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Multilayer Perceptron
» Feed-forward Neural Network----MLP

TP
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Multilayer Perceptron
» Feed-forward Neural Network----MLP

Output layer

Hidden layer

r-—-------
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Multilayer Perceptron
» Feed-forward Neural Network----MLP

Output layer

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron
» Feed-forward Neural Network----MLP

Output layer

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron

» Activation Function (Transfer function)
O Sigmoid (5-function)
» Logistic function o(x)

1
X j—
7 (X) Il +e*
» Tanh function
X X
tanh(x) = °—°
ex 4 eX

————————————————————————

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron
» Activation Function (Transfer function)
0 Rectifier function
rectifier(x) = max(0, x)
rectifier EREHIA N BE LRI . MERFERLZIMMETE B B MH
dlly EHETIAR . BIRAVEEFEFE.

X H rectifier cREEY R T HI{EIETELM 8T Rectifier linear unit (ReLU)

O Softplus function
Softplus is a smooth version of Rectifier function.

softplus(x) = log(1+e")

softplus BARMBEBERMHIFI. T 4w FAV4FMHE what is its derivative? Logistic?
IPR, & /% 2 52 5 42 3 e 4k Z 1% i & 1
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Multilayer Perceptron

1 - 1}
0.8 .
0.5
0.6 - —
=
0.4 —
—05 |
0.2 .
| | | | 1 | |
1T -2 0 2 4 6 1T 2 o0 2
(@) logistic & (b) tanh iR
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Multilayer Perceptron

51 . 5|

4t - s

3t . 31

2t - 2

1{- s 1}

T —— 3 1 6 Y E— 0 2
(C) rectifier ef % (d) softplus &%
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Multilayer Perceptron

» MLP Model

Given a group of samples (x®,y®),1 < i < N, the
network output is defined as f (x|W, b), the objective
function:

ZL (" fx"W,b)) + )\HVVHFa

I i 1
=S W bix0 ) + LA

=1

XE, W b@‘f‘TEr H’JJBZE%EEHM&EH%
W2=YE, S0 S W
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Multilayer Perceptron

» Optimization

Analysis: our objective is to minimize J(W,b;x,y) .
gradient descent (# & T F&) is often used.

Then the update of network weights (each layer)

OJ(W,b)
n __ h ’
WD = W — ¢ ST
:_é:j_(w b:x _j_/(_fj)_l
- / 1 ? ? ? 1
=WO—ad () W
=] e

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron

» Optimization
Analysis: our objective is to minimize J(W,b;x,y) .
gradient descent (# & T F&) is often used.
Then the update of network bias (hidden and output
layer)
OJ(W, b; x1V y)

Ob() ’

b)) —p _ 4

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron
» How to calculate 9J(W,b:x,y) ?

owo)
4% X K F ok N
oJ(W,b;x,y) 8J(W b;x,y). " 9z
PV i 970 ) a0
i B i
#F,

— 82(’) AR EM, AT A4F
HETFEIEA G2 GG H, LEABFEIEZH G T
st F A 47 & 2 6 HR M
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Multilayer Perceptron

» How to calculate 9J(W.b;x,y) ?
ow)

According to z!) = W . al=b 1 b Thereis,

0
oz WD . al=D 4 p") o
N — ) — — B i1T
oW, oW,
L 0 _
S0, &j(W’biX’ ) _ 08" OJ(W.b;x,y) 50 (al=D)T
@va_) J WD

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron

» How to calculate /W.b:x.y) 9

ob)
. oJ(W.b; x,y)
Similarly, 7] 50
imilarly 0 )
— OJ(W,b;x,y) _5(:)
owan
Finally, we have - C
obD L

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron

» How to calculate §() (%122 £ 57)?
2, 4o 5(/) _ oJ(W.b;x,y)

Oz ()
Then,
501 & OJ(W, b;x, y)
9z()
~0a 9zt aJ(W,b;x,y)
~9z0  9alh gD
= diag(fi(z")) - (W) T . sU+D)
fl(z") @ (WD) Tig
Heh Emgma%ﬂ\@%‘; v l

TAEEEIEZERT UG H1+ 122 £ At 457

IPR, ® 1% & 32 5 12 3|
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Multilayer Perceptron
» Back-propagation Algorithm

Input: Training set (x(,y®), i =1, ..., N, maximum epoch T.

Output: W, b
1. Random initialization of W, b;
2. while 1 KEM  #ER
fori=1,..,N do
4, Feedforward calculating z® anda®,1 =1, ..., L;
5. Backward calculating the error term §®;
6. Calculating the derivative of each layer
aJ(W,b;x,y _
(aW([) ) _ 5(/)(a(.’ 1))T
OJW.bix,y) _ <)
7. Parameter update oblh
I ; N W, bix (D y(D) .
w — wh _ o iq( ( 0 : )) — AW,
D — () _ 5N 2IWbix Dy
. end b =b )iz ( () );
9. end

IPR, ® 1% & 32 5 12 3|
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Face Recognition and Detection

The “Margaret Hildar Thatcher lllusion”, by Peter Thompson

IPR, ® 1% & 32 5 12 3|
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Face Recognition and Detection

Recognition problems
» What is it?

Object and scene recognition
» Who is it?

Identity recognition

» Where is it?
Object detection

» What are they doing?
Activities
» All of these are classification problems
Choose one class from a list of possible candidates

IPR, ® 1% & 32 5 12 3|
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What is recognition?

» A different taxonomy from [Csurka et a/. 2006]:
- Recognition
Where is this particular object?

- Categorization
What kind of object(s) is(are) present?

- Content-based image retrieval
Find me something that looks similar

- Detection
Locate a/linstances of a given class

IPR, ® 1% & 32 5 12 3|
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Readings

- C. Bishop, “Neural Networks for Pattern
Recognition” , Oxford University Press, 1998,

Chapter 1.

- Turk, M. and Pentland, A. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 1991

- Viola, P. A. and Jones, M. J. (2004). Robust real-time
face detection. LJCV, 57(2),137 - 154.

IPR, B {% & 32 5 2 3]
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Face detection

» How to tell if a face is present?

IPR, ® 1% & 32 5 12 3|
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Face detection

ﬁ

IPR, ® 1% & 32 5 12 3|
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Face detection

» Different face size? How to make the window size adapt to
different face size?

Image Pyramid

IPR, ® 1% & 32 5 12 3|
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Skin detection

G A

> IR

» Skin pixels have a distinctive range of colors
Corresponds to region(s) in RGB color space

» Skin classifier
A pixel X = (R,G,B) is skin if it is in the skin (color) region
How to find this region?

IPR, ® 1% & 32 5 12 3|
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Skin detection

G ¢

» Learn the skin region from examples
Manually label skin/non pixels in one or more “training images”

Plot the training data in RGB space
skin pixels shown in orange, non-skin pixels shown in gray
some skin pixels may be outside the region, non-skin pixels inside.

IPR, ® 1% & 32 5 12 3|
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Skin classifier

G 4 e

S ——— e __ -

» Given X = (R,G,B): how to determine if it is skin or not?

Nearest neighbor
find labeled pixel closest to X

Find plane/curve that separates the two classes
popular approach: Support Vector Machines (SVM)

Data modeling

fit a probability density/distribution model to each class

IPR, ® 1% & 32 5 12 3|



@) ETRIRBY
Probability

X is a random variable
P(X) is the probability that X achieves a certain value

P(X)
called a PDF
-probability distribution/density function
-a 2D PDF is a surface
-3D PDF is a volume
X
0< P(X) <1
>0
f P(X)dX = 1 S P(X)=1
— 0
continuous X discrete X

IPR, ® 1% & 32 5 12 3|
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Probabilistic skin classification

P(skin|R)
r'd

P(~ skin|R)T

1;51 Ro R
» Model PDF / uncertainty
Each pixel has a probability of being skin or not skin
P(~ skin|R) = 1 — P(skin|R)
» Skin classifier
Given X = (R,G,B): how to determine if it is skin or not?

Choose interpretation of highest probability
» Where do we get P(skin|R)and P(~ skin|R)?

IPR, ® 1% & 32 5 12 3|
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Learning conditional PDF’s

A
. skin pixels with color R
P(R|skin) = #skin pixels wi
Fskin pixels
e
1
/
[ \
A Y
| \
/ N

» We can calculate P(R | skin) from a Js%et of training images

» But thisisn’ t quite what we want

Why not? How to determine if a pixel is skin?
We want P(skin | R) not P(R | skin)
How can we get it?

IPR, ® 1% & 32 5 12 3|
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Bayesian rule

what we measure  domain knowledge

likelihood i
» In terms of our problem: (kelihood) (prior)

P(R|skin) P(skin)
P(R)
N

normalization term

P(skin|R) =

what we want

(posterior) P(R) = P(R|skin) P(skin)P(R| ~ skin)P(~ skin)

What can we use for the prior P(skin)?

* Domain knowledge:
- P(skin) may be larger if we know the image contains a person
- For a portrait, P(skin) may be higher for pixels in the center

* Learn the prior from the training set. How?
— P(skin) is proportion of skin pixels in training set
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P(R|skin) _
< P(R|skin)P(skin) ~ F(skin) = 0.75
IR, '« P(~skin) = 0.25
P(R| ~ skin) P(R| ~ skin)P(r\: skin) /x
| > I - >
Ry Rp R Ry Ry R
likelihood posterior (unnormalized)

» Bayesian estimation

Goal is to choose the label (skin or ~skin) that maximizes the posterior (¢
minimizes probability of misclassification

this is called Maximum A Posteriori (MAP) estimation

IPR, ® 1% & 32 5 12 3|
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Skin detect1on results

|.>

w
-~
<

Figure 25.3. The hgure shows a variety of images together with the cutput of the skin
detector of Jones and Rehg applied to the image. Pixels marked black are skin pixels, and
white are background. Notice that this process is relatively effective, and could certainly
be wsed to focus attention on, say, fwoes and hands.  Figure from “Statistioal color models
with applicalion to skn detection,” M.J. Jones and J. Rehg, Proc. Compuler Vision and
Pattern Recognition, 1999 (€ 1999, IKEE

IPR, ® 1% & 32 5 12 3|
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General classification

» This same procedure applies in more general circumstances
More than two classes
More than one dimension

e —

Example: face detection
* Here, X is an image region
- dimension = # pixels

- each face can be thought of as a
point in a high dimensional space

H. Schneiderman, T. Kanade. "A Statistical Method for 3D

Object Detection Applied to Faces and Cars". CVPR 2000
IPR, & {4 532 & 42 3] J PP
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Eigenfaces for recognition

Matthew Turk and Alex Pentland, .
Cognitive Neuroscience, 1991

IPR, ® 1% & 32 5 12 3|



B 1R iR 5

Linear subspaces

(©]
(©] (©] o ®
Z is the mean o ©
of the orange ® 0. ©° <)
; (©) ’U2 (@] ®
points ®
(©] o Fu1 ©
L O ®
(©) 0 2
(©] ‘o’ T e o
® (©]
o e o
o (©]
o o o (©]
o ® e o
e o

» Classification can be expensive:

convert x into v,, v, coordinates
X = ((x=7) vy, (x—7T) - va)

What does the v, coordinate measure?
- distance to line
- use it for classification—near O for orange pts

What does the v, coordinate measure?
- position along line
- use it to specify which orange point it is

Big search prob (e.g., nearest neighbors) or store large PDF’ s

» Suppose the data points are arranged as above
ldea—Hfit a line, classifier measures distance to line

IPR, ® 1% & 32 5 12 3|
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o
o o o ©
Z is the mean o ©
of the orange ® ® 0. ©° <)
i v2 °© o
points ®
° o wl e .
(©] o o=
o o = e o
o o
o e o
o o
o o o o
o © e o
e o

Dimensionality reduction

* We can represent the orange points with only their v, coordinates
(since v, coordinates are all essentially 0)

« This makes it much cheaper to store and compare points
» Abigger deal for higher dimensional problems

IPR, B {% & 32 5 2 3]



B 1R iR 5

Linear subspaces

G Consider the variation along direction v
(9} .
e o o © among all of the orange points:
Z is the mean o o © o T 5
of the orange oz 20 0 var(M= ¥ x-0Tv]|
‘ .
) IO'MH ) . orange point X
‘ ‘ O ey ‘ ‘ . . . .
o ¥ ° What unit vector v minimizes var?
o
o (9} (9} .
o o vo = miny {var(v)}
o PP (9}
° © o o What unit vector v maximizes var?
°© o vi = mazy {var(v)}

R v = Ylx-0Tv|

= > vIix —x)(x -%)Tv

Solution: v, is eigenvector of A with largest eigenvalue - B N
Vv, is eigenvector of A with smallest eigenvalue= V 2. x=x)(x-x)"|v
X

= vIAv where A = Y (x—x)(x— x) T
X

IPR, B {% & 32 5 2 3]



© ET1RIR3Y

» Suppose each data point is N-dimensional
Same procedure applies:

var(v) = Y |[(x-x)T.v|

vIAv where A = Z(X —x)(x -x)T
X

The eigenvectors of A define a new coordinate system

eigenvector with largest eigenvalue captures the most variation among
training vectors x

eigenvector with smallest eigenvalue has least variation
We can compress the data using the top few eigenvectors

corresponds to choosing a “linear subspace”
represent points on a line, plane, or “hyper-plane”

these eigenvectors are known as the principal components

IPR, ® 1% & 32 5 12 3|



» An image is a point in a high dimensional space
An N x M image is a point in RNM

We can define vectors in this space as we did in the 2D case

IPR, ® 1% & 32 5 12 3|
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» The set of facesisa “subspace” of the set of images
We can find the best subspace using PCA
This is like fitting a “hyper-plane” to the set of faces
spanned by vectors vy, vy, ..., V¢

any face X = i—l— a1V1y —I— an>vy —I— R —|— arVk

IPR, ® 1% & 32 5 12 3|
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2

» PCA extracts the eigenvectors of A
» Gives a set of vectors vy, v,, V3, ...

» Each vector is a direction in face space
what do these look like?

" IPR, @ 4 458 5 5 3



» The eigenfaces vy, ..., v span the space of faces
A face is converted to eigenface coordinates by

X—>(SX—§)oV1, (x —X) va,..., (x—X)- -vK)

J A\ J A\ J

a]_Vl CL2V2 a3V3 a4v4 a5v5 a6V6 a7v7 CL8V8

IPR, ® 1% & 32 5 12 3|



»  Algorithm

Process the image database (set of images with labels)
Run PCA—compute eigenfaces
Calculate the K coefficients for each image

Given a new image (to be recognized) x, calculate K coefficients
x — (a1,a2,...,0K)
Detect if x is a face
|x — (X4+ay1vy+aoveo+ ...+ CLKVK)H < threshold

If it is a face, who is it?
Find closest labeled face in database
nearest-neighbor in K-dimensional space
IPR, B % 232 5 <% 3]



A
eigenvalues

\

= K NM
» How many eigenfaces to use?

» Look at the decay of the eigenvalues

the eigenvalue tells you the amount of variance “in the
direction” of that eigenface

ignore eigenfaces with low variance

IPR, ® 1% & 32 5 12 3|
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0 Mathematics:
Given a training set of N faces X € RP*N | D is the dimension.

Construct covariance matrix

C=X-X)X=X)T € RP*D
If Dis too large, the Eigen-decomposition of C will be wery difficult.
For example, if a face is 256x256, the dimension D=65536.

How to solve this problem?

If N is smaller than D, the covariance matrix can be ¢computed as
C=X-X'X-X) e R\~

Equivalent?

IPR, B {% & 32 5 2 3]
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__________________________________ Cigentace algorithm =
0 Mathematics:
Let ® = X — X,
C=oP!
and
C=0oTp
There is

C'p; = Ap;
- @ ®p; = 1p;
- P TPp; = APp;
- CPp; = APp;
- Cv; = Av;
wherev; = ®p;
That is, when the eigen-vector p; is solved, a ® should be multiplied
with® =X -X

IPR, B {% & 32 5 2 3]
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Bayesian Face Recognition

» Baback Moghaddam, Tony Jebara
and Alex Pentland

» Pattern Recognition
» 33(11), 1771-1782, November 2000

IPR, ® 1% & 32 5 12 3|
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Bayesian Face Recognition

Intrapersonal € P g
Extrapersonal Q. %’ g
Q

Qp={A=x—x;: L(x) = L(x))} 1

Qf ={A=x; —X; L(x;) # L(_):j)} £
' ¥

P(A Q) P(Ly)

~ P(A|Qp)P(Qq) + P(A| Q) P(Qy) [Eﬁé}) m
Y
P(A|Q) — [Moghaddam ICCV’95] S(p.g)

IPR, @ 1% 2 32 & <2 %]
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Bayesian Face Recognition

(b)

P IPR, B % 452 5 8 3]
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Bayesian Face Recognition

Eig%nfaces metléod ‘Bayesian method

g rary

‘ Poa | 5

S(p.g) | S(p,g)

IPR, ® 1% & 32 5 12 3|
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Face Recognition

» General routes

‘ ‘&*&" >3
Lty ] BERg

Image N Face N Feature N Feature Sl Classifier
detector descriptor extraction
: — LDA
Narrowly, _ Feature extraction
(High dimensional) - PCA
Face . .
Recognition T LBP. Gabor  — LPP (manifold learning)

— Classifier

IPR, B 1% 432 5 <2 3|
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Face Recognition

» Face images

AAANLN 00000
QAaan g

ﬁ

06
eQ

ARRQ

(a) Session 1

Unconstrained faces

IPR, ® 1% & 32 5 12 3|



@) BET1RIR3Y

Face Recognition

» Labeled Face in the Wild

O Face recognition in unconstrained condition
0 Data sampling from Internet

O Verification task

13,233 face images from
5749 persons

Standard protocol:

6000 pairs with 10-folds.
300 similar pairs and 300
Dissimilar pairs per fold.

IPR, ® 1% & 32 5 12 3|
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Face Recognition

» Metric Learning

Metric learning aims at learning a distance metric M, such that the
distance between similar samples is smaller than that between dissimilar

samples.
O Large margin nearest neighbor (LMNN) classification

Let {x;, y;}{~,denote a training set, a binary matrix y;; € {0,1} is used to
indicate whether or not the labels y; and y; match.

Goal: learn a linear transformation L.
The square distance is computed as

D(&;,%;) = |[L(Z; — &)1

IPR, B {% & 32 5 2 3]
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Face Recognition

O Large margin nearest neighbor (LMNN) classification

Define a binary matrix n;; € {0,1}, to indicate whether input X; is a
neighbor of input x;.

S(L) = 3 L@ -2 + ¢S n (1-ya) [1+ |L(E,

i j 17l

where 2|, = max(z, 0)denotes the hinge loss.

y 23

Fo— ‘AL. “J’#\Aé#iﬁﬁﬁzr‘eﬂ;ﬁka@ B F o
5 55

% = NER SRR BRI GBS

IPR, B {% & 32 5 2 3]
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Face Recognition

O Large margin nearest neighbor (LMNN) classification

D(&;, %) = ||IL(Z; — )"

Mahalanobis distance metric

IPR, ® 1% & 32 5 12 3|
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Face Recognition

0 Large margin nearest neighbor (LMNN) classification

BEFORE AFTER
I 3
_-m al'gin‘“ ~_ |local neighbot h(]i)d ’mal'gin“ -
e = \ ——— N
e - / ~ AN
Ve
;7 .! / - \
e I " \i
Iy | lOO b
/ \ \ /
/
/ — (SN
oy oy N O
SiiNe L
l \ Q ~ —“'/
x m

/
-

O Similarly labeled
. Differently labeled
I Differently labeled

| target neighbor
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Face Recognition

O Large margin nearest neighbor (LMNN) classification
By introducing slack variable ¢;;, the model is formulated as

Minimize ), 7;;(Z; — ;) " M(Z; — Z;) + ¢ >, mi; (1 yzg)&ﬂ subject to:
(D) (& — &) ' M(T; - &) — (& — @) M(@ - &) > 1— &
(2) & =0
SAM=0. T T S T

(L) =) n| L@ =3I + e mi(I—ya) [1+ L& —2)|I° 1L —2) %],

ij ijl

IPR, ® 1% & 32 5 12 3|



