is
also recognized as a cost-sensitive recognition problem. In this
section, we will explore the proposed methods on the E-NOSE
database for a new application of GR. The E-NOSE database
is provided in [13], which contains six kinds of gaseous
contaminants, i.e., formaldehyde (HCHO), benzene (C6H6),
toluene (C7H8), carbon monoxide (CO), ammonia (NH3), and
nitrogen dioxide (NO2). The number of samples for each kind
of gas is 188, 72, 66, 58, 60, and 38, respectively. In feature
extraction, the steady-state point of each sensor is extracted
as a feature, and as a result, a 6-D sensory feature vector
is formulated for sample representation. The position of the
steady-state point is set as the 4/5 (240th point) of the whole
response (300 points). The specific details of gas sensing and
data acquisition can be referred to as [13].

In the implementation, two-thirds of samples of each class
are selected as training set. The rank-1 recognition of each
class, average recognition rate (ARR), and the total recognition
rate (TRR) are reported. Notably, ARR is the ratio of the
summation of all recognition rates and the number of classes,
while TRR is the ratio between the number of correctly clas-
sified samples for all classes and the total number of samples.
The comparisons with subspace-based learning methods are
shown in Table VII, in which the rank-1 recognition results
using the NN classifier are reported. We can observe that the
proposed ECSDL performs the best recognition performance
with 96.42% of ARR and 96.30% of TRR.

For comparison with existing methods (e.g., SVM, LDA,
PLS-DA, and their kernel extensions) that have been used
in the E-NOSE application, we report the recognition results
in Table III. We can observe that the proposed ECSDL method
shows the best performance. Note that the one-against-one
scheme is used in SVM- and LDA-based methods.

VII. COMPUTATIONAL COMPLEXITY AND TIME ANALYSIS

For ECSDL in Algorithm 3, it involves the computational
complexity of Algorithms 1 and 2. For Algorithm 1, it involves
the computation of Sb(NNN), Sw(NNN) and the eigendecomposition
of S−1

b(NNN∗)Sw(NNN∗), and thus the complexity is O(D3). For
Algorithm 2, the complexity is related to the population size N
and the number epochs for loop, and thus the extra complexity
is O(N · epochs). Therefore, the computational complexity
of ECSDL is O(D3) + O(N · epochs). Note that the NN
classifier is independent of the proposed method, and thus
the computational complexity of NN classifier is excluded
here.

With a naïve MATLAB implementation, the algorithms are
run on a 2.5-GHz Windows machine with a 4-GB RAM.
The computation time on the large-scale LFW data set is
presented in Table VIII, from which we observe that CSPCA
and CSLPP cost much more time than CSLDA. This is
because the covariance matrix computation in CSPCA and
the locality graph construction in CSLPP are time consuming.
The CSMFA cost the most time (6731.9 s) among all the
methods. The reason is that the computation of two locality
graphs for intraclass and interclass is needed. The ECSDL
method costs a comparatively little high computational time
(2318.1 s), because of the large-scale evolutionary search
process. The computational time depends on the population
size and searching epochs.
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TABLE IX

COMPUTATIONAL TIME ON LFW DATA SET FOR TRAINING AND TESTING IN ONEFOLD

VIII. VISUALIZATION OF COST MATRIX

In order to visualize the learned cost matrix using the
proposed model and have an insight into what the cost matrix
looks like, we show the cost matrix of different tasks in
experiments in Fig. 8. From the visualization of cost matrix,
we know that the diagonal entries of each cost matrix are zero,
which comply with the cost definition in (4). Additionally,
different sizes of values are obtained in each cost matrix,
which corresponds to the best classification performance.
The nonuniform cost matrix also confirms the necessity of
cost-sensitive learning for improving the classification ability.
Additionally, we can see that the cost matrix is not symmetric,
which shows that the cost of misclassifying A as B is
different from the cost of misclassifying B as A. For example,
in Fig. 8(a), the cost N12 = 0.17 and the cost N21 = 1.02.
Note that classes 1 and 2 in task 1 (facial attractiveness analy-
sis) denote “poor” and “fair,” respectively. In our motivation,
we expect that the cost N12 of classifying “poor” attractiveness
as “fair” should be lower than that cost N21 of classifying
“fair” attractiveness as “poor” (i.e., N12 < N21), and clearly,
the cost matrix complies with our expectation. Further, we
consider the classification between class 1 “poor” and class 5
“excellent.” We can observe that N15 < N51, which implies
that misclassifying “excellent” as “poor” leads to the highest
cost and comply with our expectation. Notably, the true cost
matrix is unknown and expected to be solved in our proposed
ECSDL approach. The recognition accuracy as an effective
measure has been shown from Tables I–VII and IX, which
demonstrate the effectiveness of the proposed model.

IX. DISCUSSION

From a variety of benchmark data sets in vision and
olfaction application, the generality of the proposed method
is effectively and preliminarily revealed. From the perspective
of algorithm, the complexity, computational cost, and the
convergence of the proposed approach are optimistic. ECSDL
is proposed under a cost-sensitive discriminative learning
framework. EAs are widely used to solve different types of
optimization problems for their rapid search in the whole
solution space with heuristic and bioinspired update strategies.
EAs have global exploration in the entire search space and
local exploitation abilities to find the best solution near a
new solution it has discovered, but they do not guarantee
to find the global optimums of a problem. In this paper,
the instinct optimization involves three bioinspired genetic
operators, i.e., mutation, crossover, and selection. The optimal
or near-optimal solutions of the proposed methods can be
obtained with finite iterations and a low computational cost for
real applications. The velocity depends much on the size of
population. Another aspect that we would like to claim is the
deep learning algorithms trained on a large-scale data. The pro-
posed cost-sensitive learning method is proposed for general

problems (i.e., small sample problems). The cost-sensitivity
may be avoided if large-scale data are available.

In a real-world application scenario, similar to general-
machine-learning-based classification, a batch of training data
will be obtained or collected for model construction. Gener-
ally, the training process (model parameter tuning) is imple-
mented offline and then the model parameters are used for
prediction or classification. There is no exception for the
proposed model and the training process including the sub-
space projection solver and the off-line cost matrix optimizer;
then, the learned projection WN and the cost matrix NNN are
saved for testing. Note that the motivation of the proposed
method is for cost-sensitive classification problems; however,
for general classification problems, the method also works
by appropriately defining the cost matrix as some particular
matrix (e.g., identity matrix).

It is possible to manually assign trivial cost “0” to difficult
cases. However, how to measure the difficulty becomes an
open problem. That is, it is difficult to quantify how severe
one type of mistake is against another one. Although users
may know what type of mistake is more serious than another
type, it is difficult to specify the cost value of one mistake.
Cost-sensitive learning is closely related with the real classi-
fication scenario. Both discriminative subspace learning and
classifier learning target at improving the classification per-
formance. In this paper, cost-sensitive discriminative subspace
learning is focused by considering the cost-sensitive nature of
the feature subspace. Learning a robust cost-sensitive classifier
by incorporating the weighted prediction error will be a future
direction.

X. CONCLUSION

In this paper, we propose an ECSDL framework for dealing
with the cost-sensitive classification tasks in real-world vision
and olfaction applications. The misclassification loss is paid
more attention than the single classification accuracy in mod-
eling process. In cost-sensitive scenarios, high classification
accuracy may not mean the best performance. Instead, a lower
misclassification loss may be a more effective metric. The
merits of this paper include the discriminative subspace WNNN
learning in Algorithm 1 for pursuit of the maximum class
separability and the automatic cost matrix NNN optimization in
Algorithm 2 based on an evolutionary backtracking search
algorithm. A unified ECSDL method in Algorithm 3 with a
variable alternating optimization algorithm is proposed. Exten-
sive experiments have been conducted on a variety of vision
and olfaction application scenarios. The experimental results
and comparisons with the state-of-the-art methods demonstrate
the extremely prominent efficacy of the proposed approach for
cost-sensitive recognition tasks.

In the future work, four aspects may be involved.
1) It is also challenging to make more insight into the cost

matrix convex optimization based on gradient learning
and make it really intelligent.
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2) The proposed ECSDL method can be extended to its
nonlinear version using Mercer kernel theorem, such
that a kernelized version can be proposed for nonlinear
subspace projection.

3) In terms of the representation ability of deep learning,
the deep features of the database may be extracted for
the proposed method.

4) The cost-sensitive classifier model can be directly con-
structed by optimizing the cost matrix such that the best
classifier is solved.
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