

图像处理与识别

——Part 9 图像识别(I)

主讲:张磊

□ What is statistical recognition?

What is pattern?模式是被人类感知和理解的实体,无确 切定义。

There are a number of patterns.

Some examples:

Palmprint

Fingerprint

OR code

License plate no.

Face

■ What is statistical recognition?

What is recognition? 识别是指模式 (patterns) 被人类判定 (discriminate) 为某种熟悉或已知的类别。

Two types of recognition:

Classification(分类):

将某种未知(unknown)的模式赋予已知(known)的类(label)。

Clustering(聚类):

将未知(unknown)类别的一组模式,根据某种相似性度量,对相似模式进行聚集。

■ Examples

Classification(分类):

将某种未知 (unknown) 的模式赋予已知(known)的类 (label)。

Clustering(聚类):

将未知(unknown)类别的一组模式,根据某种相似性度量,对相似模式进行聚集。

► Classification vs. Regression

□ What is statistical recognition?

统计识别(或模式识别)是指通过处理和分析某种事物或现象带来的信息,从而实现对事物或现象进行解析、识别、分类的过程。

An important part in Artificial Intelligence (AI)!

Can you guarantee a certain level of inferential accuracy within a certain time budget even as the data grow in size?

□ What is statistical recognition?

从实现上,统计识别(或模式识别)的过程是机器对已知或未知事物进行感知(perceive)、分析(analysis)和识别(recognition)的过程。

It also gives intelligence (but not wisdom) to machine (AI)! 机器智能具有模仿人的某种行为的能力,但不同于智慧(自我推理)。

■ What is statistical recognition?

感知 (perceive): Information observation and acquisition from others (新的事物)

分析 (analysis): Information processing and intelligent discrimination

识别 (recognition): Make a decision on the observed information for classification (label prediction)

统计识别是从大量先验数据中,寻找可以分类的模型或统计规律,通过智能算法实现新样例的归类。

□ why statistical recognition?

For humans, recognition is an easy task:

Recognize a handwritten digit, recognize a face, discriminate an object/image,

Discriminate an odorant, spoken recognition,...

However, for machines, recognition is never easy.

Therefore, machine recognition like humans is challenging.

□ Basic terms of statistical recognition?

样例 (samples or instances):

Patterns that we would like to classify (分类对象).

特征(feature):

Attributes that characterize the properties of samples (表征样本的属性).

训练集(training):

The data used for learning the classification model parameters (hypothesis, 假设获取)

■ Basic terms of statistical recognition?

测试集 (testing):

The data for evaluating the obtained hypothesis (假设检验).

模型 (model):

Mathematical descriptions for induction and inference (用于归纳和推理的数学描述).

特征空间 (feature space):
The space spanned by features(特征张成的空间)

■ Basic terms of statistical recognition?

决策边界 (decision boundary): Three categories F1,F2,F3

决策边界即为某个线性、二次或非线性的决策函数表示

■ How do statistical recognition?

For Example:

Fish species recognition of see bas and salmon

(鲈鱼和三文鱼)

Three basic steps for recognition

Step I: Preprocessing (预处理)

Goal: Preprocess the image captured by the camera, such that subsequent operations could be simplified without losing relevant information

Routine image processing

- Adjust the level of illumination
- Denoising
- Enhance the level of contrast

segmentation

- Isolate different fishes from one another
- Isolate fishes from the background

.....

Step II: Feature Extraction (特征抽取)

Goal: Extract features (with good distinguishing ability) from the preprocessed image to be used for subsequent classification

Step III: Classification (分类)

Goal: To distinguish different types of objects (in this case, *sea bass* vs. *salmon*) based on the extracted features

h-axis: length of fish v-axis: number of fishes with a certain length

On average, sea bass is somewhat longer than salmon

Too much overlaps → poor separation with the length feature

h-axis: lightness of fish scales v-axis: number of fishes with a certain lightness

On average, sea bass is much brighter than salmon

Less overlaps → better separation with the lightness feature, but still a bit unsatisfactory

What if no other single feature yields better performance?

Use more features at the same time!

Using two features simultaneously

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

 x_1 : fish width

 x_2 : fish lightness

black dots: salmon samples red dots: sea bass samples

Linear decision boundary: $f(x_1, x_2) = a \cdot x_1 + b \cdot x_2 + c$ $f(x_1, x_2) > 0 \implies \text{sea bass}$ $f(x_1, x_2) \le 0 \implies \text{salmon}$

Much better than

All the training samples (i.e. known patterns) have been separated perfectly

Can we truly feel satisfied?

Generalization

[泛化能力/推广能力]

The ultimate goal!

The central aim of designing a classifier is to make correct decisions when presented with novel (unseen/test) patterns, not on training patterns whose labels are already known

e.g. it's useless to get 100% accuracy when answering homework questions while get low accuracy when answering exam questions

Performance on the training set

Simplicity of the classifier

- We can get perfect classification performance on the training data by choosing complex models
 - Complex models are tuned to the particular training samples, rather than the characteristics of the true model
- Models overly complex than necessary lead to overfitting
 - Good performance on the training data, but poor performance on novel data
- How can we find principled ways to obtain best complexity?
 (Regularization)

Pattern Recognition System

Pattern Recognition System

The design of a PR system usually entails a number of different activities, such as data collection, feature choice, model choice, classifier training, classifier evaluation.

- Data collection accounts for a large part of the cost of developing a PR system
- Feature choice and model choice are highly domain-dependent, where *prior knowledge* (先验知识) plays very important role e.g.: lightness might be a good feature for distinguishing sea bass and salmon; linear model might be preferred than nonlinear ones
- Various activities may be repeated in order to obtain satisfactory results

A Toy Example: LDA (线性判别分析)

例:设有两类样本 $X = [X_1, X_2, \cdots, X_N] \in \mathfrak{R}^{D \times N}$,存在一个线性变换 $\mathbf{W} \in \mathfrak{R}^{D \times d}$,使得经过线性变换后两类数据集线性可分。

任务: 采用LDA模型计算 $\mathbf{W} = \arg \max_{\mathbf{W}} \frac{\mathbf{W}^{\mathrm{T}} \mathbf{S}_{\mathbf{B}} \mathbf{W}}{\mathbf{W}^{\mathrm{T}} \mathbf{S}_{\mathbf{W}} \mathbf{W}};$

Decision based Recognition

Decision function

Let $\mathbf{x} = [x_1, x_2, ..., x_n]^{\mathrm{T}}$ represent a pattern vector. For a problem of C classes, $w_1, w_2, ..., w_C$, the basic problem of decision theory is to find C decision functions $d_1(\mathbf{x})$, $d_2(\mathbf{x}), \cdots, d_C(\mathbf{x})$.

$$d_i(\mathbf{x}) > d_j(\mathbf{x})$$
, if \mathbf{x} belongs to w_i

The pattern class with respect to the maximum d(x) is the decision class of pattern x.

Decision based Recognition

Decision function

Generally, we use a single function as the decision bound of two classes,

$$d_{ij}(\mathbf{x}) = d_i(\mathbf{x}) - d_j(\mathbf{x})$$

Decision process:

$$d_{ij}(\mathbf{x}) > 0$$
, if \mathbf{x} belongs to w_i
 $d_{ij}(\mathbf{x}) < 0$, if \mathbf{x} belongs to w_i

The decision boundary can be represented as

$$d_{ij}(\mathbf{x}) = 0$$

Minimum distance classifier

Two Elements for Recognition based on Matching:

■ Prototype pattern vector

$$\mathbf{m}_i = \frac{1}{N_i} \sum_{\mathbf{x} \in w_i} \mathbf{x}_i, i = 1, 2, \dots, C$$

Distance metric

$$D_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{m}_i\|^2, i = 1, 2, ..., C$$

■ Distance minimum criterion

$$w(x) = \underset{i}{\operatorname{argmin}} D_i(\mathbf{x}), i = 1, 2, ..., C$$

What is the relation between minimum distance classifier and decision function?

Recall the distance

$$D_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{m}_i\|^2 = \mathbf{x}^{\mathrm{T}}\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{m}_i + \mathbf{m}_i^{\mathrm{T}}\mathbf{m}_i$$

Select the minimum distance is equivalent to select the maximum value of the following decision function

$$d_i(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{m}_i - \frac{1}{2} \mathbf{m}_i^{\mathrm{T}} \mathbf{m}_i$$

The class with respect to the maximum $d_i(\mathbf{x})$ is the class of \mathbf{x} .

Decision bound of the minimum distance classifier

$$d_{ij}(\mathbf{x}) = d_i(\mathbf{x}) - d_j(\mathbf{x})$$

$$= \mathbf{x}^{\mathrm{T}} \mathbf{m}_i - \frac{1}{2} \mathbf{m}_i^{\mathrm{T}} \mathbf{m}_i - \left(\mathbf{x}^{\mathrm{T}} \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^{\mathrm{T}} \mathbf{m}_j\right)$$

$$= \mathbf{x}^{\mathrm{T}} \left(\mathbf{m}_i - \mathbf{m}_j\right) - \frac{1}{2} \left(\mathbf{m}_i - \mathbf{m}_j\right)^{\mathrm{T}} \left(\mathbf{m}_i + \mathbf{m}_j\right)^{\mathrm{T}}$$

The decision bound

Let
$$d_{ij}(\mathbf{x}) = 0$$
, i.e.

$$\mathbf{x}^{\mathrm{T}}(\mathbf{m}_{i} - \mathbf{m}_{j}) - \frac{1}{2} (\mathbf{m}_{i} - \mathbf{m}_{j})^{\mathrm{T}} (\mathbf{m}_{i} + \mathbf{m}_{j})^{\mathrm{T}} = 0$$

Example of minimum distance classifier

There are two classes w_1, w_2 . Their mean vector are

$$\mathbf{m}_1 = [4.3, 1.3]^{\mathrm{T}}, \mathbf{m}_2 = [1.5, 0.3]^{\mathrm{T}}$$

Given a pattern vector $\mathbf{x} = [x_1, x_2]^T$, then how to determine its decision function and decision bound?

Decision function:

$$d_1(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{m}_1 - \frac{1}{2} \mathbf{m}_1^{\mathrm{T}} \mathbf{m}_1 = 4.3x_1 + 1.3x_2 - 10.1$$
$$d_2(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{m}_2 - \frac{1}{2} \mathbf{m}_2^{\mathrm{T}} \mathbf{m}_2 = 1.5x_1 + 0.3x_2 - 1.17$$

The decision bound

Let
$$d_{12}(\mathbf{x}) = 0$$
, i.e.
$$d_{12}(\mathbf{x}) = d_1(\mathbf{x}) - d_2(\mathbf{x})$$
$$= \mathbf{x}^{\mathrm{T}}(\mathbf{m}_1 - \mathbf{m}_2) - \frac{1}{2} (\mathbf{m}_1 - \mathbf{m}_2)^{\mathrm{T}} (\mathbf{m}_1 + \mathbf{m}_2)^{\mathrm{T}}$$
$$= 2.8x_1 + 1.0x_2 - 8.9 = 0$$

▶ Example of minimum distance classifier

Given some patterns
$$\mathbf{x} = [2, -1]^T$$
, $\mathbf{x} = [1, -3]^T$, $\mathbf{x} = [5, 6]^T$, $\mathbf{x} = [6, 5]^T$, $\mathbf{x} = [5, 4]^T$, classify them.

Optimal statistical classifier

A recognition method based on probability.

Given a pattern x, the probability of x belongs to w_i is $p(w_i|\mathbf{x})$

Loss: L_{ij} ; if the pattern comes from w_i , but classified as w_j .

Average loss: a pattern x can be classified as any class of the total C classes. The average loss $r_j(x)$ that x is (wrongly) classified as w_i is represented as

$$r_j(x) = \sum_{k=1}^C L_{kj} p(w_k | \mathbf{x})$$
, conditional average risk

Optimal statistical classifier

Bayesian formula

$$p(A|B) = \frac{p(A)p(B|A)}{p(B)}$$

There is

$$r_j(\mathbf{x}) = \sum_{k=1}^C L_{kj} p(w_k | \mathbf{x}) = \sum_{k=1}^C L_{kj} \frac{p(\mathbf{x} | w_k) P(w_k)}{p(\mathbf{x})}$$

 $\forall w_k, k = 1, ..., C, p(\mathbf{x})$ is the same, therefore,

$$r_j(\mathbf{x}) = \sum_{k=1}^C L_{kj} p(\mathbf{x}|w_k) P(w_k)$$

Optimal statistical classifier

$$r_j(\mathbf{x}) = \sum_{k=1}^C L_{kj} p(\mathbf{x}|w_k) P(w_k)$$

where $p(\mathbf{x}|w_k)$ is the p.d.f. of \mathbf{x} from class w_k , $P(w_k)$ is the probability that class w_k happens.

 $r_i(\mathbf{x})$ is the average loss that x is classified as w_i .

If there is

$$r_i(\mathbf{x}) = \sum_{k=1}^C L_{ki} p(\mathbf{x}|w_k) P(w_k) < r_j(\mathbf{x}) = \sum_{k=1}^C L_{kj} p(\mathbf{x}|w_k) P(w_k)$$

Then x belongs to w_i

Optimal statistical classifier

Generally, the loss L_{ij} is imposed to be 0 if correctly classified, and 1, otherwise. (0-1 损 火). Then,

$$L_{ij} = 1 - \delta_{ij}$$

$$\delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

$$r_j(\mathbf{x}) = \sum_{k=1}^C L_{kj} p(\mathbf{x}|w_k) P(w_k) = \sum_{k=1}^C (1 - \delta_{kj}) p(\mathbf{x}|w_k) P(w_k)$$

$$= P(\mathbf{x}) - p(\mathbf{x}|w_j) P(w_j)$$

We know that x belongs to
$$w_i$$
, if $r_i(\mathbf{x}) < r_j(\mathbf{x})$, there is
$$P(\mathbf{x}) - p(\mathbf{x}|w_i)P(w_i) < P(\mathbf{x}) - p(\mathbf{x}|w_j)P(w_j)$$

$$p(\mathbf{x}|w_i)P(w_i) > p(\mathbf{x}|w_j)P(w_j)$$

The decision function of x

$$d_j(x) = p(\mathbf{x}|w_j)P(w_j)$$

For a Bayesian classifier, it computes the decision function. if $d_i(x) > d_i(x)$, then **x** belongs to w_i

The p.d.f. $p(\mathbf{x}|w_j)$ of x belongs to w_j and the probability $P(w_i)$ should be known.

$$P(w_j) = \frac{1}{C}$$

 $p(\mathbf{x}|w_j)$ is often supposed to be Gaussian function.

Bayesian classifier shows the minimum loss if the assumption is approaching the actual case.

Example: one dimension (Gaussian)

Suppose there are 2 classes (w_1, w_2) based on Gaussian distribution, with mean value m_1 and m_2 , standard variance σ_1 and σ_2 .

Bayesian decision function

$$d_{j}(x) = p(x|w_{j})P(w_{j}) = \frac{1}{\sqrt{2\pi\sigma_{j}^{2}}}e^{\frac{(x-m_{j})^{2}}{2\sigma_{j}^{2}}}P(w_{j}), j = 1,2$$

Example: N-dimension (Gaussian)

Suppose there are C classes $(w_1, w_2, ..., w_c)$ based on Gaussian distribution, with mean vector

$$\mathbf{m}_j = E_j\{\mathbf{x}\} = \frac{1}{N_j} \sum_{\mathbf{x} \in w_j} \mathbf{x}$$

Covariance matrix

$$\mathbf{\Sigma}_{j} = E_{j} \{ (\mathbf{x} - \mathbf{m}_{j})(\mathbf{x} - \mathbf{m}_{j})^{\mathrm{T}} \} = \frac{1}{N_{j}} \sum_{\mathbf{x} \in w_{j}} \mathbf{x} \mathbf{x}^{\mathrm{T}} - \mathbf{m}_{j} \mathbf{m}_{j}^{\mathrm{T}}$$

Bayesian decision function

$$d_j(\mathbf{x}) = p(\mathbf{x}|w_j)P(w_j) = \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}_j|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\mathbf{m}_j)^{\mathrm{T}}\mathbf{\Sigma}_j^{-1}(\mathbf{x}-\mathbf{m}_j)}P(w_j)$$

Example: N-dimension (Gaussian)

Bayesian decision function

$$d_{j}(\mathbf{x}) = p(\mathbf{x}|w_{j})P(w_{j})$$

$$= \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}_{j}|^{1/2}}e^{-\frac{1}{2}(\mathbf{x}-\mathbf{m}_{j})^{\mathrm{T}}\mathbf{\Sigma}_{j}^{-1}(\mathbf{x}-\mathbf{m}_{j})}P(w_{j})$$

Due to the exponent form of Gaussian function

The natural logarithm is often used

$$\ln d_j(\mathbf{x}) = \ln p(\mathbf{x}|w_j)P(w_j) = \ln p(\mathbf{x}|w_j) + \ln P(w_j)$$

$$= \left(-\frac{n}{2}\ln 2\pi\right) - \frac{1}{2}\ln|\mathbf{\Sigma}_j| - \frac{1}{2}\left[(\mathbf{x} - \mathbf{m}_j)^{\mathrm{T}}\mathbf{\Sigma}_j^{-1}(\mathbf{x} - \mathbf{m}_j)\right] + \ln P(w_j)$$

Example: N-dimension (Gaussian)

Bayesian decision function

$$d_j(\mathbf{x}) = \ln P(w_j) - \frac{1}{2} \ln |\mathbf{\Sigma}_j| - \frac{1}{2} [(\mathbf{x} - \mathbf{m}_j)^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \mathbf{m}_j)]$$

If the covariance matrix Σ_i is the same for all classes,

$$d_j(\mathbf{x}) = \ln P(w_j) - \mathbf{x}^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} \mathbf{m}_j$$

If covariance matrix $\Sigma_j = \mathbf{I}$, and $P(w_j) = \frac{1}{c}$,

$$d_j(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^{\mathrm{T}} \mathbf{m}_j$$

贝叶斯意义上的

minimum distance classifier

For a n-dim problem, $\mathbf{x} = [x_1, x_2, ..., x_n]^T$, the linear decision function is

$$d(x) = \sum_{i=1}^{n} w_i x_i + b$$

where w_i is the weight imposed on x_i . $d(\mathbf{x})$ is the final output with a summation (activate).

$$d(x) > 0, \mathbf{x} \in +1$$

 $d(x) < 0, \mathbf{x} \in -1$

The decision boundary is

$$d(x) = 0 \rightarrow w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n + b = 0$$

 $w_1x_1 + w_2x_2 + w_3x_3 + \cdots + w_nx_n + b = 0$ is a hyperplane in n-dimensional pattern space.

The final b is called bias, which is proportional to the orthogonal distance between the origin O and the hyperplane.

If b = 0, the hyperplane is through the origin

$$y = \begin{cases} 1, d(x) > 0 \\ -1, d(x) < 0 \end{cases} \infty y = sgn(d(x))$$

$$y = \begin{cases} 1, \sum_{i=1}^{n} w_i x_i > -b \\ -1, \sum_{i=1}^{n} w_i x_i < -b \end{cases}$$

Perception

Perception

- Perception
- Parameter Training

$$d(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i + b = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b \text{ (raw)}$$

By extending the pattern vector $\mathbf{x} = [x_1, x_2, ..., x_n]^T$ into

$$\mathbf{x} = [x_1, x_2, ..., x_n, 1]^T$$
, let $w_{n+1} = b$, there is

$$d(\mathbf{x}) = \sum_{i=1}^{n+1} w_i x_i = \mathbf{w}^{\mathrm{T}} \mathbf{x} \text{ (modified)}$$

where $\mathbf{w} = [w_1, w_2, ..., w_n, w_{n+1}]^T$.

- Perception
- □ Training Algorithm

Let $\mathbf{w}(1)$ be the initial weight vector.

The k-th iteration:

- if $\mathbf{x}(k)$ belongs to "+1" class, but $\mathbf{w}(k)^{\mathrm{T}}\mathbf{x}(k) \leq 0$ update $\mathbf{w}(k+1) = \mathbf{w}(k) + \delta \cdot \mathbf{x}(k), \delta > 0$
- if x(k) belongs to "-1" class, but $\mathbf{w}(k)^{\mathrm{T}}\mathbf{x}(k) \geq 0$ update $\mathbf{w}(k+1) = \mathbf{w}(k) \delta \cdot \mathbf{x}(k), \delta > 0$
- > else $\mathbf{w}(k+1) = \mathbf{w}(k)$, keep unchanged.

- Perception
- **■** Example

+1:
$$x(1) = [0,0]^T, x(2) = [0,1]^T$$

-1: $x(3) = [1,0]^T, x(4) = [1,1]^T$

Extend by add "1":

+1:
$$x(1) = [0,0,1]^T, x(2) = [0,1,1]^T$$

-1: $x(3) = [1,0,1]^T, x(4) = [1,1,1]^T$

Let $\delta = 1$, $\mathbf{w}(1) = [0,0,0]^T$, update \mathbf{w} ?

Training:

The 1st iteration:

$$\mathbf{w}(1)^{\mathrm{T}}\mathbf{x}(1) = \begin{bmatrix} 0,0,0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = 0$$
$$\mathbf{w}(2) = \mathbf{w}(1) + 1 \cdot \mathbf{x}(1) = \begin{bmatrix} 0,0,1 \end{bmatrix}^{T}$$

- Perception
- Example

+1:
$$x(1) = [0,0]^T, x(2) = [0,1]^T$$

-1: $x(3) = [1,0]^T, x(4) = [1,1]^T$

Extend by add "1":

+1:
$$x(1) = [0,0,1]^T, x(2) = [0,1,1]^T$$

-1: $x(3) = [1,0,1]^T, x(4) = [1,1,1]^T$

Let $\delta = 1$, $\mathbf{w}(1) = [0,0,0]^T$, update \mathbf{w} ?

Training:

The 2nd iteration:

$$\mathbf{w}(2)^{T}\mathbf{x}(2) = [0,0,1]\begin{bmatrix} 0\\1\\1 \end{bmatrix} = 1 > 0$$

 $\mathbf{w}(3) = \mathbf{w}(2) = [0,0,1]^{T}$, keep unchanged

- Perception
- Example

+1:
$$x(1) = [0,0]^T, x(2) = [0,1]^T$$

-1: $x(3) = [1,0]^T, x(4) = [1,1]^T$

Extend by add "1":

+1:
$$x(1) = [0,0,1]^T, x(2) = [0,1,1]^T$$

-1: $x(3) = [1,0,1]^T, x(4) = [1,1,1]^T$

Let $\delta = 1$, $\mathbf{w}(1) = [0,0,0]^T$, update \mathbf{w} ?

Training:

The 3rd iteration:

$$\mathbf{w}(3)^{\mathrm{T}}\mathbf{x}(3) = [0,0,1] \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 1 > 0$$

 $\mathbf{w}(4) = \mathbf{w}(3) - \mathbf{x}(3) = [-1 \ 0 \ 0]^{\mathrm{T}}$

- Perception
- Example

+1:
$$x(1) = [0,0]^T, x(2) = [0,1]^T$$

-1: $x(3) = [1,0]^T, x(4) = [1,1]^T$

Extend by add "1":

+1:
$$x(1) = [0,0,1]^T, x(2) = [0,1,1]^T$$

-1: $x(3) = [1,0,1]^T, x(4) = [1,1,1]^T$

Let $\delta = 1$, $\mathbf{w}(1) = [0,0,0]^T$, update \mathbf{w} ?

Training:

The 4th iteration:

$$\mathbf{w}(4)^{\mathrm{T}}\mathbf{x}(4) = [-1,0,0] \begin{bmatrix} 1\\1\\1 \end{bmatrix} = -1 < 0$$
$$\mathbf{w}(5) = \mathbf{w}(4) = [-1\ 0\ 0]^{\mathrm{T}}$$

- Perception
- **■** Example

+1:
$$x(1) = [0,0]^T, x(2) = [0,1]^T$$

-1: $x(3) = [1,0]^T, x(4) = [1,1]^T$

Extend by add "1":

+1:
$$x(1) = [0,0,1]^T, x(2) = [0,1,1]^T$$

-1: $x(3) = [1,0,1]^T, x(4) = [1,1,1]^T$

Let $\delta = 1$, $\mathbf{w}(1) = [0,0,0]^T$, update \mathbf{w} ?

Training:

The *t* iteration:

$$\mathbf{w}(t)^{\mathrm{T}}\mathbf{x}(t) = ?$$

- Perception
- □ Widrow-Hoff or LMS Training Algorithm (最小均方)
 The objective function

$$J(w) = \frac{1}{2} \left(r - \mathbf{w}^{\mathrm{T}} \mathbf{x} \right)^{2}$$

where r is the expected output, r = +1/-1

The objective is to find the minimum J(w), by using gradient descent.

The gradient of J(w) w.r.t. w is

$$\frac{\partial J(w)}{\partial w} = -(r - \mathbf{w}^{\mathrm{T}}\mathbf{x})\mathbf{x}$$

- Perception
- Widrow-Hoff or LMS Training Algorithm The weights adjustment

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \delta \left[\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} \right]_{\mathbf{w} = \mathbf{w}(k)}, \delta > 0$$
$$= \mathbf{w}(k) + \delta [r(k) - \mathbf{w}^{T}(k)\mathbf{x}(k)]\mathbf{x}(k)$$

For iteration, w(1) is randomly generated.

The increment (delta) of weights is

$$\Delta \mathbf{w} = \mathbf{w}(k+1) - \mathbf{w}(k) = \delta \cdot \mathbf{e}(k)\mathbf{x}(k)$$

where $\mathbf{e}(k) = r(k) - \mathbf{w}^{T}(k)\mathbf{x}(k)$

- Perception
- Widrow-Hoff or LMS Training Algorithm

When w(k) is updated into w(k+1), the delta of error

$$\Delta \mathbf{e} = e(k+1) - e(k)$$

$$= [r(k) - \mathbf{w}^T(k+1)\mathbf{x}(k)] - [r(k) - \mathbf{w}^T(k)\mathbf{x}(k)]$$

$$= -[\mathbf{w}^T(k+1) - \mathbf{w}^T(k)]\mathbf{x}(k) = -\Delta \mathbf{w}^T\mathbf{x}(k)$$

Substitute
$$\Delta \mathbf{w} = \delta \cdot \mathbf{e}(k)\mathbf{x}(k)$$
 into $\Delta \mathbf{e}$,
$$\Delta \mathbf{e} = -\delta \cdot \mathbf{e}(k)\|\mathbf{x}(k)\|^2$$

 δ is the learning rate, and important for convergence