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Main Content

» Feature matching
» LBP descriptor

» HOG

» Color

» Shape
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Feature Matching
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Feature Matching
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Feature Matching
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Feature Matching
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Feature Matching

» Key points of SIFT

1350 key points in the original image are detected based
on SIFT descriptor.

423 key points in the scaled image are detected.

How to implement the accurate match between the two
images?

Each key point is 128—dimensional (SIFT)
(16x16 patch around the key point)
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Feature Matching

» K-NN

K-nearest neighbors is the most intuitive data mining
method, without training.

When K=1, it becomes the nearest neighbor algorithm.

In other words, for a given x, the index is easily given by
finding the nearest “distance” .

Generally, the identity of x depends on its k-nearest
neighbors based on “majority” principle.
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Feature Matching

» K-NN
Two classes with blue and red points are shown.
A A
" - . A
H
. m
. -

What is the green one?
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Feature Matching

» K-NN

To find the neighbors, it depends on the “distance” in
high-dimensional data space. So, how to calculate the

distance? X,
For a 2-dimensional

Space (left) -

d=\/(x1 —y1)% + (x2 — ¥3)?

(x1,X2)

0(0,0) X,
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Feature Matching

» K-NN

In D-dimensional space, the distance between two

oints
p X

V2 V)

)(: Euclidean distance

d= \/(xl —y1)?+ (= y2)%2 + -+ (xp — yp)?

D
.
=1
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Feature Matching

» K-NN

Distance function:

(1) Euclidean distance (&% X, % &)

2) Mahalanobis distance (& &, % &)
(3) Manhattan distance (& %-#i 55 &)
(4) Hamming distance (X # %5 §)
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Feature Matching

» K-NN
Manhattan distance
Suppose a two-dimensional data space, there is

N

(Y1, Y2)

d=|x; — y1[+[xz — 5|
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Feature Matching

» Kd-tree (k-dimensional tree) for KNN algorithm

K-nn is simple, intuitive, easily understood, but not
efficient in large-scale retrieval.

Please imagine if there are 1 million images, with 10000
key points per image, how about the complexity?

To find out the nearest neighbors of a query quickly and
accurately, spatial indexing structure and approximating
algorithms are proposed.
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Feature Matching

» Kd-tree for KNN algorithm

Idea: the data often shows clustering states, it is possible
to construct data index, and then match quickly.

Index tree is a kind of tree structure index method, and
divide the search space into multiple parts.

Kd-tree is clipping based, and R-tree is overlapping
based.

Kd-tree is searching space partition based tree, the first
step is to partition the space, then do search in each sub-
space.
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Feature Matching

» Kd-tree for KNN algorithm
Suppose there are six 2-dimensional data points,

{(2,3);(5,4); (9,6); (4,7); (8,1); (7,2)}
These points lie in a 2-dimensional space.

For a given query point (X,y), how to find its nearest
neighbor?

Divide the space into several parts.
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Feature Matching

» Kd-tree for KNN algorithm
{(2,3); (5,4); (9,6); (4,7); (8,1); (7,2)}
'Y :
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Feature Matching

» Kd-tree for KNN algorithm
{(2,3); (5,4); (9,6); (4,7); (8,1); (7,2)}

Kd — tree

Two variables:
split domain: x or y axix?
Node data: which point?

The segmentation hyperplane depends on the split and node data
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Feature Matching

» Kd-tree for KNN algorithm
{(2,3);(5,4); (9,6); (4,7); (8,1); (7,2)}
The kd-tree construction process:

(1) Determine the split domain. Compute the variance of
each dimension on all data points (X dim and Y dim).
The dim w.r.t the maximum variance is the split domain.

2) Determine the Node-data. Sort the data in split dim, the
median value is the node data.

3) Determine the segmentation hyperplane. Orthogonal to
split domain, with x or y=node

4) Repeat, until only one data point is included in a space.

The segmentation hyperplane depends on the split and node data
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Feature Matching

» Kd-tree for KNN algorithm
{(2,3); (5,4); (9,6); (4,7); (8,1); (7,2)}
The kd-tree construction process:

(1) Determine the split domain. The variance X-dim and
Y-dim is 6.97 and 5.37. Therefore, the split domain
is X.

2) Determine the Node-data. Sort the data in X-dim, (2,
4.5,7,8,9). the median value is 7, i.e. Node=7.

3) Determine the segmentation hyperplane.
Orthogonal to X, with x=7.

4) Repeat, until only one data point is included in a
space.
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Feature Matching

» Kd-tree for KNN algorithm
{(2,3); (5,4); (9,6); (4,7); (8,1); (7,2)}
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Feature Matching

» Kd-tree for KNN algorithm
{(2,3); (5,4); (9,6); (4,7); (8,1); (7,2)}
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Feature Matching

» Kd-tree for KNN algorithm
{(2,3); (5,4); (9,6); (4,7); (8,1); (7,2)}
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Feature Matching

» Kd-tree for KNN algorithm

Given a query point (2.1,3.1), how to find its nearest
point?

Step 1: Binary tree search. The start pointis (7,2), then
(5,4) and finally (2,3). The searching path is {(7,2),(5,4),
(2,3)}

Step 2: Backtracking search. From (2,3), and go back to
its farther point (5,4), search other space. Take (2.1,3.1)
as center, make a circle with radius as 0.14.

Step 3: Backtracking search. Go back to (02)
(7,2). No overlapping. (69) (69)

IPR, B 1% 2 32 5 <% 5| @
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Feature Matching
» Kd-tree for KNN algorithm
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Feature Matching
» Kd-tree for KNN algorithm

Given a query point (2,4.5), how to find its nearest point?

Step 1: Binary tree search. The start pointis (7,2), then (5,4)
and finally (4,7). The searching path is {(7,2),(5,4), (4,7)}

Step 2: Backtracking search. From (4,7), and go back to its
farther point (5,4), search other space. Take (2,4.5) as center,
make a circle with radius as 3.04 (<3.2). There is overlapping.
Then, search (2,3) and the distance is 1.5<3.04

Step 3: Backtracking search. Go back to ~
(7,2). Make circle with radius as 1.5, no 7

Overlapping. @ @
©
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Feature Matching

» Kd-tree for KNN algorithm
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Feature Matching

» Kd-tree for KNN algorithm

Not all nodes experience the distance computation with
the query point.

Therefore, the complexity is largely reduced in nearest
neighbor search.

David Lowe also proposed an improved Kd-tree search
algorithm, i.e. BBF (Best-Bin-First)
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Feature Matching

» David Lowe’ matching method in SIFT

To avoid the unstable key points, such as complex
background, shelter etc. Lowe proposed to compare the
nearest neighbor and the secondary nearest neighbor.

4R b ok RAR 9 38§ rh ratio

For the two key points, if the ratio between the nearest
distance and the secondary nearest distance is smaller
than a threshold T, match

if —<Tmatch
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Feature Matching

» David Lowe’ matching method in SIFT

Generally, a larger ratio corresponds to more inaccurate
matches.

If the threshold T is reduced, the number of successfully
matched key points of SIFT will also decrease, but more
stable.

Lowe suggests a ratio threshold 0.8. With more
experience of authors, based on a number of scale,
rotation, illumination of two images, the best ration
threshold is 0.4~0.6.
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Feature Matching

» Spatial Pyramid Matching (SPM, % id] 4 3 # & &)
SPM, as an improvement of BOVW model, can fully use the
local image information. BOW 4 & R 26T 2 Az B2 4, AAS

SPM computes the feature key points under different
resolutions, such that the local mformatlon is captured.

Sl ‘,.‘. Y

UIUC {7 #] % {7 X %
— AR

S. Lazebink, C. Schmid, J. Ponce, Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories, CVPR’ 06.
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Feature Matching
» Spatial Pyramid Matching (SPM, # id] 4 3 # & &)

« Extension of a bag of features
* Locally orderless representation at several levels of resolution
« Based on pyramid match kernels Grauman & Darrell (2005)

— Grauman & Darrell: build pyramid in feature space, discard spatial information
— Our approach: build pyramid in image space, quantize feature space

ROI (region of interest)

level 0
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Feature Matching
» Spatial Pyramid Matching (SPM, % iq] 43 44 & &)

Find maximum-weight matching (weight is inversely proportlonal to distance)

Original images

do i Tt 4 16 A 67 = Bufs &2

Feature histograms:
Level 3 n ) ]3
i [ - Histogram intersection
IE
Level 2 - N =1, /
T(H%, HY) min ( H HE (1)

Level 1 n - I] o Z Y )
e el B2A Word m

eve : - : 1 RERE:
Total weight (value of pyramid match kernel): 1 , + 5(]’2 —~d )t Z(Il —d3)+ g(Io -1)) %

IPR, & f§ 5832 5 4 5] D:bins/cells# 8 ; Hy(i) B %Xt & &N Fifcelleg 2§



Feature Matching
» Spatial Pyramid Matching (SPM, # id] 4 3 # & &)

Histogram intersection (A BAa X/ A% B XL HE T)

I(Hx.Hy) = imin (Hx (i), Hy (1))
i=1
A B4 B=5
Ih -1k
Hy Hy =

IPR, B 1% & 32 5 <2 5|
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Feature Matching

» Spatial Pyramid Matching (SPM, # id] 4 3 # & &)

Find maximum-weight matching (weight is inversely proportional to distance)

dofT vt B 1§ B 6 = fudE £ 2

Feature histograms:
N =13
Level 3 i - I
Histogram intersection
IE
Level 2 M N =7, /
I(H, Hy) min (H% (i), Hy ()
Level 1 N =1, Z
Level O N =74, 1
kE(X,Y) = Tt + Z sr—z (I — 1)
L
Pyramid Match Kernel: ! !
IPR, & ff st 32 5 4% 31 Y Wordm ~ L T2 el
=1
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Feature Matching
» Spatial Pyramid Matching (SPM, # id] 4 3 # & &)

level 0 level 1 level 2
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® + ° + -
O + o < + ® +
+ e 4 e + ® | 4+ e + e | 4+
° ® ®
O .|.<>. + ™ O .|.<>. + ® O .|.<>. +
< ° <& ° & °
T e ® T e ¢ Tl e®
° © + 4 + ° ¢ + 4 + ° © -
e O + ® & + ® <

v ol |lo 0 P
|:| s|lw| || |0

] - [l 0 - i

X 1/4 X 1/4 X 1/2

IPR, B % 4 32 5 42 3 Al AR HINME L8 (R AP )



§ BEIBAFIEFER

Feature Matching

» Spatial Pyramid Matching (SPM, # id] 4 3 # & &)
For L levels, the final kernel is the sum of each channel
kernel, (M is the number of words by K-means)

KMNX.Y) =) k" (Xm, Vi)

The final feature dimension by concatenating the

appropriately weighted histograms of all channels at all
resolutions is

. _
MY, 4 = Mg(4xt — 1)
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Local Binary Pattern-Texture descriptor

» LBP

/

/

LBP operator was originally designed by Ojala 1994 for

texture description. By thresho
each pixel with the center pixe

85

89

21

= 54

54

Threshold

86| —— 1

57

12

13

_ O

A

o

The basic LBP operator

IPR, B 1% 2 32 5 42 3|

=

ding a 3x3 neighborhood of
, @ binary code is obtained.

Binary: 11001011
Decimal: 203
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Local Binary Pattern-Texture descriptor

» LBP

LBP image

[ image

origina

IPR, B 1% 2 32 5 42 3|
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Local Binary Pattern-Texture descriptor

» LBP

To be able to deal with textures at different scales, LBP
operator was extended to use neighborhoods of different
sizes, evenly spaced on a circle centered at the pixel. (e.g.
radius R and the number P of sampling points).

0| $ ¢[ [o] [o| [¢[ To] Te

SEH e Pt

R=1I,P=8 R=2,P=16 R=2,P=8

binlinlear |4%

B

o *le)
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Local Binary Pattern-Texture descriptor

» Uniform LBP (% #~4 X))
With the increasing number P of sampl

Ing points, the number of

LBP values (decimal), i.e. 2¥ is too large. (% %)

Therefore, uniform LBP Is proposed

, L.e. the Dbinary pattern

contains at most two bitwise transitions from 0to 1, or 1 to O.

For example,

00000000 — O transition (0 st %) —
00001111 — 1 transition (14 3t %)
00110000 — 2 transition (2:k 8t%) _
00110001 — 3 transition (3:& 3 %) —

= Uniform binary pattern

= Non — uniform binary pattern

00110100 — 4 transition (44 3t %) |

IPR&®EARS23 For 3x3, P=8; For 5x5, P=24
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Local Binary Pattern-Texture descriptor
» Uniform LBP.(%? #-# X))

E -
A Al
Kl
564 .
.
™ °
L . . -
. - E .
® . ’ . p. .
- .
e . & % o’ *  Non — uniform pattern
R @%g e el . WS Ve W is viewed as one bin
. - - ® - - ° - - . - - - - ° -

IPR, & 1% 4 52 & 42 31 Pattern number: 2 - P (P-1)+2+1; 256 — 59



@) BITRAFIERS A
Local Binary Pattern-Texture descriptor

» Rotation invariant LBP (7% 3£ & % LBP)
Obviously, LBP is gray scale invariant, 4z 3k 4% 3¢ & % .
How to achieve rotation invariant?

LBP} , = min{ ROR(LBPp i) | i=0,1,...,P—1}

IPR, B 1% 4 32 5 4% 3]
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Local Binary Pattern-Texture descriptor
» Rotation invariant LBP (7% 3£ & % LBP)

O o
o 1 C ® 23
e _
® 0
W
0°0 @%0 %0 e%s e%es 0%e o,
o o e C e o e 0 o ® O ® O ]
ll..- l-D ® O DDG QDG CL® O g ®
240 120 60 30 15 135 195
@
15
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original image LBP image Uniform LBP image

Ojala find that the uniform patterns occupy 90% of the image

> IPR, & 1% 48 32 & 42 3]
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Local Binary Pattern-Texture descriptor

» LBP feature representation
LBP feature representation of an image:
Step 1: Subdivide the image into multiple patches

IPR, B 1% 2 32 5 42 3|
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Local Binary Pattern-Texture descriptor

» LBP feature representation
LBP feature representation of an image:

Step 2: Take 3x3 neighborhood on each patch, and extract
LBP binary code for each pixel, and obtain the LBP-value

(decimal). 7
LE - B

Step 3: Obtain the histogram of each patch with LBP-value.

Step 4: Concatenate the histogram vector of all patches
together, and a long feature vector is formed (i.e. LBP vector
of an image)
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Histogram of Oriented Gradient
» HOG |7

HOG was first proposed by Dalal and Triggs, In
CVPR’2005 for human detection.

The basic idea Is that local object appearance and shape can
often be characterized very well by the distribution of local
Intensity gradients or edge directions.

N. Dalal, Histograms of Oriented Gradients for Human Detection, IEEE CVPR’05.
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Histogram of Oriented Gradient

» HOG

(1) Cell division of the image (small spatial regions). The
size of each cell (non-overlap) is 8*8 pixel.

IPR, B 1% & 32 5 <2 5|



Histogram of Oriented Gradient

» HOG

(2) Compute the gradient image and gradient directions of
each cell based on some gradient operator (E = 4 & & F =X,

F %A ET)

M(x,y) = \/I,% + 17

I
O(x,y) = tan™1 <—y>
Iy
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Histogram of Oriented Gradient

» HOG
(3) Cell Orientation Histogram
Suppose there are 12 bins, with each of 30". For each cell,

Y vt & AR E 5 G B € & 6bin
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Cell
Compute the statistics in each bin by using weighted 6(x,y) .
The weight is M (x, y). 12-dimensional vector is achieved.
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Histogram of Oriented Gradient

Block normalization to reduce
the ef fect of contrast changes,
illumnation, where b is the
block feature vector by
concatenating each cell

b
VIbI* +e

Z

> IPR, ® & 4 32 & 42 31
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Histogram of Oriented Gradient

» HOG

(4) HOG Feature formulation.

Each cell i1s 12-dimensional vector.

Each block is 2*2 cell, forms a 48-dimensional vector.

In the Lena image, 9 overlapping blocks are achieved, and
therefore 9*48=432 dimensional HOG feature vector h is

obtained. . h
V2 + ¢
h, < min(h,,T)

, h
VARER:

IPR, B 1% 4 32 5 4% 3]
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Histogram of Oriented Gradient
» PHOG (Pyramid HOQ)

HOG&—-« 4, AL ARE, A&
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