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Abstract—We propose a novel reconstruction based transfer 

learning method called Latent Sparse Domain Transfer (LSDT) 

for domain adaptation and visual categorization of heterogeneous 

data. For handling cross-domain distribution mismatch, we 

advocate reconstructing the target domain data with the combined 

source and target domain data points based on    -norm sparse 

coding. Furthermore, we propose a joint learning model for 

simultaneous optimization of the sparse coding and the optimal 

subspace representation. Additionally, we generalize the proposed 

LSDT model into a kernel based linear/nonlinear basis 

transformation learning framework for tackling nonlinear 

subspace shifts in Reproduced Kernel Hilbert Space. The 

proposed methods have three advantages: 1) the latent space and 

reconstruction are jointly learned for pursuit of an optimal 

subspace transfer; 2) with the theory of sparse subspace clustering 

(SSC), a few valuable source and target data points are 

formulated to reconstruct the target data with noise (outliers) 

from source domain removed during domain adaptation, such 

that the robustness is guaranteed; 3) a nonlinear projection of 

some latent space with kernel is easily generalized for dealing with 

highly nonlinear domain shift (e.g. face poses). Extensive 

experiments on several benchmark vision datasets demonstrate 

that the proposed approaches outperform other state-of-the-art 

representation based domain adaptation methods. 

 

Index Terms—Transfer learning, domain adaptation, visual 

categorization, heterogeneous data 

 

I. INTRODUCTION 

isual big data bring many challenges to machine learning 

and computer vision, e.g. the dilemma of insufficient 

labeled data. One interesting topic is to enrich the limited 

labeled data with relevant data from web or other sources and 

exploit the unlabeled data by semi-supervised learning (SSL) 

[31, 32]. However, the enriched data from target domain is 

violated from the training data in source domain [33], which 

leads to significant performance degradation in classification 

[7]. Domain adaptation, that has the same goal as transfer 

learning, aims at transferring knowledge across different but 
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related domains, i.e.  (     )   (     )  [34, 35], where 

(XS, YS) denote the source data matrix and the corresponding 

label matrix, (XT, YT) represent the target data matrix and label 

matrix. Physically, such subspace mismatch or domain 

shift/bias is common in vision problems. It often results from a 

variety of visual cues or abrupt feature changes, such as camera 

viewpoint, resolution, illumination, color, poses, and 

background, etc. To this end, various domain adaptation 

methods have been developed to adapt a model from source to 

target domain, including representation-based and 

classifier-based ones. The former tends to achieve domain 

alignment by learning a transformation [8, 14, 15, 19]. The 

latter advocates learning a robust classifier with XS and XT by 

introducing some ad-hoc regularization [11, 16, 17, 40]. The 

common practice is to train a classifier on source data and find 

an optimal decision boundary on both domains.   

In this paper, we focus on reconstruction based domain 

adaptation via latent subspace learning and sparse 

representation. Recently, a low-rank representation (LRR) 

based domain adaptation framework has been proposed for 

knowledge transfer, i.e. RDALR [2] and LTSL [1]. The basic 

idea of RDALR is illustrated in Fig. 1(a). A rotation W is used 

to transform the source data XS, then do alignment by 

reconstructing the rotated source data via LRR. However, 

finding such an alignment between WXS and XT may not 

transfer knowledge directly and it is unclear if a test sample is 

from the source domain or the target. Fig. 1(b) illustrates the 

basic idea of LTSL, where the subspace projection W is 

pre-learned by using PCA, LDA, etc. Then, the projected 

source data WXS is used to reconstruct the projected target data 

WXT via LRR. Both methods are inadequate in knowledge 

transfer and subspace alignment, with three reasons as follows.  

First, in LTSL the subspace is pre-learned and is independent 

with the reconstruction process, which limits the domain 

adaptation performance. Therefore, we propose a joint learning 

method for the pursuit of the latent subspace P and 

reconstruction Z. The joint learning of P and Z makes our 

method distinctly different with RDALR [2] and LTSL [1] in 

both model and algorithm. Experiments on face and object 

datasets show that joint learning improves the recognition 

accuracy by 3% and 17%, respectively.  

Second, in both RDALR and LTSL, the data in target domain 

are reconstructed with the data in source domain only by using 

LRR [4]. Two noteworthy things include: (i) LRR was 

suggested to get the block diagonal solution for subspace 

segmentation.   However, trivial solution will be obtained when 

handling the disjoint subspace and insufficient data. Moreover, 

LRR based domain adaptation is with a strong independent 
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Fig. 1. Overview of the existing reconstruction guided knowledge transfer methods and our method. 

 

subspace assumption. Different from LRR, sparse subspace 

clustering (SSC) [3, 21, 37] is for data points that lie in a union 

of low-dimensional subspaces, where a sparse matrix Z is 

learned by minimizing ‖    ‖ . Compared with LRR, SSC 

can be scalable [43], is well supported by both theoretical 

analysis [37] and experimental results [3] in handling the data 

points near the intersections of subspaces. Therefore, in light of 

the multi-source data lying in different space, we are inspired to 

reconstruct the target data XT with the source data XS by 

learning a sparse Z based on SSC theory. With face and object 

datasets, an increment of 2% and 6.4% recognition accuracy is 

achieved by using SSC-based reconstruction. (ii) For RDALR 

and LTSL, the target data XT are reconstructed by solely using 

the source data XS. When only very few source data is available, 

better reconstruction can be obtained by grouping the target 

data i.e.   [     ]  as “dictionary”. Fortunately, with the 

SSC theory [37], we can use both XS and XT for reconstructing 

the target data and avoid the trivial solution. The experiments 

on face and object datasets demonstrate that 4.7% and 9.7% 

increments of recognition accuracy are achieved by comparing 

with that of using source data only. 

Third, the existing methods work as a linear framework, and 

cannot tackle the nonlinear shifts in real-world vision problems. 

Therefore, it is valuable to develop a nonlinear reconstruction 

guided subspace transfer framework. In this work, we 

generalize our model to tackle nonlinear shifts in Reproduced 

Kernel Hilbert Space. The experiments on face and object 

datasets demonstrate that our method is 7.7% and 6.3% higher 

than linear ones in recognition accuracy, respectively. 

In this paper, following the subspace reconstruction guided 

domain adaptation framework, we propose a sparse 

reconstruction method in the learned latent space between the 

source data XS and the target data XT. It tries to account for 

noise in data corruption and removes outliers, with their 

intrinsic relatedness preserved. More formally, we name the 

proposed method as latent sparse domain transfer (LSDT), 

which aims to learn a sparse reconstruction coefficient matrix 

between domains in some latent space for domain adaptation. 

The basic idea of LSDT is illustrated in Fig. 1(c). Compared 

with RDALR and LTSL, our LSDT can jointly learn the latent 

space P and the SSC-based reconstruction Z, and the target data 

XT is reconstructed with the group data of XS and XT, such that 

the source and target data lie in a shared latent space with 

domain shift/bias removed. 

In summary, the key contributions of this work are threefold. 

- The latent space projection P and the sparse reconstruction 

coefficient matrix Z are simultaneously learnt via a joint 

learning mechanism, which can achieve an optimal subspace 

representation. The sparse property implies that only a few 

data points from source domain are selected for subspace 

transfer and overcomes the overfitting problem. 

- The sparse subspace clustering (SSC) is introduced for 
reconstruction guided domain adaptation. The combined 

source and target data are used to reconstruct the target 

domain, which can better span the entire feature space than 

the under-complete source data only. In particular, the trivial 

solution can be avoided by using SSC instead of LRR. 

- Induced by Mercer kernel theorem, the proposed method is 

generalized as a nonlinear method, in which the domain 

adaptation is employed in a reproduced kernel Hilbert space 

(RKHS) for handling nonlinear domain shift. 

Paper organization. This paper is organized as follows. In 

Section 2, we give a brief overview of the related work in 

domain adaptation. The proposed latent sparse domain transfer 

method is illustrated in Section 3. The proposed nonlinear 

LSDT is presented in Section 4. The experimental results for 

several domain adaptation based vision tasks are shown in 

Section 5. The in-depth discussion of the proposed methods is 

illustrated in Section 6. Section 7 concludes the paper. 

II. RELATED WORKS 

Domain adaptation can be performed in either representation 

level or classifier level [9, 10, 12, 14, 15, 16, 17, 36]. In 

classifier based adaptation, Yang et al. [12] proposed an 

adaptive SVM (ASVM) where the source classifier   ( ) was 

adapted to the target classifier   ( ) by learning a perturbation 

  ( ), such that   ( )    ( )    ( ). Similarly, Duan et 

al [16] proposed an adaptive multiple kernel learning (AMKL) 

for consumer video event recognition from annotated web 
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videos. Zhang et al. [36] proposed a DA framework with two 

error terms based on   -norm regularization. However, for 

classifier-based methods, the label information of source and 

target domains should be used for learning a target classifier.  

To learn a better data representation for adaptation without 

labels used, Gong et al. [10] proposed an unsupervised domain 

adaptation method (GFK), in which geodesic flow kernel is 

used to model the domain shift by integrating an infinite 

number of subspaces where the changes in geometric and 

statistical properties are characterized. Gopalan et al. [8] also 

proposed an unsupervised method (SGF) for low dimensional 

subspace transfer. The idea behind SGF is that it samples a 

group of subspaces along the geodesic between source and 

target data, and project the source data into the subspaces for 

discriminative classifier learning. Shekhar et al. [6] proposed a 

shared domain dictionary learning (SDDL), which assumes that 

the knowledge of two domains can be integrated into one 

dictionary D. However, the label information of source and 

target data is still required, while the proposed method does not 

need the label information during cross-domain learning. In 

[44], Lin et al. proposed a dynamic spatio-temporal subspace 

i.e. STDM, for background subtraction, where incremental 

subspace learning and analytical linear reconstruction are used 

to maintain the dynamic space. 

In reconstruction based adaptation, RDALR and LTSL that 

are most structurally relevant with this paper were proposed by 

Jhuo et al. [2] and Shao et al. [1], respectively, in which low 

rank representation (LRR) is used for subspace transfer. A brief 

overview of RDALR and LTSL is introduced as follows. 

A. Robust Domain Adaptation via Low Rank (RDALR) [2] 

RDALR shown in Fig. 1(a) addresses the domain adaptation 

problem by minimizing the following objective function 

 

IWWEZXWX

EZ
EZW





T

1,2,,

,s.t.

min

TS

rank 
                     (1) 

where rank(·) represents the rank of a matrix, ‖ ‖    denotes 

    -norm, and   is the regularization coefficient. The 

constraint       is introduced to learn an orthogonal 

transformation matrix. The term ‖ ‖    is used to encourage 

the error columns of E to be 0, such that noise or outliers in 

source domain can be removed during adaptation. While 

minimization of rank(Z) tends to find a reconstruction 

coefficient matrix with the lowest rank structure. In 

optimization, due to the discrete nature of rank function, 

nuclear norm or trace norm (i.e. the sum of singular values of 

the matrix) is generally adopted as a proper surrogate of the 

rank. Then, inexact Augmented Lagrange Multiplier (ALM) 

[22] can be used for solving problem (1). 

B. Low-rank Transfer Subspace Learning (LTSL) [1] 

Similarly but different in nature from RADLR, LTSL shown 

in Fig. 1(b) addresses the subspace transfer problem by 

minimizing the following objective function 

   

IWUWEZXWXW

EZXW
EZW





2
TTT

1,221
,,

,.t.s

,min

ST

S rankF 
                 (2) 

where  (    )  is a generalized subspace learning function 

which can be written as   (     ),    and    are selected 

based on the conventional subspace learning model, such as 

PCA, LDA, etc. Given fixed W, inexact ALM under convex 

surrogate of rank function can be used to solve problem (2), 

which is similar to (1). There are three main differences 

between LTSL and RDALR:  

 RDALR tends to reconstruct the rotated source data XS by 

using target data XT. While LTSL attempts to reconstruct the 

target data using the source data in the learned subspace. 

 RDALR first use W to rotate the source data, and perform the 

data alignment in the original space of target data. While 

LTSL aims to find a subspace alignment between XS and XT. 

 A subspace learning function is embedded into LTSL for 

learning a transformation W with discriminative property.  

In summary, both RDALR and LTSL perform the domain 

adaptation using LRR. The former presents to data alignment 

by leveraging LRR and provides some valuable insight for 

domain adaptation. LTSL performs adaptation in some 

pre-learned subspace, and presents a more complete theoretical 

and subspace analysis for knowledge adaptation. As mentioned, 

Liu et al. [4, 21] proved that LRR performs well when the 

subspaces are independent and the data sampling is sufficient. 

However, this assumption is difficult to hold in cross-domain 

vision problems (i.e. data distribution mismatch). Following 

the representation based adaptation, our proposed method 

attempts to use SSC based sparse reconstruction for subspace 

transfer while avoiding such strong low-rank assumption. More 

advantageously, the proposed method can simultaneously learn 

a linear/nonlinear basis transformation for subspace projection 

and a sparse reconstruction matrix with stronger robustness. It 

can prohibit the noise or outliers in source domain from 

transferring to target domain and also avoid overfiting in 

reconstruction, especially when the number of source data and 

target data is not sufficient. The proposed method is different 

from LTSL in three aspects. (i) The joint learning of subspace 

and reconstruction. (ii) Sparse reconstruction based on SSC 

using combined source and target data. (iii) Kernel based 

nonlinear domain adaptation. Fig. 2 illustrates the flowchart of 

the proposed method for heterogeneous image classification. 

III. LATENT SPARSE DOMAIN TRANSFER LEARNING 

A. Notations 

In this paper, the source and target domain are defined by 

subscript “S” and “T”, respectively. The training data of source 

and target domain is denoted as     
     and     

    , 

respectively, where D is the number of dimensions, NS and NT 

are the number of training samples in both domains.     
       and      

      denote the few labeled and most 

unlabeled data of target domain. Let        represents a 

basis transformation. The sparse reconstruction matrix between 

   and    is denoted as  .    denotes a full-one column vector 

with length of n and I denotes an identity matrix. ‖ ‖  counts 

the number of nonzero elements of a vector, ‖ ‖  (p = 0, 1 or 2) 

denotes   p-norm, and ‖ ‖  denote Frobenius norm of a 

matrix. [ ]  denotes the i-th column of X. Note that matrix and 
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Fig. 2. Flowchart of the training and testing phase of the proposed LSDT method for visual categorization. 

 

vector is in capital and lower bold face, and variable is in italics. 

B. Problem Formulation 

As illustrated in Fig. 1, we aim to learn a reconstruction 

coefficient matrix Z for representing target data XT by using 

itself and source data XS together in some latent space projected 

by a pre-defined basis transformation P. Therefore, the 

optimization problem can be formulated as 

 

00

2

F

s.t.     

,,min

T

TST





Z

ZXXPPX
Z                          (3) 

where   TTS NNN 
Z , T0 is the sparsity level. Due to that 

  -norm based optimization is non-convex, in this paper, 

  -norm is used in the proposed model. 

For learning such a basis transformation P which can ensure 

that the projection does not distort the data and can remain too 

much available information, the following term is integrated, 

   
2

F

T ,,min TSTS XXPPXX
P

                        (4) 

By combining (3) and (4) together, the final formulation of the 

proposed LSDT method is represented as follows 

     
22 T

1 21 F F,

T T T

,

min , , ,

s.t. , , 0, 1, ,
S T T S

T S T S T S T

N N N N i i TZ i N

 

 

   

    

Z P
Z PX P X X Z X X P P X X

PP I 1 Z 1

 (5)  

where the rows of P are required to be orthogonal and 

normalized to unit norm for preventing the solution degenerate 

into zero by enforcing IPP T . Additionally, we also impose 
TT

TTS NNN 1Z1  for addressing the problem that source and 

target data lie in a union of affine subspaces instead of linear 

subspaces. λ1 and λ2 denote the tradeoff parameters. 

For simplification, we let   ND
TS

 XXX , then the 

objective function of problem (5) can be written as 

 
2

F

T
2

2

F111 ,,, PXPXPXZPXZXXZP   TTJ    (6) 

One proposition on the basis transformation P is as follows. 

Proposition 1. There exists an optimal solution P
*
 that can be 

intuitively represented as a linear combination of raw source 

and target data X for some        in the following form  
TT

XΦP                                       (7) 

Note that Proposition 1 has also been used in subspace 

clustering and dictionary learning [6, 13]. With Proposition 1, 

by substituting (7) into (6), the objective function is written as 

 

2

F

TT
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2

F

TTTT
112 ,,,

XXXΦΦX

XZXΦXXΦZXXZΦ







 TTJ
                  (8) 

Let     
   ,      , then the proposed method (5) can 

be illustrated as follows 

TiiNNNN

T

NiZ
STTS

,,10,,.t.s

min

,
TTT

2

F

T
2

2

F

TT
11,





 1Z1IKΦΦ

KXΦΦXKZΦKΦZ
ΦZ


      (9) 

From (9), it is observed that a nonlinear framework of LSDT 

can be deducted by using a nonlinear mapping function φ. The 

details can be referred as Section IV. 

For our LSDT model in Eq. (5), when fixed P, the 

sub-problem on Z shares similar formulation with SSC [3] and 

RSC [37]. Based on the theoretical results in [37], our LSDT 

model is also feasible in recovering the underlying subspace 

structures. However, the model in Eq. (5) is non-convex, 

making it difficult to extend the theoretical results [37] to the 

full LSDT model. 

C. Optimization 

It can be seen from problem (9) that two variables are 

involved. To solve this minimization, alternative optimization 

strategy that solve one variable while fixing the other one is 

considered. Therefore, two main steps are included. 

 Update Z: 

For solving Z, one can fix Φ, then the minimization problem 

(9) with respect to Z becomes 
2

T T

11 F

T T

,

min

s.t. , 0, 1, ,
S T T S

T

N N N N i i TZ i N



 

 

   

Z
Z Φ K Φ KZ

1 Z 1

      (10) 

This is a typical sparse Lasso optimization problem with 

linear equality constraints, and can be efficiently solved by 

using alternative direction multiplier method (ADMM) in [3]. 

A full description of ADMM can be referred as [26] for 

interested readers. The solving process of problem (10) by 

using ADMM is outlined in Algorithm 1. The deduction for 

solving Z can be found in Appendix A.  

 Update Φ: 

For solving Φ, the minimization problem (9) after fixing Z 

can be written as 

IKΦΦ

KXΦΦXKZΦKΦ
Φ





T

2

F

T
2

2

F

TT
1

.t.s

min  T              (11) 
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Algorithm 1. Solving Problem (10) by ADMM 

Input:   ,     
    ,        ,  ,      , and        

  

Initialize: Z=0, YA=0, YB=0, YC=0, YD=0, µ2=λ1 
while not converge do 

1. Fix Z and U, and update L by 

 
 T
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3. Fix L and U, and update Z as follows 
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4. Update the multipliers 

 

 
 
UYY

YY

1L1YY

ZLYY

2

,2

TT
2

2



















DD

iiiN
i
C

i
C

BB

AA

UZ
S

 

5. Update the parameter µ2 

  max,min 22 
 

6. Check the convergence 

end while 

Output: Z 

 

We have the following proposition for solving Φ in (11). 

Proposition 2. When Z is fixed, the optimal solution of (11) is 

computed as 

*2

1

*
ΩVSΦ



  

where V and S are from the eigen-decomposition of       , 

and   is the optimal solution of the following problem 

  IΩΩΘΩΩΩ
Ω

 TT* .t.s,minarg Tr  

The optimization of problem (11) is outlined in Algorithm 2. 

The deduction of the proposition 2 can be found in Appendix B. 

In summary, with the two updating steps for Z and Φ based 

on Algorithm 1 and Algorithm 2, the complete optimization of 

the proposed LSDT method is illustrated in Algorithm 3. 

D. Remarks on the Convergence 

From the viewpoint of optimization, the proposed LSDT is 

non-convex w.r.t. Z and Φ, but the global solution of each 

when fixing the other can be solved. The local optimum of the 

model can be guaranteed using the proposed optimization 

method. The convergence is shown in the Discussion part 

(please see Fig. 8c). After 5 iterations, a local optimum can be 

achieved for two datasets, as an example. 

From the level of approach, by comparing to LTSL [1], it 

pre-learns a transformation P using PCA or LDA, then solves 

the Z by using low-rank constraint, such that the performance 

must be sub-optimal with the pre-learned P as a warm start 

without update. To overcome the flaw of such a suboptimal P, 

The proposed method aims at learning P and Z simultaneously 

by using an alternating optimization strategy, such that better 

performance can be expected. 

Algorithm 2. Solving Problem (11) by Proposition 2 

Input:     
           , Z, λ1, λ2; 

Procedure: 

1. Perform eigenvalue decomposition        

2. Compute    
 

   (  ( 
      )( 

      )
     )  

 

  

3. Perform eigenvalue decomposition of        

4. Get    (   ), where   is index of the d smallest eigenvalues 

5. Obtain      
 

  ; 

Output:   

E. Computational Complexity 

Algorithm 3 includes two steps: update Z (Algorithm 1) and 

update Φ (Algorithm 2). For Algorithm 1 (i.e. ADMM), 

suppose that the number of iterations is T1, the complexity of 

computing L is O(T1N
3
) and the complexity of computing Z is 

O(T1N
2
). Therefore, the computational complexity of 

Algorithm 1 is O(T1N
3
)+O(T1N

2
). For Algorithm 2, the 

eigen-decomposition and matrix multiplication are involved, 

with the computational complexity of O(N
3
). Suppose that the 

number of iterations in Algorithm 3 is T, then the total 

computational complexity of LSDT can be expressed as 

O(TT1N
3
)+O(TT1N

2
)+O(TN

3
). 

IV. NONLINEAR DOMAIN TRANSFER LEARNING 

A. Formulation of NLSDT 

In LSDT, a linear transformation P is exploited for latent 

subspace learning. Naturally, NLSDT is a nonlinear extension 

of LSDT by mapping the data from original space    to the 

reproducing kernel Hilbert space (RKHS)   , that is defined as 

       , induced by Mercer kernel. In RKHS, a nonlinear 

transformation   is learned to handle nonlinear domain bias, 

such as rotation of poses in face recognition.  

For introducing the framework of NLSDT, we first define 

the kernel gram matrix, which is denoted as the matrix  , and 

[ ]    〈 (  )  (  )〉   (  )
  (  )   (     ) , where 

  is a kernel function. Similar to LSDT, the objective function 

of NLSDT can be formulated as 

 (        )  ‖ ‖    ‖  (  )    ( ) ‖ 
  

  ‖ ( )   
   ( )‖ 

                                                        (12) 

Based on Proposition 1, the optimal mapping    can be 

represented as       ( ) . The objection (12) becomes 

 (        )         
2

F

TTTT
11

ZXXΦXXΦZ   T  

       
2

F

TT
2 XXΦΦXX    

=‖ ‖    ‖ 
     

   ‖
 

 
   ‖φ( )  φ( )    ‖

 

 
   (13) 

where    φ( ) φ(  )  and   φ( ) φ( )  denote the 

kernel Gram matrix. Therefore, the minimization problem of 

NLSDT can be written as 

      ‖ ‖    ‖ 
     

   ‖ 
      ((  

    )  (      ))                                                  (14) 
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Algorithm 3. The proposed LSDT 

Input:     
         

           , λ1, λ2 

Procedure: 

1. Compute      
    and     

   

2. Perform eigenvalue decomposition        

3. Initialize     (  𝒱), where 𝒱 is index of the d largest eigenvalues 
4. while not converge do 

4.1. Step 1: fix  , and update Z in Problem (10) using Algorithm 1 based on 
ADMM 

4.2. Step 2: Fix Z, and update   in Problem (11) using Algorithm 2 based on 
Proposition 2 with eigenvalue decomposition 

4.3. Check convergence 

end while 

Output:   and Z 

B. Optimization Algorithm 

The optimization algorithm of NLSDT is similar with LSDT 

shown in Algorithm 1, in terms of Proposition 1 and 

Proposition 2. From the models (9) and (14), we can observe 

that LSDT is in fact a special case of NLSDT when a linear 

kernel function is used to compute    and  . In NLSDT, 

Gaussian RBF function, sigmoid function, etc. can be used as 

kernel function. The NLSDT is illustrated in Algorithm 4. 

C. Classification 

With the case of NLSDT, the classification scheme in this 

paper consists of the following steps: 

 Compute the latent subspace embedding    of source data 

XS using the projection   , as     
 φ(  ). 

 Compute the latent subspace embedding     of the labeled 

target training data XTl using the learned projection  
  and 

sparse reconstruction Z, as      
 φ( ) . 

 Compute the latent subspace embedding     of these 

unlabeled target test data XTu as      
 φ(   ). 

 Train a classifier W using ℓ2-norm regularized least square 

method on the labeled training data [      ]  and label 

matrix   [  
     

 ]
 
, where [ ]      if the class j is 

assigned to the i-th sample, and -1 otherwise. 

 The decision labels of unlabeled target test data are obtained 

by computing    
  . 

V. EXPERIMENTS 

A. Synthetic Data 

In this section, we use the generated toy data for latent 

subspace alignment by our method. The 3-dimensional source, 

few labeled target data and unlabeled target data with two 

classes generated by Gaussian distributions of different means 

and covariance matrices are shown in Fig. 3 (left). Each class in 

source domain contains 50 samples and it is easy to find a 

decision boundary of the two classes in source domain. In target 

domain, there are 5 labeled samples and 50 unlabeled samples 

for each class. From the figure, it is clearly observed that: 1) the 

data points of the same class between source and target domain 

have very different distribution; 2) the classification 

hyper-plane of source domain does not fit the decision 

boundary of target domain. Therefore, how to determine one 

robust decision boundary becomes very challenging.  

The proposed LSDT aims to find a latent space with domain 

adaptation, such that both domains can have similar distribution 

and better separable ability in the latent space. By using the 

proposed LSDT method, the source data and target data in the 

Algorithm 4. The proposed NLSDT 

Input:     
         

           , λ1, λ2 

Procedure: 

1. Compute     φ( ) φ(  ) and    φ( ) φ( ) 
2. Perform Eigen-value decomposition        

3. Initialize     (  𝒱), where 𝒱 is index of the d largest Eigen-values 
4. while not converge do 

4.1. Step 1: fix  , and update Z in (14) using Algorithm 1 by solving 

    ‖ ‖    ‖ 
     

   ‖ 
 ,           

      
  

4.2. Step 2: Fix Z, and update   in (14) using Algorithm 2 by solving 

      ‖ 
     

   ‖ 
      ((    

  )  (  

    ))               
4.3. Check convergence 

end while 

Output: Φ and Z. 

 

 
Fig. 3. The 3-D illustration of synthetic data (left) and 2-D 

illustration after subspace alignment (right) 

 

TABLE I 

3DA AND 4DA BENCHMARK DATASETS FOR VISUAL DOMAIN 

ADAPTATION IN EXPERIMENTS 

Dataset Domain #class #dimension #samples ns/c nt/c 

3DA 

Amazon 31 800 2813 20 3 

DSLR 31 800 498 8 3 

Webcam 31 800 795 8 3 

4DA 

Amazon 10 800 958 20 3 

DSLR 10 800 157 8 3 

Webcam 10 800 295 8 3 

Caltech 10 800 1123 8 3 

 

2-D subspace after projection and reconstruction can be seen in 

Fig. 3 (right). We can observe that the subspace mismatch 

between source data and target data is reduced after LSDT, and 

the decision boundary between the two classes is clear and 

easily to find with a general classifier. The toy data primarily 

demonstrates the effectiveness of our method in latent subspace 

alignment for representation based adaptation. 

B. Object Recognition 

In this section, cross-domain object recognition is discussed. 

 Experimental setup 

In experiments, we test our methods in two visual benchmark 

datasets: 3DA and 4DA of objects, which are widely used for 

domain adaptation. Besides, the deep features of 4DA datasets 

based on convolutional neural network (CNN) [38] are also 

exploited for object recognition. Specifically, the 3DA, 4DA 

and 4DA-CNN datasets and features are illustrated as follows. 

- 3DA: Amazon, DSLR and Webcam domain adaptation [9] 

In the 3DA dataset, each domain contains 31 object classes, 

such as back-pack, keyboard, earphone, etc. By following the 

setting in [9], if Amazon is experimented as source domain, 20 

samples per class are selected for training, and 8 samples are 

selected if DSLR or Webcam is source domain. For target 

domain, 3 training samples per class are selected and the rest 
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TABLE II 

RECOGNITION ACCURACY (%) OF SINGLE-SOURCE AND MULTI-SOURCE DOMAIN ADAPTATION IN 3DA SETTING 

Domains Compared methods Our method 

Source Target 
ASVM 

[12] GFK [10] SGF [8] SA [41] 
RDALR 

[2] 
LTSL- 
PCA[1] 

LTSL- 
LDA [1] LSDT NLSDT 

Amazon Webcam 42.2±0.9 46.4±0.5 45.1±0.6 48.4±0.6 50.7±0.8 49.8±0.4 53.5±0.4 50.0±1.3 56.3±0.7 

DSLR Webcam 33.0±0.8 61.3±0.4 61.4±0.4 61.8±0.9 36.9±1.9 62.4±0.3 54.4±0.4 69.4±0.7 69.9±0.3 

Webcam DSLR 26.0±0.7 66.3±0.4 63.4±0.5 65.7±0.5 32.9±1.2 63.9±0.3 59.1±0.5 72.6±0.9 74.6±0.5 

Amazon+DSLR Webcam 30.4±0.6 34.3±0.6 31.0±1.6 54.4±0.9 36.9±1.1 55.3±0.3 30.2±0.5 69.0±0.8 66.1±0.7 

Amazon+Webcam DSLR 25.3±1.1 52.0±0.8 25.0±0.4 37.5±1.0 31.2±1.3 57.7±0.4 43.0±0.3 67.5±1.8 65.7±0.9 

DSLR+Webcam Amazon 17.3±0.9 21.7±0.5 15.0±0.4 16.5±0.4 20.9±0.9 20.0±0.2 17.1±0.3 22.0±0.1 23.2±0.6 

TABLE III 

RECOGNITION ACCURACY (%) OF DIFFERENT DOMAIN ADAPTATION OVER 10 OBJECT CATEGORIES IN 4DA SETTING 

Task 
Compared methods Our methods 

Naïve 

Comb 

ARC-t 

[15] SGF [8] GFK [10] 
DAM 

[18] 

MMDT 

[14] 

Symm 

[19] 

SA 

[41] 

DIP 

[42] 

LTSL- 

PCA [1] 

LTSL- 

LDA [1] LSDT NLSDT 

A→D 55.9±0.8 50.2±0.7 46.9±1.1 50.9±0.9 57.8±0.8 56.7±1.3 47.9±1.4 55.1 42.8 50.4±0.9 59.1±0.7 52.9±0.8 60.7±0.8 

C→D 55.8±0.9 50.6±0.8 50.2±0.8 55.0±0.9 58.5±0.7 56.5±0.9 48.6±1.1 56.6 49.0 49.5±0.8 59.6±0.6 56.0±0.8 62.2±0.9 

W→D 55.1±0.8 71.3±0.8 78.6±0.4 75.0±0.7 68.2±0.5 67.0±1.1 69.8±1.0 82.3 86.4 82.6±0.5 82.6±0.5 75.7±0.9 76.5±0.6 

A→C 32.0±0.8 37.0±0.4 37.5±0.4 39.6±0.4 39.6±0.1 36.4±0.8 39.1±0.5 38.4 43.3 41.5±0.3 39.8±0.3 42.2±0.3 46.8±0.4 

W→C 30.4±0.7 31.9±0.5 32.9±0.7 32.8±0.7 37.1±0.1 32.2±0.8 34.0±0.5 34.1 37.0 36.7±0.3 38.5±0.3 36.9±0.3 40.3±0.5 

D→C 31.7±0.6 33.5±0.4 32.9±0.4 33.9±0.6 36.5±0.1 34.1±0.8 34.9±0.4 35.8 39.0 36.2±0.3 36.7±0.4 37.6±0.4 41.0±0.5 

D→A 45.7±0.9 42.5±0.5 44.9±0.7 46.2±0.6 46.0±0.2 46.9±1.0 42.7±0.5 45.8 40.5 45.7±0.3 47.4±0.5 46.6±0.5 56.1±0.6 

W→A 45.6±0.7 43.4±0.5 43.0±0.7 46.2±0.7 45.6±0.1 47.7±0.9 43.7±0.7 44.8 42.5 41.9±0.3 47.8±0.4 46.6±0.5 54.5±0.6 

C→A 45.3±0.9 44.1±0.6 42.0±0.5 46.1±0.6 51.9±0.2 49.4±0.8 43.8±0.6 45.3 50.0 49.3±0.4 50.4±0.5 47.7±0.5 54.2±0.6 

C→W 60.3±1.0 55.9±1.0 54.2±0.9 57.0±0.9 63.8±0.5 63.8±1.1 50.5±1.6 60.7 47.6 50.4±0.8 59.5±0.8 57.6±0.9 64.3±1.2 

D→W 62.1±0.8 78.3±0.5 78.6±0.4 80.2±0.4 76.4±0.3 74.1±0.8 78.4±0.9 84.8 86.7 81.0±0.5 78.3±0.4 83.1±0.4 83.5±0.3 

A→W 62.4±0.9 55.7±0.9 54.2±0.8 56.9±1.0 61.2±0.4 64.6±1.2 51.0±1.4 60.3 46.7 52.3±0.8 59.5±1.1 57.2±0.9 65.2±1.0 

 

data in the target domain is used for testing. The detail of 3DA 

dataset is summarized in Table I. 

- 4DA: Amazon, DSLR, Webcam and Caltech 256 [10] 

For 4DA dataset, four domains are included, where each 

domain contains 10 common object classes rather than 31 

selected from 3DA dataset and an extra Caltech 256 dataset 

[11]. In experiments, we follow the configuration in [10] where 

20 samples per class are selected from Amazon, and 8 samples 

per class are randomly selected from DSLR, Webcam and 

Caltech if they are source domains, while 3 samples per 

category are selected if they are target domains, and the rest 

data in target domain is used for testing. The detail of 4DA 

dataset is also summarized in Table I. Note that, the 800-bin 

SURF features provided in [9, 10] for each domain are used. 

- 4DA-CNN: Amazon, DSLR, Webcam and Caltech 256 

domain adaptation [10, 39] 

For the 4DA-CNN setting, 8 layers with 5 convolutional 

layers and 3 fully connected layers of CNN were trained on 

ImageNet in [38]. The well-trained CNN structure and 

parameters are used by taking the 4DA dataset as input of CNN 

[39]. The outputs of the 6
th

 and 7
th

 layer (i.e. DeCAF) are used. 

The feature dimension after CNN is 4096. More details of the 

architecture and training protocol can be referred to [38, 39]. 

- Parameter Setting 

For LSDT method, the trade-off coefficients λ1 and λ2 are 

fixed to be 1 in experiments. For NLSDT, the Gaussian 

function  (     )     ( ‖     ‖
 
   ⁄ )  is used, and the 

kernel parameter   is tuned for the best result. The   -norm 

regularized least square method is used for classifier training. 

 3DA experiment 

We strictly follow the experimental configuration by Saenko 

et al. [9]. 20 random splits of training data in source and target 

domain are implemented and the mean accuracies over 31 

categories are reported. The experiments are employed in 

single source domain and multiple source domains adaptation, 

respectively. In this experiment, we compare with five methods 

including ASVM [12], GFK [10], SGF [8], SA [41], RDALR 

[2], LTSL-PCA [1] and LTSL-LDA [1]. The experimental 

results of single source domain and multiple source domains 

adaptation are shown in Table II. 

From the results, we can observe that LSDT with nonlinear 

kernel function performs much better results than other 

methods for single source domain adaptation. For multiple 

source domain adaptation, both LSDT and NLSDT outperform 

other methods. However, NLSDT is a little weak compared to 

the linear method. Note that partial results of other methods are 

quoted from [1, 2]. 

Additionally, in Table II, the LTSL-PCA is better than 

LTSL-LDA a. Note that LTSL outperforms RDALR method 

with a large margin which shows that the subspace learning is 

beneficial to domain transfer. Therefore, in the subsequent 

experiments, LTSL as low-rank based subspace adaptation is 

compared, instead of RDALR. 

 4DA experiment 

In this experiment, we strictly follow the experimental 

setting by Gong et al. [10]. There are four domains, and 

therefore 12 combinations of each two domains are discussed. 

20 random splits of training data in source and target domain 

are used for all methods, and the mean classification accuracies 

over 10 object categories are reported in Table III. Note that A: 

Amazon, D: DSLR, W: Webcam, C: Caltech 256. We have 

compared to existing methods including NaïveComb, ARC-t 

[15], sampling geodesic flow (SGF) [8], geodesic flow kernel 

(GFK) [10], domain adaptation machine (DAM) [18], 

max-margin domain transforms (MMDT) [14], Symm [19], SA  
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TABLE IV 

RECOGNITION ACCURACY (%) OVER 10 OBJECT CATEGORIES IN 4DA-CNN SETTING WITH DEEP FEATURE REPRESENTATION 

Method Layer A→D C→D W→D A→C W→C D→C D→A W→A C→A C→W D→W A→W 

SourceOnly 
f6 80.8±0.8 76.6±2.2 96.1±0.4 79.3±0.3 59.5±0.9 67.3±1.2 77.0±1.0 66.8±1.0 85.8±0.4 67.5±1.6 95.4±0.6 70.5±0.9 

f7 81.3±0.7 77.6±1.1 96.2±0.6 79.3±0.3 68.1±0.6 74.3±0.6 81.8±0.5 73.4±0.7 86.5±0.5 67.8±1.8 95.1±0.8 71.6±0.6 

NaïveComb 
f6 94.5±0.4 92.9±0.8 99.1±0.2 84.0±0.3 81.7±0.5 83.0±0.3 90.5±0.2 90.1±0.2 89.9±0.2 91.6±0.8 97.9±0.3 90.4±0.8 

f7 94.1±0.8 92.8±0.7 98.9±0.2 83.4±0.4 81.2±0.4 82.7±0.4 90.9±0.3 90.6±0.2 90.3±0.2 90.6±0.8 98.0±0.2 91.1±0.8 

SGF [8] 
f6 90.5±0.8 93.1±1.2 97.7±0.4 77.1±0.8 74.1±0.8 75.9±1.0 88.0±0.8 87.2±0.5 88.5±0.4 89.4±0.9 96.8±0.4 87.2±0.9 

f7 92.0±1.3 92.4±1.1 97.6±0.5 77.4±0.7 76.8±0.7 78.2±0.7 88.0±0.5 86.8±0.7 89.3±0.4 87.8±0.8 95.7±0.8 88.1±0.8 

GFK [10] 
f6 92.6±0.7 92.0±1.2 97.8±0.5 78.9±1.1 77.5±0.8 78.8±0.8 88.9±0.3 86.2±0.8 87.5±0.3 87.7±0.8 97.0±0.8 89.5±0.8 

f7 94.3±0.7 91.9±0.8 98.5±0.3 79.1±0.7 76.1±0.7 77.5±0.8 90.1±0.4 85.6±0.5 88.4±0.4 86.4±0.7 96.5±0.3 88.6±0.8 

SA [41] 
f6 94.2±0.5 93.0±1.0 98.6±0.5 83.1±0.7 81.1±0.5 82.4±0.7 90.4±0.4 89.8±0.4 89.5±0.4 91.2±0.9 97.5±0.7 90.3±1.2 

f7 92.8±1.0 92.1±0.9 98.5±0.3 83.3±0.2 81.0±0.6 82.9±0.7 90.7±0.5 90.9±0.4 89.9±0.5 89.0±1.1 97.5±0.4 87.8±1.4 

LTSL- 

PCA [1] 

f6 94.6±0.6 93.4±0.6 99.2±0.2 85.5±0.3 82.0±0.5 84.7±0.5 91.2±0.2 89.5±0.2 91.3±0.2 90.2±0.8 97.0±0.5 89.4±1.2 

f7 95.7±0.5 94.6±0.8 98.4±0.2 86.0±0.2 83.5±0.4 85.4±0.4 92.3±0.2 91.5±0.2 92.4±0.2 90.9±0.9 96.5±0.2 91.2±1.1 

LTSL- 

LDA [1] 

f6 95.5±0.3 93.6±0.5 99.1±0.2 85.3±0.2 82.3±0.4 84.4±0.2 91.1±0.2 90.6±0.2 90.4±0.1 91.8±0.7 98.2±0.3 92.2±0.4 

f7 94.5±0.5 93.5±0.8 98.8±0.2 85.4±0.1 82.6±0.3 84.8±0.2 91.9±0.2 91.0±0.2 90.9±0.1 90.8±0.7 97.8±0.3 91.5±0.5 

LSDT 
f6 96.4±0.4 95.4±0.5 99.4±0.1 85.9±0.2 83.1±0.3 85.2±0.2 92.2±0.2 91.0±0.2 92.1±0.1 93.3±0.8 98.7±0.2 92.1±0.8 

f7 96.0±0.4 94.6±0.5 99.3±0.1 87.0±0.2 84.2±0.3 86.2±0.2 92.5±0.2 91.7±0.2 92.5±0.1 93.5±0.8 98.3±0.2 92.9±0.8 

NLSDT 
f6 96.4±0.4 95.7±0.5 99.5±0.1 85.8±0.2 83.3±0.3 85.3±0.2 92.3±0.2 91.1±0.2 91.9±0.1 92.9±0.7 98.6±0.2 94.2±0.4 

f7 96.0±0.4 94.4±0.8 99.4±0.2 86.9±0.2 84.3±0.3 86.2±0.2 92.5±0.2 91.9±0.2 92.3±0.1 93.2±0.8 98.1±0.3 94.1±0.4 

 

[41], DIP [42] and LTSL [1]. From the results, we can observe 

that NLSDT performs much better than state-of-the-art LTSL 

results and is also superior to other methods. Particularly, the 

average performance over 12 different tasks of our NLSDT is 

about 5% improvement compared to LTSL. We can also see 

that for LTSL, LDA is better than PCA for subspace learning. 

Additionally, the results also demonstrate that nonlinear 

method is effective for domain adaptation, since nonlinear shift 

may occur in data acquisition. 

 4DA-CNN experiment 

The experimental setting is the same as 4DA setting, but with 

CNN features. The comparison results with state-of-the-art 

representation based domain adaptation methods such as SGF 

[8], GFK [10], SA [41], LTSL-PCA [1] and LTSL-LDA [1], 

are reported in Table IV. Note that SourceOnly denotes the 

results trained by SVM on the source data, NaïveComb denotes 

the baseline method learned by SVM on the combined source 

and target training data. From Table IV, we observe that: 1) the 

total classification performance is well improved by using deep 

feature representation, for example, the classification accuracy 

increases from 83.5% to 98.7% for “D→W” setting by using 

our NLSDT method, which show that the deep feature 

representation can effectively remove the domain shift or bias; 

2) LSDT and NLSDT have similar performance on deep 

features, which implies the linearly separable ability of the 

high-level deep representation; 3) the proposed methods still 

outperform other methods; 4) the output features of the 6
th

 and 

7
th

 layer have comparative performance in object recognition.  

C. Consumer & YouTube Video Event Recognition 

In this experiment, the dataset used for video event 

recognition is the YouTube videos & Consumer videos 

developed in [16], in which part of consumer videos were from 

Kodak Consumer video benchmark dataset [27] and part from 

real users. Considering that in real applications the labeled 

samples of consumer videos are usually fewer than the labeled 

web videos, the web videos of low-resolution from YouTube 

website are used as source data, while the consumer videos of 

high-resolution are used as target data in experiments. 

By following [16], six visual events including “birthday”, 

“picnic”, “parade”, “show”, “sports”, and “wedding” are 

included. The total number of YouTube videos and Consumer 

videos is 906 and 195, respectively. For source domain, all 906 

YouTube web videos are used as labeled source data. For target 

domain, we randomly selected m (m=1, 3, 5, 7, 10) consumer 

videos per event as the labeled target training data, and the 

remaining consumer videos are used as unlabeled data for 

evaluation. We sample the labeled target training videos 5 

times, the means and standard deviations of classification 

accuracies are reported.  

As described in [16], two types of features, ST feature [28] 

and SIFT feature [29] are used. For ST feature, 72D HOG and 

90D HOF features are concatenated as a 162D vector. For each 

frame (65 frames per video), 128D SIFT features are extracted 

from salient regions detected by DoG interest point detector 

[30]. Finally, the visual vocabularies via k-means are built for 

feature clustering. The features can be obtained from [16]. 

In experiment, we have compared our proposed method with 

two classifier based transfer learning methods such as A-MKL 

[16] and DTSVM (DTMKL) [17] which report the 

state-of-the-art results on this dataset, and three representation 

based domain adaptation methods such as GFK [10], SGF [8] 

and LTSL [1] coupled with PCA and LDA. The basic idea of 

A-MKL method is to learn the target classifier   ( ) with the 

optimal combination ∑     
 ( ) 

    of P source classifiers plus a 

learned perturbation   ( )  ∑       ( )   
 
    based on 

multiple kernels. The basic idea of DTSVM (DTMKL) tends to 

learn target decision function   ( )  ∑       ( )   
 
    

without considering the optimal combination of pre-learned 

source classifiers involved in A-MKL. We also compared the 

baseline method (i.e. NaïveComb) trained by SVM. 

We have studied the recognition performance by leveraging 

different number m (m=1, 3, 5, 7, 10) of labeled videos per 

event from consumer videos (target domain). The recognition 

accuracies over 6 visual events based on three types of 

low-level features are reported in Table V. From the results, we 

can find that the proposed LSDT method with nonlinear 

Gaussian kernel outperforms other methods. Fig. 4 describes 

the recognition accuracy of all methods with the increasing  
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Table V 

CLASSIFICATION ACCURACY (%) OVER 6 VISUAL EVENTS WITH DIFFERENT NUMBER OF LABELED TARGET VIDEOS PER EVENT 

m Feature 
Compared methods Our methods 

Naïve 
Comb 

DTSVM 
[16] 

A-MKL 
[17] 

GFK 
[10] SGF [8] SA [41] 

LTSL-PCA 
[1] 

LTSL-LDA 
[1] LSDT NLSDT 

 

1 

SIFT 55.4±0.5 50.9±0.9 57.0±0.8 24.0±0.4 31.4±3.6 43.5±1.4 57.8±0.8 55.7±0.5 56.3±0.2 58.3±0.1 

ST 43.1±0.3 45.3±0.2 49.2±0.4 29.7±0.9 40.5±0.4 45.5±0.6 48.2±0.3 47.5±0.1 48.4±0.4 49.2±0.3 

SIFT+ST 46.8±0.6 52.8±0.4 57.7±0.8 21.4±1.0 42.2±2.1 46.0±1.1 59.6±1.3 60.7±0.7 60.8±0.8 62.0±0.6 

 

3 

SIFT 59.1±1.2 56.0±0.5 61.4±1.3 32.3±1.6 43.6±1.6 50.3±2.5 62.3±0.9 61.3±0.4 58.2±0.6 63.8±1.1 

ST 45.2±0.9 45.4±0.7 48.3±0.4 26.4±0.7 44.3±0.5 44.3±0.5 49.3±0.1 48.4±0.3 49.3±0.3 49.7±0.2 

SIFT+ST 51.2±1.6 55.4±0.0 61.5±1.0 27.0±1.6 40.1±4.2 46.4±0.6 62.8±1.0 60.5±0.6 61.8±1.2 67.1±0.6 

 

5 

SIFT 63.8±2.0 60.0±1.6 65.0±2.2 34.2±0.9 36.5±2.5 60.4±2.9 64.7±1.0 63.0±1.8 63.3±1.3 67.9±1.8 

ST 48.7±1.4 47.0±0.6 51.5±0.8 26.4±0.9 42.4±0.0 45.9±0.3 50.8±0.5 51.3±0.3 51.4±0.2 51.5±0.3 

SIFT+ST 57.5±1.8 58.8±0.6 65.3±2.2 27.6±0.9 47.9±2.4 53.2±2.8 62.3±0.7 64.1±2.1 66.1±1.3 71.4±2.0 

 

7 

SIFT 66.9±2.3 62.9±1.9 67.3±2.3 44.2±1.0 36.5±3.7 54.2±1.8 65.7±1.4 67.3±2.3 67.3±1.7 70.0±2.1 

ST 47.8±1.3 48.2±1.2 49.7±1.0 31.4±0.8 43.1±0.1 45.8±0.6 51.6±0.4 51.6±0.3 51.9±0.4 52.3±0.4 

SIFT+ST 57.9±1.5 60.5±1.2 67.7±2.4 36.0±0.9 50.8±2.8 53.2±2.9 68.6±1.8 66.9±2.4 70.3±1.5 73.0±2.4 

 
10 

SIFT 72.4±2.1 67.3±2.3 72.4±2.2 46.9±1.6 46.0±1.3 64.2±2.8 72.9±2.2 73.5±2.1 78.3±1.4 76.7±2.3 

ST 51.5±0.8 48.3±1.5 51.7±1.3 32.7±1.1 46.6±0.5 48.9±0.6 53.4±0.7 52.7±0.6 54.4±0.6 54.2±0.8 

SIFT+ST 65.0±0.9 67.2±1.7 72.4±2.3 41.0±1.1 54.7±2.0 56.5±2.3 69.6±1.0 75.1±1.9 80.9±1.7 79.0±1.5 

 
Fig. 4. Recognition accuracy with different number of labeled videos per-event selected from target domain 

 

number m of labeled videos per event. From the plots with 

different features, we can observe that the proposed LSDT and 

NLSDT methods still perform the best results. 

D. CMU Multi-PIE Data 

The CMU Multi-PIE face dataset [23] is a comprehensive 

face dataset of 337 subjects, in which the images are captured 

across 15 poses, 20 illuminations, 6 expressions and 4 different 

sessions. For our purpose, we select the first 60 subjects from 

session 1 and session 2 in experiments. Session 1 contains 7 

images per subject with 7 poses under neutral expression, while 

session 2 was prepared with the same poses as session 1 but 

under smile expression. The example images of one subject in 

session 1 and session 2 are illustrated in Fig.5. In this 

experiment, four experimental configurations are as follows. 

- Session 1: one frontal face in red Rectangle and one 60
º
 

posed face in blue per subject are used as source and target 

training data, respectively. The remaining faces are probe faces. 

- Session 2: the same configuration as session 1 is conducted. 

- Session 1+2: Two frontal faces and two faces with extreme 

60
º
 pose from both sessions are used as training data. The 

remaining faces are used as probe faces. 

- Cross session: The faces per subject in session 1 with neural 

expression are taken as source domain, while the faces per 

subject in session 2 with smile expression are taken as target 

domain. This is to adapt the change of expression. 

Pose alignment is challenging due to the highly non-linear 

changes induced by 3-D rotation of a face. Fig.6 illustrates the 

pose alignment process under Session 2 with smile expression 
by the proposed NLSDT, where the frontal faces per subject in 

red Rectangle are used as source data, and the faces with 60
º
 

 
Fig. 5. Example images of one subject. Session 1 (the 1st row with 

neutral expression) and Session 2 (the 2nd row with smile expression) 

 
Fig. 6. Pose alignment of Session 2 by the proposed NLSDT method. 

 
Fig. 7. Examples of the learned basis transformation P by NLSDT 

under Session 2. Each subplot represents a row of P. 

poses in the blue Rectangle are used as target data for each 

session. From Fig. 6, we can observe that the target face under 

pose is well aligned with residual (noise) removed. 

The best face recognition rates under the four experimental 

configurations by using different methods are shown in Table 

VI. From the results, we can see that the proposed NLSDT 

significantly outperforms other state-of-the-art methods.
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Table VI 

COMPARISON WITH OTHER METHODS FOR FACE RECOGNITION ACROSS POSES 

Domains Compared methods Our method 

Tasks Source Target NaïveComb 
ASVM  

[12] 
SGF 
[8] 

GFK 
[10] 

SA  
[41] 

LTSL- 
PCA [1] 

LTSL- 
LDA [1] LSDT NLSDT 

Session 1 frontal 60º pose 61.0 57.0 53.7 56.0 51.3 55.7 56.0 59.7 63.7 

Session 2 frontal 60º pose 62.7 62.7 55.0 58.7 62.7 58.7 60.7 63.3 70.7 

Session 1+2 frontal 60º pose 60.2 60.1 53.8 56.3 61.7 57.8 60.7 61.7 67.5 

Cross session Session 1 Session 2 93.6 94.3 92.5 96.7 98.3 96.7 96.7 95.8 99.4 

Table VII 

HANDWRITTEN DIGITS RECOGNITION PERFORMANCE ACROSS DOMAINS 

Domains Compared methods Our method 

Source Target 
Naïve 
Comb 

A-SVM  
[12] SGF [8] GFK [10] SA [41] 

LTSL- 
PCA [1] 

LTSL- 
LDA [1] LSDT NLSDT 

MNIST USPS 78.8±0.5 78.3±0.6 79.2±0.9 82.6±0.8 78.8±0.8 83.2±0.9 78.4±0.7 79.3±0.8 87.4±0.5 

SEMEION USPS 83.6±0.3 76.8±0.4 77.5±0.9 82.7±0.6 82.5±0.5 83.6±0.3 83.4±0.3 84.7±0.4 86.8±0.3 

MNIST SEMEION 51.9±0.8 70.5±0.7 51.6±0.7 70.5±0.8 74.4±0.6 72.8±0.6 67.6±0.4 69.1±0.5 79.6±0.8 

USPS SEMEION 65.3±1.0 74.5±0.6 70.9±0.8 76.7±0.3 74.6±0.6 65.3±1.0 64.5±0.7 67.4±1.1 81.9±0.7 

USPS MNIST 71.7±1.0 73.2±0.8 71.1±0.7 74.9±0.9 72.9±0.7 71.7±1.0 71.2±1.0 70.5±1.4 79.1±0.8 

SEMEION MNIST 67.6±1.2 69.3±0.7 66.9±0.6 74.5±0.6 72.9±0.7 67.6±1.2 66.8±1.2 70.0±1.3 75.4±0.8 

 

This demonstrates that linear subspace transfer may not work 

for nonlinear rotation. Fig.7 shows the learned basis P on 

Session 2. Each subplot corresponds to a row of P. The first 60 

subplots denote the frontal source faces and the last 60 subplots 

show the target faces with 60
º 
pose, from which we can observe 

that the target faces across poses can be aligned. 

E. Handwritten Digits Data 

In this section, three handwritten digits datasets including 

MNIST [24], USPS [25] and SEMEION [25] are used for 

cross-domain learning experiments, and the classification 

accuracies over 10 classes from digit 0 to digit 9 are reported 

for different tasks. The MNIST handwritten digits dataset has 

70,000 instances with each image size of 28×28, the USPS 

dataset contains 9298 examples with each image size of 16×16, 

and 2593 images of size 16×16 are included in SEMEION 

dataset. For dimension consistency, the size of MNIST digit 

images is manually resized into 16×16. 

In experiment, cross-domain tests are explored. Specifically, 

each dataset will be recognized to be source and target domain 

alternatively. Therefore, 6 combinations of cross-domain task 

are experimented. For the purpose of our experiments, we 

randomly select 100 samples per class from source domain for 

training and 10 samples per class from target domain for testing. 

5 random splits are used and the mean accuracies via nearest 

neighbor classifier with the best parameter tuning are reported 

in Table VII, in which A-SVM [12], SGF [8], GFK [10], SA 

[41] and LTSL [1] are compared with our proposed NLSDT 

method with Gaussian kernel function used.  

From the results, we can see that the proposed method 

outperforms other methods. The average improvement in 

accuracy is about 10% and 5% compared to the two methods, 

respectively. This demonstrates that the proposed NLSDT 

succeeds in dealing with highly nonlinear domain shift/bias. 

VI. DISCUSSION 

A. Subspace dimension, Kernel parameter, and Convergence 

This paper aims to learn a latent low dimensional subspace for 

representation based adaptation. For showing the performance 

 
Fig. 8. Performance with subspace dimension d (a), kernel parameter σ 

(b), and objective function with iteration t (c) on CMU Multi-PIE (a1, 

b1 and c1) and Handwritten digits (a2, b2 and c2). The stair curve in 

each subplot corresponds to the green curve. 

 

with subspace dimension variation, we conduct the 

experiments on multi-PIE face data with Session 1 as source 

and Session 2 as target and handwritten digit data with USPS 

digits as source and SEMEION digits as target. Fig. 8 illustrates 

the performance of our method with increasing number of 

subspace dimension d, kernel parameter σ and iteration number 

t. From Fig. 8, it is clear that the proposed method can 

effectively learn a low-dimensional latent space and reduce the 

computational demand of sparse coding. Additionally, from the 

convergence curves of objective function, the model can 

converge to one minimum value after 3 iterations, which 

demonstrates the efficiency of optimization. 

B. Parameter Sensitivity Analysis of LSDT 

In the proposed LSDT model, there are two trade-off 

parameters λ1 and λ2 involved for model tuning. For insight of 

their sensitivity to the performance, we tune the two parameters 

from {1, 10, 100, 1000, 10000}, respectively, and report the 

accuracy on several datasets. Fig. 9 denotes the results w.r.t. 

different parameter values of λ1 and λ2. We see that the two 

parameters show relatively stable performance, except that for 

3DA (a) and 4DA (b), the performance has a large variation 

when a large λ1 is given. It is easy to obtain a relatively good 

performance by slightly tuning the model parameters. 
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Fig. 9. Parameter sensitivity analysis on the considered datasets. 

 

C. Parameter Settings of Baseline Methods 

Throughout the paper, we have compared 13 methods 

including 4 adaptive classifier based methods such as ASVM, 

DAM, AMKL and DTSVM, 5 feature transformation based 

methods such as DIP, MMDT, Symm, ARC-t, and RDALR,, 

and 4 closely related methods such as GFK, SGF, SA and 

LTSL. We present the parameter discussion from three aspects: 

 In the classifier based methods, SVM is an important tool in 

the models, such as ASVM and DAM. Therefore, the kernel 

parameter and penalty coefficient are the main parameters. 

For AMKL and DTSVM (also called DTMKL), multiple 

kernels are integrated for improving the domain transfer 

performance by minimizing the structural risk and the 

maximum mean discrepancy (MMD) between source and 

target domains.  Therefore, the number of base kernels and 

kernel parameters play a key role in the optimal kernel 

function learning. In YouTube&Consumer video 

experiments, we have used the default parameters in the 

released codes and their reported results for comparisons. 

 In the feature transformation based methods, DIP, 

MMDT, Symm and ARC-t tend to learn a transformation 

such that some similarity metric can be achieved with the 

maximized similarity or the minimized distance between 

the distribution of the transformed source and target data. 

RDALR tends to reconstruct the target data with source 

data by learning a low-rank matrix. Therefore, in these 

methods, one or two regularization parameters are 

referred during learning the transformation matrix. In the 

experiments, we have copied the accuracy result reported 

in their publications for comparisons.  

 In the closely related methods, GFK, SGF, SA and LTSL 

methods have a common characteristic that the 

unsupervised subspace transfer is explored. Specifically, 

principal component analysis (PCA) is used for 

pre-learning the low-dimensional subspace, where the 

domain adaptation is implemented with different 

strategies. Therefore, the subspace dimension d is one 

key parameter for tuning in these subspace alignment 

based domain learning methods. Additionally, SGF 

associates with the number of PLS factors and LTSL 

refers to the trade-off parameter 𝜆 𝜆 ⁄  in (2). In this 

paper, the subspace dimension and trade-off parameters 

in these methods have been tuned, and the best results are 

reported for comparisons. 

 

Table VIII 

COMPARISON TO PCA AND LDA 

Data PCA-LSDT LDA-LSDT LSDT 

Multi-PIE 56.7 45.3 59.7 

3DA: A→W 52.5±0.8 38.3±0.8 69.4±0.7 

Table IX 

RECONSTRUCT THE TARGET DATA WITH SOURCE DATA ONLY (S) AND 

COMBINED SOURCE AND TARGET DATA (ST) 

Data LSDT-LRR(S) LSDT-LRR(ST) LSDT(S) LSDT(ST) 

Multi-PIE 52.0 57.3 55.0 59.7 

3DA: D→W 59.5±0.3 63.0±0.2 59.7±0.3 69.4±0.7 

 

D. Pre-learn P using PCA and LDA in LSDT 

Following the pre-learning of subspace in LTSL, in this 

section, we discuss the joint learning of P and reconstruction Z, 

by comparing to PCA and LDA. The comparison results on 

multi-PIE and 3DA datasets are reported in Table VIII. The 

increments of recognition accuracy demonstrate the 

contribution of learning P simultaneously with Z in LSDT. 

E. Low-rank Constraint on Z in LSDT 

In LTSL, low-rank representation based reconstruction is 

used for subspace transfer. For demonstrating the effectiveness 

of LSDT based on SSC theory, we discuss the performance of 

LRR in LSDT in Table IX (LSDT-LRR vs. LSDT). The results 

demonstrate that LSDT based on SSC is significantly better 

than that of LRR -based. 

F. Reconstruct XT using XS Only in LSDT 

We have also discussed the performance comparison by 

reconstructing XT using X=[XS,XT] (ST) and XS (S), 

respectively. The results in Table IX denote that the 

performance can be well improved by reconstructing the target 

data using both source and target data in domain transfer. 

Generally, in reconstruction based domain adaptation, when 

only a few number of source data is available, the target data 

can be leveraged for robust subspace transfer. It is worth noting 

that sparse coding requires sufficient data for obtaining an 

over-complete dictionary (i.e. XS). For domain adaptation, 

when the source data are insufficient, the assumption on 

over-complete dictionary may not hold. In this work, we adopt 

two strategies to avoid this issue. First, we consider the [XS,XT] 

as the dictionary for reconstruction to enlarge the dictionary 

size. Second, by introducing the low-dimensional projection P, 

we consider the reconstruction of PXT by using the dictionary 

P[XS,XT]. Therefore, even the dictionary XS is not 

over-complete for coding XT, the dictionary P[XS,XT] will be 

over-complete for coding PXT.  
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G. Justification of Motivations 

The proposed LSDT is motivated by SSC theory, and aims at 

realizing unsupervised domain adaptation by exploiting sparse 

reconstruction between different domains in the latent subspace. 

The in-depth approach motivation of LSDT is as follows. 

1) In general, the data from different domains lie in a union of 

multiple subspaces. For knowledge “transfer” but not naïve 

“transformation”, the low-dimensional latent space of data 

should be found. Then, the “transfer” task can be effectively 

explored without overfitting. For finding such a latent space, 

we propose to learn a subspace projection P. In LTSL [1], the 

PCA or LDA is used to compute the P for subspace pursuit.  

2) After obtaining the latent space via the P, the knowledge 

“transfer” is then implemented. In this paper, the “transfer” is 

realized via a reconstruction Z. In general, a good 

reconstruction is very important for robust domain 

adaptation. First, the outliers (noise) from source domain 

would be removed in transferring to the target domain; 

Second, fewer data from source domain should be used for 

reconstruction. For this reason, we propose to impose a 

sparse constraint on Z. The superiority is shown in Table IX. 

3) From the above motivation 1) and 2), the reason why we 

learn P and Z is clear. Although the P can be pre-computed 

by existing subspace learning methods, it is sub-optimal and 

leads to the local optimum of Z. Therefore, we propose to 

learn the P and Z simultaneously by using an alternative 

strategy, such that a much better solution with stronger 

domain adaptability can be achieved. The performance 

comparison is demonstrated in Table VIII. 

4) We aim to reconstruct the target data PXT by using P[XS,XT]. 

The XS part is used for knowledge adaptation and the XT part 

is exploited for self-representation and outlier removing from 

the target data. When only a few source data is available, the 

the robustness can be improved by leveraging the target data 

in reconstruction. Note that the trivial solution of Z is 

avoided based on the SSC theory instead of LRR. The 

performance can be observed in Table IX. 

5) The proposed NLSDT is an extension of LSDT, which is 

motivated by the highly nonlinear domain shift. By simply 

introducing kernel function into LSDT, the performance is 

greatly improved throughout the experiments. 

VII. CONCLUSION 

This paper proposes a new reconstruction based domain 

adaptation method for robust visual knowledge transfer. The 

method tends to reconstruct the target data with a few source 

data points by using a sparse coefficient matrix in some 

low-dimensional latent space. The method learns the sparse 

reconstruction coefficient matrix and the low-dimensional 

latent space projection simultaneously, such that an optimal 

subspace transfer solution can be obtained. Additionally, a 

kernel framework is generalized into this method, which aims 

at learning a nonlinear basis transformation and sparse 

reconstruction in the reproduced kernel Hilbert space induced 

by Mercer theorem, to deal with highly nonlinear domain shifts 

such as 3-D rotation of faces that cannot be tackled by linear 

techniques. Extensive experiments on synthetic data, two 

benchmark object datasets, Consumer & YouTube Videos 

datasets, CMU multi-PIE face dataset, and three handwritten 

digit datasets demonstrate the effectiveness of the proposed 

methods in different cross domain transfer tasks. 

APPENDIX A 

OPTIMIZATION OF (10) 

With an auxiliary variable L and U, the problem (10) can be 

reformulated as 

0,,,s.t.
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The augmented Lagrange function of (15) can be represented as  
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where YA, YB, YC and YD denote the Lag-multipliers, λ1=µ1/2. 

(1) Updating L: by fixing Z and U, one can set the partial 

derivative
   (     )

  
   of (16) as 0, and obtain L as 
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(2) Updating U: by fixing L and Z, let
   (     )

   
  , we have  
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(3) Updating Z: by fixing L and U, Z can be solved as follows 

i) for                  , we have 
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ii) for Z other than                  , we have 
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APPENDIX B 

PROOF OF PROPOSITION 2 

The objective function of (11) can be expanded as follows 
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where           . 

By following (21), with       , there is         

          , then the objective (21) can be simplified as 
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According to the Eigenvalue decomposition of 
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Then the objective function (22) can be rewritten as 
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Finally, the original optimization problem (11) becomes 

  IΩΩΘΩΩΩ
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 TT* .t.s,minarg Tr                     (24) 

The optimal    is obtained by l eigenvectors with respect to 

the first l smallest Eigenvalues of  . Once    is solved by 

   
 

     and      , the optimal    can be solved as 
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