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a b s t r a c t

Learning distance metrics for measuring the similarity between two data points in unsupervised and su-

pervised pattern recognition has been widely studied in unconstrained face verification tasks. Motivated

by the fact that enforcing single distance metric learning for verification via an empirical score threshold

is not robust in uncontrolled experimental conditions, we therefore propose to obtain a metric swarm

by learning local patches alike sub-metrics simultaneously that naturally formulates a generalized metric

swarm learning (GMSL) model with a joint similarity score function solved by an efficient alternative op-

timization algorithm. Further, each sample pair is represented as a similarity vector via the well-learned

metric swarm, such that the face verification task becomes a generalized SVM-alike classification prob-

lem. Therefore, the verification can be enforced in the represented metric swarm space that can well

improve the robustness of verification under irregular data structure. Experiments are preliminarily con-

ducted using several UCI benchmark datasets for solving general classification problem. Further, the face

verification experiments on real-world LFW and PubFig datasets demonstrate that our proposed model

outperforms several state-of-the-art metric learning methods.

© 2015 Elsevier B.V. All rights reserved.

a

c

s

i

a

i

b

l

t

(

b

i

l

1

w

m

i

1. Introduction

Visual categorization refers to deciding the images that describe

the same or similar object into one class. Slightly different, visual

identification tries to answer whether or not two images depict the

same or similar object from some class. More specifically, face ver-

ification as a binary classification problem over pair-wise faces (i.e.

face pairs), requires that human or machine can answer whether a

pair of face images depict the same person or not. In other words,

given two images, both containing faces taken under natural con-

ditions (i.e. in the wild), our goal is to answer: are the two im-

ages depicting the same person, or not? In recent years, a chal-

lenging benchmark dataset for this problem, i.e. Labeled Faces in

the Wild (LFW) released by Huang et al. [1] has been widely ex-

ploited and explored by world-wide researchers from computer vi-

sion community [2–4]. LFW is for unconstrained face verification,

which exhibits appearance variations due to the uncontrolled set-

tings, including variations in scale, pose, background, illumination,
∗ Corresponding author at: College of Communication Engineering, Chongqing

University, Chongqing 400044, China. Tel.: +86 13629788369.
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nd also different attributes like hairstyle, expression, clothing, fo-

us, image resolution, color saturation, etc. Some similar/dissimilar

ample-pair examples in LFW are shown in Fig. 1.

Throughout the recent works for face verification, metric learn-

ng has received a lot of attention [5–8]. Metric learning provides

fundamental prospective for answering the following question

n pattern recognition: how to measure the similarity/dissimilarity

etween two data points? Most metric learning methods try to

earn a Mahalanobis distance metric M by means of a labeled

raining set (for classification problems) or from sets of positive

similar) and negative (dissimilar) pairs (for verification problems)

ased on a predefined objective function. This objective function

s usually designed to punish the large distance between simi-

ar pairs and the small distance between dissimilar pairs [1,9–

1]. The distance metric function of a sample pair (xi, xj) can be

ritten as (xi − x j)
TM(xi − x j). In addition to learning distance

etric, similarity metric learning approaches such as cosine sim-

larity metric [7] and bilinear function similarity metric [8] have

lso been explored. Among them, learning Mahalanobis distance

etric for k-nearest neighbor classification is widely reported and

f research interest, like information theoretic metric learning

ITML) [9], large margin nearest neighbor (LMNN) [11] which ex-

ends the doublets to triplets in constraint for desired distance

etric, and scalable large margin Mahalanobis metric learning

http://dx.doi.org/10.1016/j.inffus.2015.12.004
http://www.ScienceDirect.com
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mailto:leizhang@cqu.edu.cn
mailto:csdzhang@comp.polyu.edu.hk
http://dx.doi.org/10.1016/j.inffus.2015.12.004


L. Zhang, D. Zhang / Information Fusion 30 (2016) 80–90 81

Fig. 1. Some real-world face pairs of LFW: same pairs (first row) and not same pairs

(second row).
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12,13]. Recently, a kernel based distance metric learning method

doublet-SVM vs. triplet-SVM) solved by SVM tool is proposed [14].

xtensions of metric learning have been utilized for multi-task

earning [15], semi-supervised learning [16,17], nonlinear distance

imilarity learning [18], etc.

Despite of these metric learning methods, there is a common

roperty that all try to learn a single distance metric for classifi-

ation or verification by finding a discriminative score threshold.

he weakness may lie in two folds: first, learning single metric

s in fact not robust due to the variation of data structure, like

FW; second, decide whether two face images are the same or

ot through a score threshold is not stable. The reason holds the

ame as the first, though it is at a glance. Multi-view learning [19–

1] and multiple instance learning [22,23] have been proposed in

achine learning community. Multi-metric learning has also been

roposed for face recognition [24] and face/kinship verification

25]. Even with the fact that learning multiple distance metrics

or face recognition can improve the performance, but only Maha-

anobis distance metrics are considered, such that the diversity of

imilar metrics is missed based on only distance and the function

f multiple metrics is prohibited. In [8], a similarity metric learn-

ng method was proposed coupled with distance metric in objec-

ive function, which exhibits an improvement for face verification.

owever, the contribution between similarity and distance metric

s treated identically, without appropriate optimization. Moreover,

n identification, it finds a discriminative score threshold which

olds the same way as other metric learning methods. As a result,

he discriminative ability and the potential for similarity measure

ay be limited.

With above considerations, in this paper we present generalized

etric swarm learning for classification and face verification, nom-

nated as GMSL. The goal of GMSL is to learn each local diagonal
Fig. 2. Illustration of our GM
atch of the metric swarm M by enforcing with different function.

esides, we propose to map the pair-wise samples into a discrimi-

ative metric swarm space with vectors by using the local patches

f sub-metrics, such that the standard SVM can be used for final

erification. We demonstrate the effectiveness of our framework on

everal UCI benchmark datasets, real-world LFW and PubFig face

atasets. Fig. 2 illustrates the framework of our GMSL for uncon-

trained face verification.

Our GMSL method is related to the previous method in [8], and

here is clear novelty by comparing to [8] and the pre-existing

ethods. Specifically, the main contributions of this paper are

hree folds:

(1) Multiple metrics with weights optimization for information

sharing are integrated into an optimal metric, such that

the similarity/dissimilarity between pairwise samples can be

correctly measured. However, in [8], two metrics are com-

bined without recognizing their importance.

(2) Rather than learning two different metrics for similarity

score computation in [8], the proposed method aims at

learning an optimal metric swarm for representing pairwise

samples via a generalized framework, such that the match-

ing problem can be solved by a binary classifier (e.g. SVM).

(3) In [8], the metrics are learned based on one feature type,

which limits the capability of the learned metrics. There-

fore, in this paper, we also consider learn each metric

with/without data centralization.

The rest of this paper is organized as follows. In Section 2,

e review the most related works of metric learning. The pro-

osed GMSL with problem formulation and dual optimization is

resented in Section 3. The experiments on several UCI benchmark

atasets for classification problem, and the experiments for uncon-

trained face verification on LFW and PubFig data are conducted in

ection 4. Finally, Section 5 concludes the paper.

. Related work

In supervised and unsupervised pattern recognition, metric

earning has received much attention in computer vision. As state-

f-the-art methods, Weinberger et al. introduced a LMNN method

hat learns a distance metric M to improve the k-nearest neigh-

or classifier [11]. The key point is that it encourages target neigh-

ors to be at least one distance unit closer than points from other

lasses; therefore, it requires labeled triplets (i, j, k), where data

oint xj is a neighbor of data point xi, but data point xk is not.
SL for face verification.
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LMNN can be written as the following:

min
M,ξ

ξi jk + γ
∑

i, j dM

(
xi, x j

)
s.t. dM(xi, xk) − dM

(
xi, x j

)
≥ 1 − ξi jk, M � 0, ξi jk ≥ 0

Due to that triplet set is required in LMNN, the restricted set-

ting in LFW is difficult to implement based on doublets, except

for the unrestricted setting. In addition, ITML proposed by Davis

et al. [9] is another state-of-the-art, which learns a distance met-

ric M by regularizing it as close as possible to a known prior

M0 on Mahalanobis distance. After LMNN and ITML, Guillaumin

et al. [5] proposed a logistic discriminant based metric learning

(LDML) which requires that the distance between similar pairs

should be smaller than the distance between dissimilar pairs, and

try to obtain a probabilistic estimation on whether the two im-

ages are similar or not. Taigman et al. [6] proposed a MultiOSS

method based on ITML for utilizing class label information in un-

constrained face recognition, and outperform large margin based

methods.

Up to now, LFW data for unconstrained face verification has at-

tracted rich experience in practice, from metric learning to deep

learning. In [26], Kumar et al. presented an attribute and simile

classifier based on attribute features which obtained 85.29% ac-

curacy. In [7], Nguyen et al. proposed a cosine similarity metric

learning (CSML) and reach an accuracy of 88%. In [24], Cui et al.

proposed a SAFR-PMML method which obtained a high accuracy

of 89.35% by fusing multiple robust visual descriptors. In [25], Hu

et al. proposed a novel large margin multi-metric learning (LM3L)

method for face and kinship verification, which aims at maximiz-

ing the correlation of multiple feature representation. Recently,

Cao et al. proposed a similarity metric learning (SubSML) [8] and

achieved 89.73% accuracy by combing multiple low-level feature

descriptors in restricted setting. Also, a deep learning framework

for metric learning (DDML) [27] which aims to learn two layered

deep features for distance metric using gradient descent algorithm

was proposed for face verification, and obtains the best accuracy

90.68% on LFW based on multiple features.

3. Generalized metric swarm learning approach

3.1. Notations

The sets of similar and dissimilar pairs are denoted as S and

D, respectively. Assume that there are G latent metrics defined as

Mg ∈ �d×d (g = 1, . . . · · · , G) which are used to measure the simi-

larity of a sample pair (xi, xj) using a joint metric swarm function

fM(xi, xj), where M represents the metric swarm and xi ∈ �d (d is

the dimension of each sample). The metric function of a single Mg

is denoted as F
g

Mg
(xi, x j). The loss function is defined as L( · ) and

the Lagrange function is defined as �( · ). In this paper, ‖ · ‖F and

‖ · ‖2 denote Frobenius norm and �2-norm.

3.2. Formulation of GMSL

In our proposed GMSL model, we would like to learn the joint

metric function implied in the data, that is established based on

some predefined metric swarm M consisting of G different sub-

metrics, i.e. M1, M2, . . . · · · , MG. Suppose a sample set V consisting

of a similar set S and a dissimilar set D (i.e. V = S ∪D), the proposed

joint metric (score) function of a sample pair (xi, xj) is summarized

as following definitions:

Definition 1. ∀ i, j ∈ V, the proposed joint similarity score

function fM of a pair (xi, xj) under the metric swarm M ←
{M1, M2, . . . · · · , MG}, can be written as follows:

fM(xi, x j) = hTFM(xi, x j) (1)
here FM(xi, x j) = [F1
M1

(xi, x j), . . . · · · , F G
MG

(xi, x j)]T ∈ �G denotes the

ulti-metric distance function with MetricFusion, h = [h1, · · · , hG]T ∈
G, and F

g
Mg

(xi, x j) denotes the sub-metric distance function with Mg.

he indicator vector h is a known vector for each sub-metric, which

s shown in Definition 2. Note that the arrow ← denotes that M

an be represented by each sub-metric of {M1, M2, . . . · · · , MG} via

ome specific form in application (e.g. Eq(4)).

efinition 2. ∀ i, j ∈ S, i, k ∈ D, g ∈ {g|g = 1, . . . · · · , G}, there is

g =
{−1, if F g

Mg
(xi, x j) negatively change indistancefunction

+1, if F g
Mg

(xi, x j) positively change indistancefunction

(2)

Specifically, Definition 2 can be described as follows: the indi-

ator hg = 1 if the distance function F
g

Mg
(xi, x j) under sub-metric

g increase with the increasing similarity between xi and xj; and

g = −1, if the distance function F
g

Mg
(xi, x j) decrease with the in-

reasing similarity between xi and xj. For example, for Euclidean

istance metric M, the indicator h = −1, due to that the FM(xi, xj)

f a similar pair is smaller than that of a dissimilar pair. There-

ore, how to set hg value depends on whether the selected sub-

etric Mg has positive (+1) or negative (−1) property on the dis-

ance function from a qualitative level. Note that the indicator vec-

or h does not imply the quantitative weight vector of the pro-

osed MetricFusion. Instead, it implies the property of each sub-

etric.

Based on Definitions 1 and 2, the primal problem of the pro-

osed GMSL is formulated as

min
g,∀g

L(M) + γ

2

G∑
g=1

�g

∥∥Mg − M̃g

∥∥2

F
(3)

here L( · ) is the loss function, M̃g is a known matrix that is sim-

lar to the prior matrix in ITML, 0 < �g < 1 is the contribution

oefficient for the gth sub-metric, and γ is the regularization pa-

ameter.

For clear understanding the metric swarm M, it is shown as a

arge metric represented by G sub-metrics (diagonal patch) as

=

⎡
⎣h1M1

. . .

hGMG

⎤
⎦ ∈ �Gd×Gd (4)

Note here that the target metric swarm M denotes a large met-

ic constructed by local patches of sub-metrics. From model (3), it

an be observed that we tend to learn the G sub-metrics simul-

aneously instead of M. After optimization of G sub-metrics, the

etric swarm can be easily obtained by using (4).

In general, L(M) in (3) is defined as the following hinge-loss

unction in this paper.

(M) =
∑

(i, j)∈V=S∪D
(1 − yi, jh

TFM(xi, x j))+ (5)

here yi, j denotes the label +1 and −1 for positive and negative

air, respectively.

Minimizing the loss function term constructed by a met-

ic swarm can promise the discriminative ability of the sim-

larity score function with complex data, and FM(xi, x j) =
F1

M1
(xi, x j), . . . , F G

MG
(xi, x j)]T. The specific formulation of FM(xi, xj)

an be referred in Remarks, and a sample pair (xi, xj) will be trans-

ormed in other representation (see Eq. (11)) for similarity measure

y M because it is easy to observe that the dimension of M is not

onsistent with (xi, xj). The regularization term is to prevent the

earned sub-metric from being distorted, and hence retains the ro-

ustness to the variations of data structure.
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To solve model (3) coupled with the hinge-loss function term

5), we introduce the slacking variables ξ i, j(xi, xj), i, j ∈ V, the pro-

osed model with constraints is reformulated as

min
Mg,∀g

∑
(i, j)∈V

ξi, j(xi, x j) + γ

2

G∑
g=1

�g‖Mg − M̃g‖2
F

s.t. yi, jh
TFM(xi, x j) ≥ 1 − ξi, j(xi, x j),

ξi, j(xi, x j) ≥ 0, ∀(i, j) ∈ V (6)

Direct optimization of the primal problem (6) with inequality

onstraints is difficult, so its dual problem is solved by using La-

range multiplier method in the following section.

.3. Optimization of GMSL

To solve the optimal metric swarm M in (6), we tend to solve

ts dual problem instead of the primal problem. For detail, the de-

uction process of its dual problem and the optimization algorithm

ill be described as follows:

First, we write the Lagrange function �( · ) of (6) as

(M, ξ ;α,β) =
∑

(i, j)∈V
ξi, j(xi, x j) + γ

2

G∑
g=1

�g

∥∥Mg − M̃g

∥∥2

F

−
∑

(i, j)∈V
αi, j

(
yi, jh

TFM

(
xi, x j

)
− 1 + ξi, j

(
xi, x j

))
−

∑
(i, j)∈V

βi, jξi, j

(
xi, x j

)
(7)

here α ≥ 0 and β ≥ 0 denote the Lagrange multipliers, and it

mplies that αi, j + βi, j = 1 in subsequent dual analysis.

By calculating the partial derivatives of �(M, ξ; α, β) in (7)

ith respect to Mg and ξ i, j(xi, xj), one can have

∂�(M,ξ ;α,β)
∂Mg

= γ �g

(
Mg − M̃g

)
− ∑

(i, j)∈V

αi, jyi, jhg

∂F g
Mg (xi,x j)

∂Mg

∂�(M,ξ ;α,β)

∂ξi, j(xi,x j)
= 1 − αi, j − βi, j

(8)

Let ∂�(M,ξ ;α,β)
∂Mg

= ∂�(M,ξ ;α,β)
∂ξi, j (xi,x j )

= 0, one can easily obtain the ex-

ression of sub-metric Mg as follows:

Mg = M̃g + hg

γ �g

∑
(i, j)∈V αi, jyi, j

∂F g
Mg (xi,x j)

∂Mg

βi, j = 1 − αi, j

(9)

Substituting Mg and β i, j back into �(M, ξ; α, β) in (7), there is
he following expression:

(M, ξ ;α,β)

∑
(i, j)∈V

ξi, j(xi, x j) + γ

2

G∑
g=1

�g

∥∥∥∥∥ 1

γ �g

∑
(i, j)∈V

αi, jyi, j

∂F g
Mg

(xi, x j)

∂Mg

∥∥∥∥∥
2

F

−
∑

(i, j)∈V

αi, jyi, jh
TFM(xi, x j) +

∑
(i, j)∈V

αi, j −
∑

(i, j)∈V

αi, jξi, j(xi, x j)

−
∑

(i, j)∈V
ξi, j(xi, x j) +

∑
(i, j)∈V

αi, jξi, j(xi, x j)

∑
(i, j)∈V

αi, j + 1

2γ

G∑
g=1

1

�g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, j

∂F g
Mg

(xi, x j)

∂Mg

∥∥∥∥∥
2

F

−
∑

(i, j)∈V
αi, jyi, jh

TFM(xi, x j) (10)

Note that h2
g = 1 (see Definition 2 in this paper).

For easily solving the proposed metric swarm M involved in the

ptimization problem, we expect F
g

Mg
(xi, x j) to be strictly convex

ith respect to Mg, such that the variable Mg can be eliminated
n
∂F

g
Mg

(xi,x j )

∂Mg
. Therefore, the following expression of F

g
Mg

(xi, x j) is

ntroduced:

g
Mg

(
xi, x j

)
= uT

gMgvg,∀g = 1, . . . , G (11)

here ug and vg are vectors formed by a sample pair (xi, xj) (see

he following Theorem 1 in this paper).

According to (11), we get that

∂F g
Mg

(
xi, x j

)
∂Mg

= ugvT
g (12)

By substituting (12) back into (9), we can obtain

g = M̃g + hg

γ �g

∑
(i, j)∈V

αi, jyi, jugvT
g (13)

So, we can rewrite (10) step by step as follows:

(M,ξ ;α,β)

=
∑

(i, j)∈V

αi, j + 1

2γ

G∑
g=1

1

�g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

−
∑

(i, j)∈V
αi, jyi, j

∑G

g=1
hgF g

Mg

(
xi, x j

)
=

∑
(i, j)∈V

αi, j + 1

2γ

G∑
g=1

1

�g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

−
∑G

g=1
hg

(∑
(i, j)∈V

αi, jyi, j

(
uT

gMgvg

))

=
∑

(i, j)∈V

αi, j + 1

2γ

G∑
g=1

1

�g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

−
G∑

g=1

hg

( ∑
(i, j)∈V

αi, jyi, j

(
uT

g

(
M̃g + hg

γ �g

∑
(i, j)∈V

αi, jyi, jugvT
g

)
vg

))

=
∑

(i, j)∈V

αi, j + 1

2γ

G∑
g=1

1

�g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

−
G∑

g=1

(
hg

∑
(i, j)∈V

αi, jyi, ju
T
gM̃gvg

)

−
G∑

g=1

1

γ �g

( ∑
(i, j)∈V

αi, jyi, ju
T
g

( ∑
(i, j)∈V

αi, jyi, jugvT
g

)
vg

)

=
∑

(i, j)∈V

αi, j + 1

2γ

G∑
g=1

1

�g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

−
G∑

g=1

(
hg

∑
(i, j)∈V

αi, jyi, ju
T
gM̃gvg

)
−

G∑
g=1

1

γ �g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

=
∑

(i, j)∈V

αi, j −
G∑

g=1

1

2γ �g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

−
G∑

g=1

(
hg

∑
(i, j)∈V

αi, jyi, ju
T
gM̃gvg

)
(14)

For further simplifying the Lagrange function (14), as claimed

efore, M̃g is a defined as a known matrix. Therefore, in this paper,
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Algorithm 1 GMSL.

Input:

Similar pairwise sample set S;

Dissimilar pairwise sample set D;

Indicator vector h = [h1, . . . , hG]T;

Initialize M(0)
g , g = 1, . . . , G

Initialize ϑ(0)
g ← 1/G, g = 1, . . . , G and t ← 0;

Procedure:

Repeat

1. Update α(t) by solving the dual optimization problem (16) using FISTA

algorithm;

2. Update the sub-metric M(t)
g ∈ �d×d, g = 1, . . . , G in metric swarm by

using (17) and α(t);

3. Update ϑ(t)
g , g = 1, . . . , G;

4. t ← t + 1;

until convergence.

Output: M(t) = diag([h1M(t)
1

, . . . , hGM(t)
G

]) with (4).
we define a diagonal matrix M̃g = δgI. Note that 0 ≤ δg ≤ 1 and I

is an identity matrix. Then expression (14) can be written as

�(M, ξ ;α,β) (15)

=
∑

(i, j)∈V

αi, j −
G∑

g=1

1

2γ �g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

−
G∑

g=1

(
δghg

∑
(i, j)∈V

αi, jyi, ju
T
gvg

)

=
∑

(i, j)∈V

αi, j −
G∑

g=1

⎛
⎝ 1

2γ�g

∥∥∥∥∥ ∑
(i, j)∈V

αi, jyi, jugvT
g

∥∥∥∥∥
2

F

+δghg

∑
(i, j)∈V

αi, jyi, ju
T
gvg

)
(15)

Specifically, the Lagrange dual problem of GMSL formulation (6)

is summarized as the following theorem.

Theorem 1. With the prerequisites F
g

Mg
(xi, x j) = uT

gMgvg, ∀g =
1, . . . , G and M̃g = δgI, 0 ≤ δg ≤ 1, the dual formulation of our GMSL

model (6) can be written as

max
0≤α≤1

∑
(i, j)∈V

αi, j −
G∑

g=1

⎛
⎝ 1

2γ�g

∥∥∥∑
(i. j)∈V

αi, jyi, jugvT
g

∥∥∥2

F

+δghg

∑
(i. j)∈V αi, jyi, ju

T
gvg

⎞
⎠ (16)

where ug and vg can be, but not limited to the following cases:

a. u1 = xi − x j, v1 = xi − x j

b. u2 = (xi − x̄i ◦
⇀

1) − (x j − x̄ j ◦
⇀

1), v2 = (xi − x̄i ◦
⇀

1) −
(x j − x̄ j ◦

⇀

1)

c. u3 = xi, v3 = x j

d. u4 = xi − x̄i ◦
⇀

1, v4 = x j − x̄ j ◦
⇀

1

where
⇀

1 is a full one vector, x̄ denote the mean of vector x and ◦
denotes element-wise multiplication. It is clear that common Maha-

lanobis distance metric is considered in case a, and it is implied in

case b with data centralization; similarity metric is used in case c and

d via bilinear function.

Note also that we require F
g

Mg
(xi, x j) = uT

gMgvg because

∂F
g

Mg
(xi,x j )

∂Mg
= ugvT

g is constant which makes the optimization easier.

Also, we set the known matrix M̃g = δgI as a diagonal matrix for

avoiding the distortion of the learned metric swarm, and retain

the robustness. It is obvious that formulation (16) in Theorem 1

is a standard quadratic programming (SQP) problem and it can be

easily solved by QP solvers. However, with increasing number of

pairs in training set, the QP solvers with interior point methods

may lose efficiency. Therefore, we follow the solving algorithm

based on the accelerated first order algorithm implemented in

[8,28] in this paper.

After obtaining the optimal solution α∗, based on Karush-Kuhn-

ucker (KKT) condition, the learned sub-metric Mg (g = 1, . . . , G)

can be obtained as

M∗
g = δgI + hg

γ �g

∑
(i, j)∈V

α∗
i, jyi, jugvT

g (17)

3.4. Solving � with model modification

We notice from (16) that there is coefficient � in iterations. For

finding the coefficient, we propose to solve the following model.
ote that for differentiating the � in (16), we use ϑ and �g ←
q
g . We impose the constraints

∑G
g=1 ϑg = 1 and 0 < ϑg < 1. The

etail of solving coefficient ϑ is shown as follows. First, model (6)

s slightly modified as

min
Mg,�g,∀g

∑
(i, j)∈V

ξi, j

(
xi, x j

)
+ γ

2

G∑
g=1

ϑq
g

∥∥Mg − M̃g

∥∥2

F

s.t. yi, jh
TFM

(
xi, x j

)
≥ 1 − ξi, j

(
xi, x j

)
,

ξi, j

(
xi, x j

)
≥ 0,∀(i, j) ∈ V,

G∑
g=1

ϑg = 1, q > 1 (18)

We see that q-square ϑq
g is used with q > 1, this is to avoid the

rivial solution like �g = 0 or �g = 1 which would pursue the best

etric. However, we would like to utilize the information of all

ub-metrics in learning process, which will improve the robustness

f model. By setting the partial derivative
∂�(Mg,ϑg)

∂Mg
of the Lagrange

q. (18) to be 0, we have

γ
2

q ϑq−1
g

∥∥Mg − M̃g

∥∥2

F
= μ

G∑
g=1

ϑg = 1

(19)

here μ is the Lagrange multiplier. From (19), ϑg can be easily

olved as

g =
(

1∥∥Mg − M̃g

∥∥2

F

)1/(q−1)/∑G

g=1

(
1∥∥Mg − M̃g

∥∥2

F

)1/(q−1)

(20)

In experiments, q is set as 2. The initial ϑg is set as 1/G.

We propose to solve the proposed GMSL via an alternative op-

imization algorithm, shown in Algorithm 1.

.5. Representation of pairwise samples in metric swarm space

To match the sample pair in terms of SVM, we propose to rep-

esent each sample pair as a vector in metric swarm space, such

hat binary classification-alike can be implemented by SVM. In

ther words, we want to represent each face pair as a similarity

ector with labels +1 and −1 for positive and negative pairs, re-

pectively, such that the verification tasks can be realized with dis-
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Fig. 3. A diagram of the proposed GMSL for classification. Left: the circles with

different colors denote similar pairs, the squares with different colors denote dis-

similar pairs; medium: the triangles denote the represented vector space of similar

pairs, and the diamonds denote the represented vector space of dissimilar pairs;

right: the binary classification in the learned metric space. (For interpretation of

the references to color in this figure legend, the reader is referred to the web ver-

sion of this article.)
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Algorithm 2 GMSL for verification.

Input:

Similar pairwise sample set S;

Dissimilar pairwise sample set D;

Parameters γ , δ and �.

Procedure:

Step 1. GMSL optimization.

Obtain the metric swarm M by using Algorithm 1.

Step 2. Metric swarm space representation.

Represent each pair (xi , xj) as a similarity vector by using (18) with M;

Step 3. Verification.

Train and test a standard SVM in the represented metric swarm space by

using 10-fold cross validation.

Output: Verification result.

[

w

v

v

w

w

(

(

i

m

i

t

a

c

3

t

b

f

D

w

ξ

w

(

a

t

c

c

riminative classifiers. The advantage is that it can inherit the mer-

ts from both metric learning and general classifiers, while avoiding

sing one simple score threshold of the metric function for verifi-

ation. Additionally, by learning a discriminative SVM classifier in

he represented metric swarm space, the verification tasks will be

ore robust to the noise, corruption etc. encountered in image ac-

uisition.

Therefore, the similarity vector (MS-space) for each sample pair

xi, xj) based on the learned metrics can be represented as

S
(
xi, x j

)
=
[
F 1

M1

(
xi, x j

)
, . . . , F G

MG

(
xi, x j

)]T ∈ �G (21)

.6. Sample-pair verification

With the learned metric swarm in (17), all face pairs are rep-

esented in a similarity vector space according to (21). The labels

or positive and negative pairs are set as +1 and −1, respectively.

he verification is finally transformed into a standard binary clas-

ification problem, which is easily solved by a standard SVM using

general toolbox.

Fig. 2 illustrates our basic framework for face verification. Gen-

rally, the proposed method is also adaptive in classification. The

iagram of the proposed method in general classification is illus-

rated in Fig. 3.

In Theorem 1, we have learned four sub-metrics in the met-

ic swarm based on distance and similarity metrics, considering

heir strict convex property with respect to Mg. For measuring the

ontribution of each sub-metric, in learning process, we first pre-

rain the coefficients �g by (20). Then, we fix the coefficients, and

se the fast iterative shrinkage thresholding algorithm (FISTA) [28]

o solve the dual problem (16). After optimization of the metric

warm, the discriminative space is reconstructed through the met-

ic swarm space representation (21). The sample pairs are then

ransformed into vectors, respectively, and the verification of “sim-

lar” or “not similar” can be done by a standard SVM in this paper.

pecifically, the verification process by using GMSL is summarized

s Algorithm 2.

.7. Remarks

.7.1. Joint metric swarm score function

As shown in Theorem 1, by using the predefined size of the

etric swarm M ≡ {M1, . . . , M4} with respect to the four cases

f a, b, c and d, the final joint metric score function fM(xi, xj)

n (1) with FM(xi, x j) = [F 1
M

(xi, x j), . . . , F G
M

(xi, x j)]T ∈ �G, and h =

1 G
h1, . . . , hG]T ∈ �Gcan be shown as

fM

(
xi, x j

)
= hTFM

(
xi, x j

)
= −FM1

(
xi, x j

)
− FM2

(
xi, x j

)
+ FM3

(
xi, x j

)
+ FM4

(
xi, x j

)
= −uT

1M1v1 − uT
2M2v2 + uT

3M3v3 + uT
4M4v4

=
[
uT

1, uT
2, uT

3, uT
4

]
⎡
⎢⎢⎣

−M1

−M2

M3

M4

⎤
⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎣

v1

v2

v3

v4

⎤
⎥⎦

(22)

here h = [−1,−1, 1, 1]T according to Definition 2, u1, . . . , u4 and

1, . . . , v4 are represented in Theorem 1. Here, we know that the

alue hg = 1 if the score F
g

Mg
(xi, x j) has a positive (ascent) change

ith the increasing similarity between xi and xj, and −1 other-

ise. It implies that the GMSL requires the joint score function

22) of a sample pair (xi, xj) to be high if they are similar. From

22), it is clear that the optimization of proposed metric swarm M

s divided into four sub-metrics in diagonal, such that the learned

etric with local patches is more robust when the data structure

s complex. The proposed GMSL also brings some new prospective

o metric learning that the metric M can be optimized in patches,

nd each local patch of M has different impact on the similarity

omputation of sample pairs.

.7.2. Optimality condition

We investigate the optimality condition of GMSL by checking

he duality gap (DualityGap), which is formulated as the difference

etween the primal objective function (6) and the dual objective

unction (16) (with the q-power on �g) at the t-th iteration, i.e.

ualityGap(t) =
∑

(i, j)∈V

ξ (t)
i, j

(
xi, x j

)
+ γ

2

G∑
g=1

(
�(t)

g

)q∥∥M(t)
g − M̃g

∥∥2

F

−
∑

(i, j)∈V
α(t)

i, j

+
G∑

g=1

⎛
⎝ 1

2γ
(
�(t)

g

)q

∥∥∑
(i. j)∈V α(t)

i, j
yi, jugvT

g

∥∥2

F

+δghg

∑
(i. j)∈V α(t)

i, j
yi, ju

T
gvg

⎞
⎠ (23)

here the error term is computed as

(t)
i, j

(
xi, x j

)
=
[
1 − yi, jh

TFM(t)

(
xi, x j

)]
+ (24)

here yi,j=1 for similar pairs, and −1, otherwise. By substituting

22) and (24) into (23), the duality gap can be calculated. For ex-

mple, the duality gap curve by using LFW data within 10 itera-

ions is shown in Fig. 4, from which, we can observe that GMSL

an converge to a global optimum within 10 iterations. The effi-

iency of GMSL is clearly demonstrated.
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Fig. 4. Duality gap vs. the iterations on LFW data.

Fig. 5. Classification error (%) of Euclidean, DML-eig, LMNN, ITML, Sparese ML, Sub-

SML and the proposed GMSL metric learning methods.
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4. Experiments

In the experiments, we evaluate the proposed GMSL for classi-

fication by using UCI benchmark datasets and unconstrained face

verification using LFW and PubFig datasets. We have compared

with most popular metric learning methods, including DML-eig

[10], LMNN [11], ITML [9], Sparse-ML [29], Sub-SML [8], LDML [5],

CSML [7], and deep metric learning method DDML [27].

4.1. Parameter setting

Throughout the paper, the two parameters in GMSL, γ is set

as 100 and δ is set as 0.5, respectively, in experiments. The initial

parameter θ g is set as 1/G.

4.2. Test results on UCI datasets

We first test our proposed GMSL on 8 UCI benchmark datasets

from UCI machine learning repository [30] and observe the prelim-

inary effectiveness for general classification problem. The informa-

tion of the selected 8 benchmark datasets in experiments is de-

scribed in Table 1.

For each data we use 10-folds cross validation to evaluate the

represented metric learning methods, and present the comparisons

of the average classification accuracy. Note that for metric learning,

the algorithm input should be similar/dissimilar sample pairs.

We have compared the classification error rate with several

most popular metric learning methods including DML-eig [10],
Table 1

Description of 8 UCI datasets.

Dataset

Feature

dimensions # of classes

# of training

samples

# of test

samples

Wine 13 3 125 53

Iris 4 3 105 45

SPECTF-Heart 44 2 80 187

Statlog-Heart 13 2 189 81

UserKnowledge 5 4 101 44

ILPD 10 2 525 58

Sonar 60 2 188 20

Seeds 7 3 147 63

l

h

m

g

4

c

1

s

m

s

MNN [11], ITML [9], Sparse-ML [29], and Sub-SML [8] in Fig. 5.

rom the bar plots of error rates, we can see that GMSL outper-

orms other metric learning methods in five datasets. For datasets

, 7 and 8, GMSL is slightly inferior to ITML. Therefore, for total

omparison on all datasets, the average rank of error rate is calcu-

ated and illustrated in Fig. 6. We can observe that GMSL has the

ighest rank with the lowest error rate among the seven metric

ethods. The results demonstrate the effectiveness of our GMSL in

eneral classification problem.

.3. Test results on LFW faces

LFW (Labeled Faces in the Wild) is commonly regarded as a

hallenging dataset for unconstrained face verification. It contains

3,233 face images from 5749 persons [1]. Restricted and unre-

tricted protocols are included in LFW. The only available infor-

ation in restricted protocol is whether each pair depicts the

ame subject or not. For image unrestricted protocol, the identity
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Fig. 6. Average rank of the classification error rate.
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nformation of each face image is known, and extra face images

ith known identities can also be used. For comparing with most

tate-of-the-art methods in the same experimental setting, image

estricted protocol is adopted in this paper.

We use the LBP and SIFT low-level image features from [8] with

00 feature dimensions after PCA dimension reduction for analysis.

dditionally, the attribute feature with 73 attributes like hair style,

ge, gender, race, etc. from [26] are also used. The performance of

face verification algorithm is evaluated by 10-fold cross valida-

ion, with each fold containing 300 positive and 300 negative im-

ge pairs. Specifically, for each fold cross-validation, 2700 similar

airs and 2700 dissimilar pairs from 9 folds are used for training,

nd 300 similar pairs and 300 dissimilar pairs from the remaining

old are used for testing.

To better show the effectiveness of the proposed GMSL method,

or each single feature, the verification accuracy (%) by learn-

ng each metric Mi (i = 1,…,4) separately have been reported in

able 2, in which GMSL-Comb denotes the straightforward combi-

ation of the separately learned 4 metrics instead of joint learning.

he results show that the proposed GMSL joint learning method

utperforms the combined method. Additionally, the comparisons

y learning each metric separately based on multiple features have

lso been conducted and reported in Table 3, from which we can

learly observe the significant improvement by using the proposed

MSL joint learning framework. From Tables 2 and 3, it is clear

hat learning multiple metrics outperforms that of learning single
Table 2

Comparisons with baselines of single metric and combined metr

Single feature GMSL-M1 GMSL-M2 GMSL-M3

LBP 86.10 ± 0.49 86.17 ± 0.46 85.17 ± 0

SIFT 84.40 ± 0.43 84.38 ± 0.41 82.93 ± 0

Attribute 84.10 ± 0.59 84.05 ± 0.52 81.78 ± 0

Table 3

Comparisons with baselines of single metric and combined metrics w

Multiple features GMSL-M1 GMSL-M2 GMSL-

LBP + SIFT 87.82 ± 0.53 87.82 ± 0.45 86.73

LBP + Attribute 89.10 ± 0.44 88.98 ± 0.45 87.85

SIFT + Attribute 87.30 ± 0.36 87.23 ± 0.36 85.92

LBP + SIFT + Attribute 89.67 ± 0.35 89.73 ± 0.39 88.22

Table 4

Comparisons with state of the art metric learning methods on LFW dataset.

Method SILD [32] ITML [9] DML-eig [10] LDML [5] KissME [3

LBP 80.07 ± 1.35 79.98 ± 0.39 82.28 ± 0.41 80.65 ± 0.47 83.37 ± 0

SIFT 80.85 ± 0.61 78.12 ± 0.45 81.27 ± 2.30 77.50 ± 0.50 83.08 ± 0

Attribute – 84.00 – 83.40 84.60
etric, and the combination of multiple metrics straightforward

annot better exploit the correlation and association among differ-

nt metrics.

The average accuracy (%) and standard deviation of 10 folds are

rovided in Table 4, which presents the results of popular met-

ic learning methods on LFW for LBP, SIFT, and Attribute features,

espectively. Note that some results are absent because the results

ere not reported in their previous work. Besides, the LMNN needs

he triplet information of image pairs, and it is not compared in

his work for face verification. From the results, we can see that

he proposed method outperforms other popular methods for LBP,

IFT and Attribute, respectively. We have also experimented by us-

ng the joint metric score in Eq. (22) for verification based on a

earned threshold. For SIFT feature, the accuracy is 85.6 ± 0.45 in

ercent; for LBP feature, the accuracy is 87.0 ± 0.52 in percent; for

ttribute feature, the accuracy is 85.2 ± 0.68 in percent. For fur-

her validating the performance with different q-values and make

eep insight of the advantage of the proposed MetricFusion, we

ave studied how q-value performs on the metric weights and face

erification in Fig. 7. Fig. 7(a) shows the θ values (weights of met-

ic fusion) for different q-values. Fig. 7(b) shows the performance

urve of different q-values for three features considered in this pa-

er. From Fig. 7 (b) the performance curve, it clearly shows the

est result of MetricFusion when q = 2. The weight of each met-

ic for q = 2 is shown in Fig. 7 (a). The results of three features

ave almost consistent performance variation with increasing q-

alue. We have also experimented by setting the θ = 0.25 for 4

etrics in average, and the accuracy is 83.9%, 84.9% and 85.2% for

IFT, LBP and Attribute features, respectively, which demonstrates

hat simply average multiple metrics may not capture the best per-

ormance.

Specifically, for comparing with state-of-the-art results on con-

trained LFW via metric learning methods, we conduct a system-

tical comparison and provide the best results in Table 5, in which

oD denotes the number of feature descriptors. From Table 5, we

bserve that with 3 descriptors, the proposed method achieves

he highest face verification accuracy of 90.67%, and higher than

tate-of-the-art 89.73% by Sub-SML [8] with 6 descriptors. By im-

lementing Sub-SML on the same 3 descriptors, 89.33% accu-

acy is obtained with 1.34% lower than ours. For other methods,

FRD + PMML and ITML + Multiple OSS obtain inferior perfor-
ics with single feature on LFW dataset.

GMSL-M4 GMSL-Comb GMSL

.49 85.08 ± 0.51 86.68 ± 0.46 87.12 ± 0.41

.28 82.75 ± 0.32 84.85 ± 0.45 85.98 ± 0.40

.44 79.78 ± 0.79 85.45 ± 0.64 85.62 ± 0.69

ith multiple features on LFW dataset.

M3 GMSL-M4 GMSL-Comb GMSL

± 0.38 86.70 ± 0.38 87.98 ± 0.61 89.35 ± 0.44

± 0.38 87.60 ± 0.54 89.40 ± 0.49 89.45 ± 0.41

± 0.52 85.98 ± 0.60 87.95 ± 0.38 88.20 ± 0.51

± 0.57 88.17 ± 0.60 90.06 ± 0.41 90.67 ± 0.46

7] CSML [7] Att.&Sim. classifier [26] SubSML [8] GMSL

.54 85.57 ± 0.52 – 86.73 ± 0.53 87.12 ± 0.41

.56 – – 85.55 ± 0.61 85.98 ± 0.40

– 85.29 84.77 85.62
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Fig. 7. The weights of MetricFusion for different q-values (a) and performance curve of three features with different q-values (q = 2,…,10).

Table 5

Accuracy (%) comparison with state of the art results on LFW dataset under

image restricted protocol.

Method Features NoD Accuracy

Combine b/g samples [4] SIFT, LBP, etc. 8 86.83 ± 0.34

LDML + SVM [31] SIFT, LBP, etc. 8 79.27 ± 0.60

DML-eig + SVM [11] SIFT, LBP, etc. 8 85.65 ± 0.56

SILD +SVM [21] Intensity, LBP, etc. 8 85.78 ± 2.05

CSML + SVM [34] Intensity + LBP, etc. 6 88.00 ± 0.37

HTBI [33] Inspired features 16 88.13 ± 0.58

Att.&Sim. classifiers [19] Attributes 1 85.29

Sub-SML + SVM [8] LBP + SIFT 2 88.87 ± 0.60

Sub-SML + SVM [8] LBP, SIFT, Attributes 3 89.33 ± 0.54

SFRD + PMML [18] Spatial-temporal 8 89.35 ± 0.50

Sub-SML + SVM [8] LBP, SIFT, etc. 6 89.73 ± 0.38

SEAML [23] SIFT, Attributes 2 87.50 ± 1.30

ITML + Multiple OSS [18] SIFT, LBP, etc. 16 89.50 ± 1.58

GMSL LBP, SIFT 2 89.35 ± 0.44

GMSL LBP, SIFT, Attributes 3 90.67 ± 0.46

Table 6

Accuracy (%) comparisons with existing deep metric learning on LFW data in

restricted protocol.

Method Features NoD Accuracy

CDBN [37] Image descriptors, etc. 6 86.88 ± 0.62

CDBN + Hand-crafted Hand-crafted, etc. 12 87.77 ± 0.62

DNLML-ISA [36] LBP, SIFT, etc. 8 88.50 ± 0.40

DSML [27] LBP, SIFT, etc. 6 87.45 ± 1.45

DDML [27] Sparse SIFT (SSIFT) 1 87.83 ± 0.93

DDML [27] LBP, SIFT, etc. 6 90.68 ± 1.41

GMSL LBP, SIFT 2 89.35 ± 0.44

GMSL LBP, SIFT, Attribute 3 90.67 ± 0.46
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mance of 89.35% and 89.50% with 8 and 16 descriptors, respec-

tively. Furthermore, the ROC curves and AUCs (Area Under Curve)

for state-of-the-art methods are illustrated in Fig. 8, from which

we can clearly observe that our proposed GMSL method outper-

forms other related metric learning methods in restricted setting.

Additionally, we also employ a comparison with existing deep

learning methods on LFW in restricted protocol. We compare

our GMSL with four recently proposed deep learning based face
Fig. 8. Comparisons of ROC curves and AUCs between our GMSL and the state-of-

the-art methods on LFW.

d

erification methods: convolutional deep belief network (CDBN)

35], deep nonlinear metric learning with independent subspace

nalysis (DNLML-ISA) [36], discriminative shadow metric learn-

ng (DSML) [27] and discriminative deep metric learning (DDML)

27]. The comparisons with existing deep learning based face ver-

fication in restricted setting are shown in Table 6. We see that

he DDML achieves the best accuracy of 90.68% with 6 descrip-

ors. While our GMSL achieves 90.67% with only 3 descriptors, and

.01% lower than DDML. The ROC curves of GMSL and DDML are

hown in Fig. 9. The observed results demonstrate GMSL achieves

omparative performance with DDML.

In this paper, four metrics are learned simultaneously in GMSL.

or better visualization of the effectiveness of GMSL, we have con-

ucted the experiment using single metric and the direct combi-
Fig. 9. Comparison of ROC curves and AUCs.
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Table 7

Performance comparisons between our GMSL and other metric learning on Pubfig faces.

Methods Euclidean LMNN [11] ITML [9] DML-eig [10] LDML [5] KissMe [37] SubSML [8] GMSL

Accuracy (%) 72.5 73.5 69.3 77.4 77.6 77.6 77.3 78.5

Fig. 10. Comparison with single metric and combination of four metrics. 1: LBP;

2: SIFT; 3: Attribute; 4: LBP + SIFT; 5: LBP + Attribute; 6: SIFT + Attribute; and 7:

LBP + SIFT + Attribute.

Fig. 11. Some intra and inter pairs of faces in PubFig.
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Fig. 12. ROC curves and AUCs of SubSML and GMSL.
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ation of four metrics learned individually. Fig. 10 shows the error

ate of LFW for different feature types in restricted setting by using

our metrics and their combination, respectively. We can observe

hat the proposed GMSL by integrating multiple metrics learned si-

ultaneously has a better performance. The single metric M1 and

2 obtain better performance than M3 and M4. The direct combi-

ation of four metrics is not very useful for performance improve-

ent. This demonstrates the importance of learning latent metrics

imultaneously as a merit of our GMSL.

.4. Test results on PubFig faces

The Public Figures (PubFig) data shares similar property with

FW for unconstrained face verification [26]. It consists of 58,797

mages from 200 people. Some samples from PubFig are shown as

ig. 11.

For performance evaluation, 20,000 pairs from 140 people are

ivided into 10 folds, and each fold contains 1000 same and 1000

ot same pairs. Like LFW, 10-fold cross validation is adopted for

valuation. The average accuracies of several popular metric learn-

ng methods are reported. The comparison results between our

ethod and state-of-the-art metric learning methods on PubFig

nder the restricted setting are shown in Table 7, in which some
esults are from [37]. The accuracy 78.5% of our GMSL is about 1%

mprovement than KissMe [37]. To compare with SubSML which is

losely related with our method, we also present the ROC curves

n Fig. 12, and the effectiveness of our method is obviously demon-

trated.

. Conclusion

In this paper, we proposed to learn a metric swarm in lo-

al patches and enforce a vectorized similarity space reconstruc-

ion for general classification problem and unconstrained face

erification. Specifically, in the proposed GMSL, we aim at obtain-

ng a metric swarm by learning local patch based sub-metrics si-

ultaneously with a regularized metric learning model. The dual

roblem of GMSL is denoted as a quadratic programming prob-

em, which is efficiently solved by FISTA algorithm via an alter-

ative optimization algorithm. Then the local patch sub-metrics

an be represented by the dual solution. With the solved met-

ic swarm, the sample pairs are transformed into a vectorized

imilarity space (metric swarm space) via an established joint

imilarity function, where a SVM-like classification can be eas-

ly implemented in the represented space for verification tasks.

xperiments on several benchmark UCI datasets preliminarily

emonstrate its effectiveness in general classification problem. Fur-

her experiments on real-world LFW and PubFig faces datasets un-

er restricted setting demonstrate the best performance of our

MSL for unconstrained face verification.
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