

# 机器学习 (第7讲)

主讲: 张磊

E-mail: <a href="mailto:leizhang@cqu.edu.cn">leizhang@cqu.edu.cn</a>
Lab Website: <a href="mailto:http://www.leizhang.tk">http://www.leizhang.tk</a>







#### □贝叶斯学习

➤ Thomas Bayes的"逆概"问题。

**正向概率:**假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球的概率是多大?

**逆向概率**:如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测?

解决这个问题要靠什么? 一个字"猜"!



#### □贝叶斯学习

- ▶ 贝叶斯学习是一种基于概率的学习方法,能够计算显式的假设概率。它基于 (1)假设的先验概率, (2)给定假设下观察到不同数据的概率,以及(3) 观察到数据本身的概率。
- 1. P(h): 表示没有训练样本数据前,假设h拥有的初始概率,称为假设h的先验概率。如果,我们不清楚这个先验知识,在实际中通常简单地将每一种假设都赋予相同的概率。
- 2. P(D): 表示观察到训练数据D的先验概率,通常作为常数处理,因为不同的假设拥有相同的P(D)。
- 3. P(D|h): 表示假设h成立时观察到数据D的概率。
- 4. P(h|D): 后验概率,即对于给定的一个训练样本D,假设h成立的概率。在机器学习中,我们感兴趣的是这个后验概率。



#### □ 贝叶斯学习

贝叶斯公式:

$$P(h|D) = \frac{P(h) * P(D|h)}{P(D)}$$

#### 这个公式是怎么来的?

例: 一所学校里面有 60% 的男生,40% 的女生。男生总是穿长裤,女生则一半穿长裤一半穿裙子。有了这些信息之后我们可以容易地计算"随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大",这个就是前面说的"正向概率"的计算。然而,假设你走在校园中,迎面走来一个穿长裤的学生,你能够推断出他(她)是男生的概率是多大吗?

分析:如果知道有多少个穿长裤的学生,并知道穿长裤的人里面有多少男生就可以了。 设学校里面共有N人,其中:

- ◆ 穿长裤的男生的数量是N\*P(男)\*P(裤|男)
- ◆ 穿长裤的女生的数量是N\*P(女)\*P(裤|女)

那么,P(男|裤)=N\*P(男)\*P(裤|男)/[N\*P(男)\*P(裤|男)+N\*P(女)\*P(裤|女)]=P(男)\*P(裤|男)/P(裤)

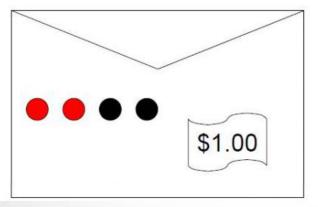
通式: P(B|A)=P(B)\*P(A|B)/P(A)

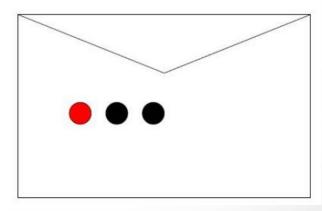


#### □ 贝叶斯学习

贝叶斯公式:

$$P(h|D) = \frac{P(h) * P(D|h)}{P(D)}$$





- 如果摸到一个红球,那么,这个信封有1美元的概率是?
- 如果摸到一个黑球,那么,这个信封有1美元的概率是?

逆概问题



#### □ 贝叶斯学习

- ◆ c1、c2表示左右两个信封。
- ◆ P(R), P(B)表示摸到红球、黑球的概率。
- ◆ P(R)=P(R|c1)\*P(c1) + P(R|c2)\*P(c2): 全概率公式
- ◆ 后验: P(c1|R)=P(R|c1)\*P(c1)/P(R)
- ightharpoonup P(R|c1)=2/4
- $\Phi$  P(R|c2)=1/3
- ightharpoonup P(c1)=P(c2)=1/2

如果摸到一个红球,那么,这个信封有1美元的概率是P(c1|R)=P(R|c1)\*P(c1)/P(R)=0.6

如果摸到一个黑球,那么,这个信封有1美元的概率是 P(c1|B)=P(B|c1)\*P(c1)/P(B)=3/7



#### □ 贝叶斯学习

贝叶斯公式:

$$P(h|D) = \frac{P(h) * P(D|h)}{P(D)}$$

贝叶斯学习的目的是对于训练样本D,找出一个最靠谱的猜测h(假设),使得后验概率达到最大。

也就是计算下列模型的最优解。

$$h_{MAP} = \operatorname*{argmax}_{h \in H} P(h|D)$$

其中H是各种"猜测"的集合。 $h_{MAP}$ 是最佳的"最靠谱"的猜测,满足后验最大。将上面的模型写完整:

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h|D) = \underset{h \in H}{\operatorname{argmax}} \frac{P(h) * P(D|h)}{P(D)} = \underset{h \in H}{\operatorname{argmax}} P(h) * P(D|h)$$

注: P(D)是不依赖于h的常量。



#### □ 贝叶斯学习

最大后验假设:在许多学习场景中,学习器考虑候选假设集合H,并在其中寻找给定数据D时,可能性最大的假设h∈H,即为最大后验假设(Maximum a Posteriori, MAP),也称为MAP假设,定义为h<sub>MAP</sub>。

确定MAP假设h<sub>MAP</sub>的方法,是利用贝叶斯公式计算集合H中每个候选假设的后验概率。即

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h|D) = \underset{h \in H}{\operatorname{argmax}} \frac{P(h) * P(D|h)}{P(D)}$$



#### □ 贝叶斯学习

贝叶斯模型:

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h) * P(D|h)$$

- ◆ 当设计者不清楚先验时,可将所有假设的先验P(h)均设为相同的值,即  $P(h) = \frac{1}{H}$ ,此时,模型变成了 $h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(D|h)$ ,P(D|h)常被称为给定h 时,数据D的似然,而使 P(D|h)最大的假设,称为极大似然假设。
- ◆ 可以看出, 贝叶斯模型实际上是先验与数据似然函数的乘积。如何理解先验? 先验在很多时候, 能够提供有力的"人为"帮助, 提升模型的分类能力和鲁棒。

模型的抽象含义是:对于给定观测数据D,一个猜测h是好是坏,取决于"这个猜测本身的可能性大小(先验概率P(h),Prior)"和"这个猜测生成我们观测到的数据的可能性大小"(似然P(D|h),Likelihood)的乘积



#### □ 贝叶斯学习

#### 先验的理解

例:用户输入一个错误单词Thet,请判断用户实际真正想输入的单词: "They" or "That"?

分析: 假设 "They"的后验概率P(They|Thet)=P(Thet|They)\*P(They)/P(Thet); 假设 "That"的后验概率P(That|Thet)=P(Thet|That)\*P(That)/P(Thet); 其中,P(They)和P(That)为假设的先验概率。

- 1. 若根据实际使用频率,单词That的使用频率要高于They, 也就是说,用户实际 想输入That的可能性更高,即 P(They)<P(That)
- 2. 若根据键盘中字母的排列,字母t和字母y是紧密靠近的,因此,用户实际想输入they的可能性更高, 即P(They)>P(That)

根据不同的先验知识,先验概率的值不同,因此先验知识的形式是多样的。



#### □ 朴素贝叶斯学习

朴素贝叶斯到底"朴素"在哪?也就是朴素贝叶斯的假设是,当类假设h给定时,特征之间相互条件独立。

换句话说,在给定假设h的情况下,观察到联合的d1,d2,...,dn的概率等于单独特征 (属性)的概率乘积:

$$P(d_1, d_2, ..., d_n | h) = \prod_i P(d_i | h)$$

代入到贝叶斯模型中,有

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h|D) = \underset{h \in H}{\operatorname{argmax}} \frac{P(h) * \prod_{i} P(d_i|h)}{P(D)} = \underset{h \in H}{\operatorname{argmax}} P(h) * \prod_{i} P(d_i|h)$$

"朴素"即"特征独立假设"的好处就是大大降低了估计带来计算复杂度。



#### □ 朴素贝叶斯学习

#### 目标值PlayTennis的14个训练样例

|     | , , , 4  | - /       | ,        | , , , , , , , , , |           |
|-----|----------|-----------|----------|-------------------|-----------|
| Day | Outlook  | Temperatu | Humidity | Wind              | PlayTenni |
| D1  | Sunny    | Hot       | High     | Weak              | No        |
| D2  | Sunny    | Hot       | High     | Strong            | No        |
| D3  | Overcast | Hot       | High     | Weak              | Yes       |
| D4  | Rain     | Mild      | High     | Weak              | Yes       |
| D5  | Rain     | Cool      | Normal   | Weak              | Yes       |
| D6  | Rain     | Cool      | Normal   | Strong            | No        |
| D7  | Overcast | Cool      | Normal   | Strong            | Yes       |
| D8  | Sunny    | Mild      | High     | Weak              | No        |
| D9  | Sunny    | Cool      | Normal   | Weak              | Yes       |
| D10 | Rain     | Mild      | Normal   | Weak              | Yes       |
| D11 | Sunny    | Mild      | Normal   | Strong            | Yes       |
| D12 | Overcast | Mild      | High     | Strong            | Yes       |
| D13 | Overcast | Hot       | Normal   | Weak              | Yes       |
| D14 | Rain     | Mild      | High     | Strong            | No        |

问题:结合朴素贝叶斯方法,对下面的新实例(4个特征属性)进行分类:

Outlook=Sunny
Temperature=Cool
Humidity=High
Wind=Strong

PlayTennis=Yes or No?



#### □ 朴素贝叶斯学习

$$h_{MAP} = \underset{h \in H = \{Yes, No\}}{\operatorname{argmax}} P(h) * \prod_{i} P(d_i|h)$$

分析:结合朴素贝叶斯分类器模型,分别把h=Yes和h=No两种假设下的后验概率计算出来,最大 值对应的假设就是我们的答案。

◆ 当h=Yes时,

$$P(h) * \prod_{i} P(d_{i}|h) = P(Yes) * P(Sunny|Yes) * P(Cool|Yes) * P(High|Yes) * p(Strong|Yes)$$

$$= \frac{9}{14} * \frac{2}{9} * \frac{3}{9} * \frac{3}{9} * \frac{3}{9} * \frac{3}{9} = 0.0053$$

◆ 当h=No时,

$$P(h) * \prod_{i} P(d_i|h) = P(No) * P(Sunny|No) * P(Cool|No) * P(High|No) * p(Strong|No)$$

$$= \frac{5}{14} * \frac{3}{5} * \frac{1}{5} * \frac{4}{5} * \frac{3}{5} = 0.0206$$
显然, $P(No) * \prod_{i} P(d_i|No) = 0.0206$  是然, $P(Yes) * \prod_{i} P(d_i|Yes) = 0.0053$ ,所以,

显然, $P(No) * \prod_i P(d_i|No) = 0.0206 >$  $P(Yes) * \prod_{i} P(d_{i}|Yes) = 0.0053$ , 所以, PlayTennis=No,今天的天气不适合打网球



#### □贝叶斯学习方法的特性

- 1. 贝叶斯方法允许假设做出不确定性的预测(如:某一癌症病人有85%的机会康复)。
- 2. 先验知识可以与观察数据一起决定假设的最终概率。在贝叶斯学习中,先验知识的形式可以是: 1)每个候选假设的先验概率; 2)每个候选假设在观察数据上的概率分布。
- 3. 新的样本分类可以由多个假设一起作出预测,用它们的概率来加权(最优贝叶斯)。



#### □ 采用朴素贝叶斯对垃圾邮件进行分类

- **1. 样本:** 1000封邮件,每个邮件被标记为垃圾邮件或者正常邮件。设有400封垃圾邮件,600封正常邮件。
- 2. 分类目标(问题): 给定第1001封邮件,确定它是垃圾邮件还是非垃圾邮件?
- 3. 方法: 朴素贝叶斯。

该如何建模和实现?

(一)分析: 令待分类的这封邮件为D=[d<sub>1</sub>,d<sub>2</sub>,...,d<sub>n</sub>],由n个单词组成。垃圾邮件定义为h1,正常邮件定义为h2。设400封垃圾邮件中的单词总数为N1,600封正常邮件中的单词总数为N2。



#### □ 采用朴素贝叶斯对垃圾邮件进行分类

(二)如果能够计算出垃圾邮件h1假设的后验概率和正常邮件h2假设的后验概率,两者概率最大的假设,即为该封邮件的类别。采用贝叶斯公式。

数学描述: 
$$P(h_1|D) = \frac{P(D|h_1)P(h_1)}{P(D)}$$
,  $P(h_2|D) = \frac{P(D|h_2)P(h_2)}{P(D)}$ 

P(D)为与h无关的常量,因此,只需计算 $P(D|h_1)P(h_1)$ 和 $P(D|h_2)P(h_2)$ 即可。



#### □ 采用朴素贝叶斯对垃圾邮件进行分类

(三)为了计算 $P(D|h_1)P(h_1)$ 和 $P(D|h_2)P(h_2)$ ,可以先计算先验概率 $P(h_1)$ 和 $P(h_2)$ 。

$$P(h_1) = \frac{400}{1000} = 0.4; \ P(h_2) = \frac{600}{1000} = 0.6$$

那如何计算 $P(D|h_1)$ 和 $P(D|h_2)$ ?

$$P(D|h_1) = P(d_1, d_2, \dots, d_n|h_1)$$

然后呢?问题变得复杂。由于数据的稀疏性以及语言的多样性,完全出现两封完全相同的邮件(文本)是几乎不可能的。也就是说,n个单词 $(d_1, d_2, \cdots, d_n)$ 在所有邮件中同时出现的概率几乎为0。那怎么办?



#### □ 采用朴素贝叶斯对垃圾邮件进行分类

(四) 当给定某假设时,采用特征的条件独立性假设,即朴素贝叶斯。

那如何计算 $P(D|h_1)$ 和 $P(D|h_2)$ ?

$$P(D|h_1) = P(d_1, d_2, \dots, d_n|h_1) = P(d_1|h_1) * P(d_2|h_1) * \dots * P(d_n|h_1)$$

$$= \prod_{i=1}^{n} P(d_i|h_1)$$

现在问题变得非常简单,计算 $P(d_i|h_1)$ 的概率,只需要统计单词 $d_i$ 在400封垃圾邮件中出现的频次,然后相乘。同理, $P(D|h_2)$ 的概率也是这么计算。



#### □ 朴素贝叶斯分类器

方法的基本定义:

- 1. 设 $\mathbf{x} = \{x_1, x_2, x_3, ..., x_d\}$ 为一个待分类的样本,由**d**个特征属性构成;
- **2.** 有类别集合 $C = \{y_1, y_2, ..., y_C\};$
- **3.** 计算 $P(y_1|\mathbf{x}), P(y_2|\mathbf{x}), ..., P(y_C|\mathbf{x});$
- **4.** 如果 $P(y_k|\mathbf{x}) = \max\{P(y_1|\mathbf{x}), P(y_2|\mathbf{x}), ..., P(y_C|\mathbf{x})\}$ , 则**x**属于 $y_k$ 这个类别。

在以上4个步骤中,只要成功完成第3步,即可实现样本x的分类。 如何实现第3步?

利用前面所学习的朴素贝叶斯学习算法!



#### □ 朴素贝叶斯分类器

第3步计算 $P(y_1|\mathbf{x}), P(y_2|\mathbf{x}), ..., P(y_c|\mathbf{x})$ 条件概率的具体步骤:

- 1. 己知类别的训练样本集 (如14天的天气数据,以及是否打了网球)
- 2. 统计每个类别下,各个特征属性的条件概率(出现频次),即

$$P(x_1|y_1), P(x_2|y_1), ..., P(x_d|y_1);$$
  
 $P(x_1|y_2), P(x_2|y_2), ..., P(x_d|y_2);$   
 $\vdots$ 

$$P(x_1|y_C), P(x_2|y_C), ..., P(x_d|y_C);$$

- 3. 计算各类别的先验概率 $P(y_1), P(y_2), ..., P(y_C)$  (统计各类别出现的频率)
- 4. 根据朴素贝叶斯方法,各个特征属性是条件独立的。利用贝叶斯定理(公式),

我们要计算的
$$P(y_i|\mathbf{x}) = \frac{P(\mathbf{x}|y_i)P(y_i)}{P(\mathbf{x})} = \frac{P(x_1|y_i)\cdot P(x_2|y_i)\cdots P(x_d|y_i)\cdot P(y_i)}{P(\mathbf{x})} = \frac{P(y_i)\cdot \prod_{j=1}^d P(x_j|y_i)}{P(\mathbf{x})},$$

其中,P(x)是数据的先验,可以当做常数处理,不影响后验概率的比较。



#### □ 朴素贝叶斯分类器

✓ Laplacian校验(零概率问题)

当特征属性为离散值时,计算条件概率 $P(x_j|y_i)$ 即在类 $y_i$ 条件下统计属性 $x_j$ 出现的次数,可能会遇到出现次数为 $\mathbf{0}$ ,从而导致该条件概率为 $\mathbf{0}$ ,会影响分类器的性能(训练样本较少时会遇到该问题)。

这种情况下,可以利用Laplacian校验,即统计每一类下的某特征属性出现的次数时,全部计数加1,可避免0概率的出现。

当训练样本数量充分大时,不影响分类器的结果。



#### □ 朴素贝叶斯分类器

前面的例子中,考虑了特征值属性为离散值时的情况,在实际问题中,通常是特征值属性为连续值的情况。

那该如何计算完成上述条件概率的计算?即

$$P(x_1|y_i), P(x_2|y_i), ..., P(x_d|y_i), \forall i = 1, ..., C$$

> 当特征值为连续值时,通常假设特征属性服从高斯分布,即

$$P(\mathbf{x}|y_i) = N(\mu_i, \sigma_i)$$

因此,
$$P(x_j|y_i) = \frac{1}{\sqrt{2\pi}\sigma_i}e^{\frac{(x_j-\mu_i)^2}{2\sigma_i^2}}$$

ightharpoonup 如何计算每一类各特征属性的均值以及方差? 即 $\mu_i$ 和 $\sigma_i(i=1,...,C)$ 直接利用期望和方差公式即可。



#### □ 朴素贝叶斯分类器

▶ 最小错误率贝叶斯分类器

利用后验概率 $P(y_i|\mathbf{x})$ ,当 $P(y_k|\mathbf{x})$ 为所有后验概率中最大值时,待分类样本 $\mathbf{x}$ 属于 $y_k$ 类,即 $P(y_k|\mathbf{x}) = \max_{i=1,\dots,c} P(y_i|\mathbf{x})$ 

▶ 最大似然比贝叶斯分类器

对于两类问题,当  $P(\mathbf{x}|y_i)P(y_i) > P(\mathbf{x}|y_j)P(y_j)$ 时,判决**x**属于 $y_i$ 类;也就是当  $\frac{P(\mathbf{x}|y_i)}{P(\mathbf{x}|y_j)} > \frac{P(y_j)}{P(y_i)}$ 时,判决**x**属于 $y_i$ 类。其中, $\frac{P(\mathbf{x}|y_i)}{P(\mathbf{x}|y_j)}$ 为似然比。 $\frac{P(y_j)}{P(y_i)}$ 为判决门限。

▶ 最小风险贝叶斯分类器



#### □ 朴素贝叶斯分类器

> 最小风险贝叶斯分类器

顾名思义,对于待分类样本,有多种决策,具有最小风险的决策(分类)即为最终的分类。作如下定义:

- 1. 决策 $\omega_i$ : 把待识别样本x分类到 $y_i$ 类中;
- 2. 损失 $\rho_{ij}$ : 把真实属于 $y_i$ 类的样本x错误分类到 $y_j$ 类中;
- 3. **条件风险** $R(\omega_i|\mathbf{x})$ : 对待识别样本 $\mathbf{x}$ 采取决策 $\omega_i$ ,产生的可能风险;条件风险的计算公式如下: $R(\omega_i|\mathbf{x}) = \sum_{j=1}^C \rho_{ij} P(y_j|\mathbf{x})$
- 4. 最小风险贝叶斯分类器就是计算具有最小风险的决策 $\omega_k$

$$R(\omega_k|\mathbf{x}) = \min_{i=1,\dots,c} R(\omega_i|\mathbf{x})$$

那么待识别样本x采取决策 $\omega_k$ ,也就是将被分类到 $y_k$ 类中。

# CHONG UNIVERSE

#### □ 朴素贝叶斯分类器

▶ 最小风险贝叶斯分类器

当
$$\rho_{ij} = \begin{cases} 0, i = j \\ 1, i \neq j \end{cases}$$
有
$$\min_{i=1,\dots,c} R(\omega_i | \mathbf{x}) = \min_{i=1,\dots,c} \sum_{j=1}^{C} \rho_{ij} P(y_j | \mathbf{x}) = \min_{i=1,\dots,c} \sum_{j=1,j\neq i}^{C} P(y_j | \mathbf{x})$$

$$= \min_{i=1,\dots,c} 1 - P(y_i|\mathbf{x}) \quad \text{$\underline{\hspace{-0.1cm}}$} \quad \Sigma_{j=1}^c P(y_j|\mathbf{x}) = 1$$

$$=\max_{i=1,\dots,c} P(y_i|\mathbf{x})$$
 注: 最小错误率贝叶斯分类器

可见,最小错误率分类器是最小风险贝叶斯分类器的一种特例。



#### □ 朴素贝叶斯分类器

> 分类器性能评价

在机器学习中,基本上分类器的评价是通过分类器正确率(识别率)进行衡量。

分类器正确率: 指被正确分类的样本数占所有样本数的比率。

分类正确率的计算通常是基于一部分新的测试样本集,而非训练样本集。

因为训练集往往会因为过拟合,而得出较高的正确率,但不能作为分类器的评价指标。